JPS643812B2 - - Google Patents

Info

Publication number
JPS643812B2
JPS643812B2 JP651583A JP651583A JPS643812B2 JP S643812 B2 JPS643812 B2 JP S643812B2 JP 651583 A JP651583 A JP 651583A JP 651583 A JP651583 A JP 651583A JP S643812 B2 JPS643812 B2 JP S643812B2
Authority
JP
Japan
Prior art keywords
sol
quartz glass
catalyst
gel
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP651583A
Other languages
Japanese (ja)
Other versions
JPS59131539A (en
Inventor
Satoru Myashita
Sadao Kanbe
Motoyuki Toki
Tetsuhiko Takeuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP651583A priority Critical patent/JPS59131539A/en
Publication of JPS59131539A publication Critical patent/JPS59131539A/en
Publication of JPS643812B2 publication Critical patent/JPS643812B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/006Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels to produce glass through wet route

Description

【発明の詳細な説明】 本発明はアルコキシシランを酸性・塩基性それ
ぞれの触媒を用いて別々に加水分解した後、よく
混合しPH3〜6でゲル化させ、乾燥・焼結する石
英ガラスの製造法に関する。
Detailed Description of the Invention The present invention involves the production of quartz glass by separately hydrolyzing alkoxysilane using acidic and basic catalysts, mixing well, gelling at pH 3 to 6, drying and sintering. Regarding the law.

金属アルコキシドを加水分解し、ゲル化させて
得られた乾燥ゲルを加熱する非溶融ガラス製造法
をゾル―ゲル法という。金属アルコキシドを出発
原料とすると、溶融法で作ることが困難な組成で
も均質なガラスを比較的低温で作ることができる
ため注目されている。しかし、一般に加水分解後
のゲル化収縮過程、あるいは乾燥ゲルの加熱の途
中で破砕しやすいという欠点がある。
A non-melting glass manufacturing method in which a dry gel obtained by hydrolyzing a metal alkoxide and gelling it is heated is called a sol-gel method. Using metal alkoxides as starting materials has attracted attention because homogeneous glass can be produced at relatively low temperatures even with compositions that are difficult to produce by melting methods. However, it generally has the disadvantage that it tends to break during the gelling shrinkage process after hydrolysis or during heating of the dried gel.

石英ガラスは使用頻度が高く有用な物質である
が、現在は2000℃付近で溶融して製造しているた
め非常に高価である。ゾル―ゲル法は高純度、低
コスト、省エネルギーなどの特徴を有するが大型
の石英ガラスは得られていない。
Although quartz glass is a frequently used and useful material, it is currently manufactured by melting it at around 2000°C, making it extremely expensive. The sol-gel method has features such as high purity, low cost, and energy savings, but it has not been able to produce large-sized quartz glass.

焼結過程での破砕を防ぐためには50〜80Åの比
較的大きな細孔を多量に含む乾燥ゲルを作製する
ことが必要である。アンモニアのような塩基を触
媒に用いると、作製した乾燥ゲルは50Å以上の細
孔を多量に含むため、焼結における割れは皆無で
ある。しかし乾燥ゲルを求める形状に作製するの
は非常に困難であり、直径2cm以上の乾燥ゲルが
得られた例は発表されていない。
In order to prevent fracture during the sintering process, it is necessary to prepare a dry gel containing a large amount of relatively large pores of 50 to 80 Å. When a base such as ammonia is used as a catalyst, the dried gel produced contains a large number of pores larger than 50 Å, so there are no cracks during sintering. However, it is extremely difficult to produce a dried gel in the desired shape, and no examples have been published in which a dried gel with a diameter of 2 cm or more has been obtained.

この欠点を克服するためには塩基で加水分解し
たゾルに、酸で加水分解したゾルを混合してゲル
化させる方法が有効である。
In order to overcome this drawback, it is effective to mix a sol hydrolyzed with a base with a sol hydrolyzed with an acid to form a gel.

混合ゾルによる乾燥ゲルは、塩基触媒のみによ
る場合より、はるかに製造しやすいものの、実用
性を考えるとまだ歩留りが悪い。特に、塩基触媒
で加水分解したゾルの混合比を高くした場合や、
ゾル中のシリカ粒径を大きくした場合は乾燥ゲル
が得にくくなる。逆に酸性状態で加水分解したゾ
ルの混合比を高くしたり、塩基触媒によるゾル中
のシリカ粒径を小さくすれば高率で乾燥ゲルが作
製できる。しかし50Å以上の細孔をあまり含まな
いため、焼結過程で割れやすくなる。
Although dry gels using mixed sol are much easier to produce than those using only base catalysts, the yield is still low from a practical standpoint. In particular, when the mixing ratio of the sol hydrolyzed with a base catalyst is increased,
If the silica particle size in the sol is increased, it becomes difficult to obtain a dry gel. On the other hand, if the mixing ratio of the sol hydrolyzed in an acidic state is increased or the silica particle size in the sol catalyzed by a base is decreased, a dry gel can be produced at a high rate. However, since it does not contain many pores larger than 50 Å, it becomes easily cracked during the sintering process.

大型の石英ガラスを高率で製造するためには、
比較的大きな粒径をもつシリカ微粒子を多量に含
む乾燥ゲルを、高収率で作製しなければならな
い。
In order to produce large quartz glass at a high rate,
A dry gel containing a large amount of fine silica particles with a relatively large particle size must be produced in high yield.

本発明は前記のような問題点を解決し、大型で
従来の石英ガラスと全く変わらない、大型で気泡
が全くないものを安価に提供することを目的とす
る。
The object of the present invention is to solve the above-mentioned problems and to provide a large, bubble-free glass at a low cost, which is no different from conventional quartz glass.

本発明の石英ガラスの製造法は、 アルコキシシランを塩基を触媒に用いて加水分
解したゾルと、酸を触媒に用いて加水分解したゾ
ルとを均一に混合してゲル化させた後、乾燥・焼
結する石英ガラスの製造法において、均一に混合
したゾルをPH3〜6の範囲になるよう調整してか
らゲル化させることを特徴とする。すなわち、塩
基を触媒に用いて加水分解した比較的大きな粒径
をもつシリカ微粒子の分散したゾルと、酸を触媒
に用いて加水分解したテトラヒドロキシシランが
2〜4量体を形成しているゾルとを均一に混合さ
せた後、PH3〜6に調整してからゲル化させるこ
とによつて、安定して大型の石英ガラスをつくる
ことができる。
The method for producing quartz glass of the present invention includes uniformly mixing a sol obtained by hydrolyzing alkoxysilane using a base as a catalyst and a sol obtained by hydrolyzing using an acid as a catalyst to form a gel, and then drying. A method for manufacturing silica glass by sintering is characterized in that a uniformly mixed sol is adjusted to have a pH in the range of 3 to 6 and then gelled. In other words, a sol in which fine silica particles with a relatively large particle size are dispersed by hydrolysis using a base as a catalyst, and a sol in which tetrahydroxysilane formed into dimers and tetramers by hydrolysis using an acid as a catalyst. By uniformly mixing the two, adjusting the pH to 3 to 6, and then gelling, it is possible to stably produce large-sized quartz glass.

酸を触媒に用いると、加水分解速度が速く、重
合速度が遅いため粒成長は起こらない。重合が網
目状に進むと考えられ、結合力は強く乾燥ゲルは
比較的作製しやすい。しかし、乾燥条件により部
分的に重合速度の差が生じ、これを制御できない
と割れる。
When an acid is used as a catalyst, the hydrolysis rate is fast and the polymerization rate is slow, so grain growth does not occur. It is thought that polymerization proceeds in a network-like manner, the bonding force is strong, and dry gels are relatively easy to prepare. However, differences in polymerization rate occur depending on the drying conditions, and if this cannot be controlled, cracks will occur.

酸で加水分解したゾルに塩基を添加して中性に
近ずけると、重合速度が著しく促進され瞬時にゲ
ル化・収縮がおこる。そのため乾燥条件の差は、
よほど極端でない限り重合速度に影響を与えず、
割れの原因とはならない。PH5に調整したゾル
は、室温に開放で放置することにより、割れるこ
となく乾燥ゲルを作製することができた。
When a base is added to a sol that has been hydrolyzed with an acid to bring it closer to neutrality, the polymerization rate is significantly accelerated and gelation and shrinkage occur instantaneously. Therefore, the difference in drying conditions is
It does not affect the polymerization rate unless it is very extreme,
It will not cause cracks. By leaving the sol adjusted to pH 5 open at room temperature, a dry gel could be produced without cracking.

水素イオン濃度を化学的に調整することにより
重合反応は均一に、速く、強力な網目構造をつく
つて進行するため、乾燥ゲルの作製は非常に容易
になる。PHの範囲は3〜6が適当である。
By chemically adjusting the hydrogen ion concentration, the polymerization reaction proceeds uniformly, quickly, and with the formation of a strong network structure, making dry gel production extremely easy. A suitable pH range is 3 to 6.

PH3以下だと重合速度が遅く、効果がうすい。
PH6以上だと、重合速度が速すぎて制御できな
い。
If the pH is below 3, the polymerization rate will be slow and the effect will be weak.
If the pH is 6 or higher, the polymerization rate is too fast to be controlled.

この特徴を利用した本発明により、比較的大き
な粒径をもつシリカ微粒子を多量に含む乾燥ゲル
を、高収率で作製することができた。
By utilizing this feature of the present invention, a dry gel containing a large amount of silica fine particles having a relatively large particle size could be produced at a high yield.

以下、実験例に基づいて本発明を詳しく説明す
る。
Hereinafter, the present invention will be explained in detail based on experimental examples.

実験例 1 (Si(OC2H54:H2O:C2H5OH)=(1:10:
8)のモル比で混合し、均一溶液とした。水は
0.1規定アンモニア水溶液を用い、3日間密栓を
して室温で放置し、加水分解及び粒成長を行なわ
せた。シリカ微粒子は0.1μm近くまで成長してい
た。白色半透明のゾルをシリカ濃度25wt%まで
ロータリーエバポレーターを用いて濃縮した。
Experimental example 1 (Si(OC 2 H 5 ) 4 :H 2 O:C 2 H 5 OH)=(1:10:
They were mixed at a molar ratio of 8) to form a homogeneous solution. The water is
Using a 0.1N ammonia aqueous solution, the tube was sealed tightly and left at room temperature for 3 days to allow hydrolysis and grain growth. The silica particles had grown to nearly 0.1 μm. The white translucent sol was concentrated to a silica concentration of 25 wt% using a rotary evaporator.

一方、(Si(OC2H54:H2O)=(1:10)のモル
比で氷冷下1時間撹拌を続けた。水は0.1規定塩
酸水溶液を用い、無色透明の均一溶液を得た。や
はりシリカ濃度25wt%まで濃縮し、アンモニア
触媒で調整したゾルと、1:1の体積比でよく混
合したこの混合ゾルはPH3を示した。濃縮過程で
アンモニアが除去されたためと思われる。
Meanwhile, stirring was continued for 1 hour under ice cooling at a molar ratio of (Si(OC 2 H 5 ) 4 :H 2 O)=(1:10). A 0.1N aqueous hydrochloric acid solution was used as water to obtain a colorless and transparent homogeneous solution. This mixed sol, which was also concentrated to a silica concentration of 25 wt% and thoroughly mixed with a sol prepared using an ammonia catalyst at a volume ratio of 1:1, exhibited a pH of 3. This is probably because ammonia was removed during the concentration process.

撹拌しながら混合ゾルに0.1規定アンモニア水
を徐々に滴下し、PH4.6とした。直径10cm、高さ
5cmのポリテトラフルオロエチレン製容器にうつ
し、室温で放置すると30分後にゲル化した。直径
3mmの穴20個を開けたふたをし、60℃で1日保持
し、徐々に90℃まで昇温した。90℃で2日間乾燥
させると直径6cmの乾燥ゲルが得られた。
While stirring, 0.1N ammonia water was gradually added dropwise to the mixed sol to adjust the pH to 4.6. The mixture was poured into a polytetrafluoroethylene container with a diameter of 10 cm and a height of 5 cm, and gelled after 30 minutes when left at room temperature. It was covered with a lid with 20 holes of 3 mm in diameter, kept at 60°C for 1 day, and then gradually raised to 90°C. After drying at 90°C for 2 days, a dried gel with a diameter of 6 cm was obtained.

細孔径分布を測定すると40〜80Åの細孔を多量
に含んでおり、5℃/minという急激な昇温速度
で焼結しても全く割れず、1150℃でガラス化し無
色透明になつた。直径4.5cmの石英ガラスが製造
できた。
When the pore size distribution was measured, it contained a large amount of pores of 40 to 80 Å, and even when sintered at a rapid temperature increase rate of 5°C/min, it did not crack at all, and vitrified at 1150°C, becoming colorless and transparent. We were able to produce quartz glass with a diameter of 4.5cm.

実験例 2 実施例1と同様の方法でPH4.6に調整した混合
ゾルを直径20cm、高さ10cmのポリテトラフルオロ
エチレン製容器でゲル化させ、直径6mmの穴を20
個開けたふたをした。60℃で2日間、90℃で3日
間乾燥させ、直径12cmの乾燥ゲルが作製できた。
1150℃で焼結し、直径9cmの石英ガラスが得られ
た。
Experimental Example 2 A mixed sol adjusted to pH 4.6 in the same manner as in Example 1 was gelled in a polytetrafluoroethylene container with a diameter of 20 cm and a height of 10 cm, and 20 holes with a diameter of 6 mm were made.
I opened it and put the lid on. After drying at 60°C for 2 days and 90°C for 3 days, a dried gel with a diameter of 12 cm was prepared.
It was sintered at 1150°C to obtain quartz glass with a diameter of 9 cm.

実験例 3 実験例1と同様の方法で別々に加水分解した後
濃縮したゾルを、(アンモニア触媒:塩酸触媒)=
(2:1)の体積比で均一に混合した。PH4.6に調
整した後、直径10cmの容器に移し、同じ乾燥処理
により直径6cmの乾燥ゲルを得た。
Experimental Example 3 A sol that was separately hydrolyzed and concentrated in the same manner as in Experimental Example 1 was converted into (ammonia catalyst: hydrochloric acid catalyst) =
They were mixed uniformly at a volume ratio of (2:1). After adjusting the pH to 4.6, it was transferred to a container with a diameter of 10 cm, and a dried gel with a diameter of 6 cm was obtained by the same drying process.

1200℃まで加熱したところガラス化し、直径
4.5cmの石英ガラスが製造できた。
When heated to 1200℃, it becomes vitrified and the diameter
We were able to manufacture 4.5cm quartz glass.

実験例 4 (Si(OC2H5):H2O:C2H5OH)=(1:5:
5)のモル比で混合し、均一溶液とした。水は
0.1規定アンモニア水溶液を用い、3日間密栓を
して室温で放置し、加水分解及び粒成長を行なわ
せた。シリカ微粒子は1μm近くまで成長してい
た。白色不透明のゾルをシリカ濃度25wt%まで、
ロータリー・エバポレーターを用いて濃縮した。
Experimental example 4 (Si(OC 2 H 5 ): H 2 O: C 2 H 5 OH) = (1:5:
They were mixed at a molar ratio of 5) to form a homogeneous solution. The water is
Using a 0.1N ammonia aqueous solution, the tube was sealed tightly and left at room temperature for 3 days to allow hydrolysis and grain growth. The silica particles had grown to a size of nearly 1 μm. White opaque sol with silica concentration up to 25wt%,
Concentrate using a rotary evaporator.

一方、(Si(OC2H54:H2O)=(1:10)のモル
比で氷冷下1時間撹拌を続けた。水は0.1規定塩
酸水溶液を用い、無色透明の均一溶液を得た。や
はりシリカ濃度25wt%まで濃縮し、アンモニア
触媒で調製したゾルと、1:1の体積比でよく混
合した。
Meanwhile, stirring was continued for 1 hour under ice cooling at a molar ratio of (Si(OC 2 H 5 ) 4 :H 2 O)=(1:10). A 0.1N aqueous hydrochloric acid solution was used as water to obtain a colorless and transparent homogeneous solution. It was also concentrated to a silica concentration of 25 wt% and mixed well with a sol prepared using an ammonia catalyst at a volume ratio of 1:1.

実験例1と同様の乾燥方法で直径6cmの乾燥ゲ
ルが作製できた。
A dried gel with a diameter of 6 cm was prepared using the same drying method as in Experimental Example 1.

1300℃まで加熱したところガラス化し、直径
4.5cmの石英ガラスが製造できた。
When heated to 1300℃, it becomes vitrified and the diameter
We were able to manufacture 4.5cm quartz glass.

以上の通り、本発明によれば、 二種類のゾル溶液すなわち、酸性触媒で加水分
解したゾル溶液と、塩基性触媒で加水分解したゾ
ルとを混合することにより (1) 生成した微粒子(ゾル)同志が強固に結合し
た骨格となり、ゲル化によつて起こる収縮過
程、溶剤等の蒸発分を除去してドライゲルとす
る乾燥過程、さらには焼結をして石英ガラスと
する焼結の過程においても、全く割れることの
ない大型の石英ガラスを製造することができ
る。
As described above, according to the present invention, by mixing two types of sol solutions, that is, a sol solution hydrolyzed with an acidic catalyst and a sol hydrolyzed with a basic catalyst, (1) fine particles (sol) are generated. The comrades form a strongly bonded skeleton, and are used in the shrinkage process caused by gelation, the drying process to remove evaporated components such as solvents to form a dry gel, and even the sintering process to form quartz glass. , it is possible to produce large-sized quartz glass that does not break at all.

(2) 原料がすべて、アルコキシシランであるので
精製ができ、純度の高い石英ガラスを得ること
ができる。
(2) Since all raw materials are alkoxysilanes, it can be purified and highly pure quartz glass can be obtained.

(3) 製造において、原料がすべて液体であること
から、扱いも簡単で安全衛生上も粉塵などの心
配がなく、またエネルギー消費も極めて少ない
安価な石英ガラスを提供できる。
(3) Since all the raw materials are liquid during manufacturing, it is easy to handle, there is no need to worry about dust or the like in terms of health and safety, and it is possible to provide inexpensive quartz glass that consumes very little energy.

これらのことから、純度が高く、大型の石英ガ
ラスを必要とする理化学機器、IC製造用フオツ
トマスク、ICボード、IC基板など、極めてその
用途は大きい。
For these reasons, it has a wide range of uses, including physical and chemical equipment that requires high-purity, large-sized quartz glass, photomasks for IC manufacturing, IC boards, and IC substrates.

Claims (1)

【特許請求の範囲】[Claims] 1 アルコキシシランを塩基を触媒に用いて加水
分解したゾルと、酸を触媒に用いて加水分解した
ゾルとを均一に混合してゲル化させた後、乾燥・
焼結する石英ガラスの製造法において、均一に混
合したゾルをPH3〜6の範囲になるよう調整して
からゲル化させることを特徴とする石英ガラスの
製造法。
1 A sol obtained by hydrolyzing alkoxysilane using a base as a catalyst and a sol obtained by hydrolyzing using an acid as a catalyst are uniformly mixed to form a gel, and then dried and
A method for producing quartz glass by sintering, which comprises adjusting a uniformly mixed sol to have a pH in the range of 3 to 6 and then gelling it.
JP651583A 1983-01-18 1983-01-18 Production of quartz glass Granted JPS59131539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP651583A JPS59131539A (en) 1983-01-18 1983-01-18 Production of quartz glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP651583A JPS59131539A (en) 1983-01-18 1983-01-18 Production of quartz glass

Publications (2)

Publication Number Publication Date
JPS59131539A JPS59131539A (en) 1984-07-28
JPS643812B2 true JPS643812B2 (en) 1989-01-23

Family

ID=11640537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP651583A Granted JPS59131539A (en) 1983-01-18 1983-01-18 Production of quartz glass

Country Status (1)

Country Link
JP (1) JPS59131539A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2733483B2 (en) * 1988-12-13 1998-03-30 三井化学株式会社 Manufacturing method of high light transmitting dustproof body
JP2666471B2 (en) * 1989-05-17 1997-10-22 日立化成工業株式会社 Method for producing silica glass

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56125240A (en) * 1980-03-07 1981-10-01 Natl Inst For Res In Inorg Mater Preparation of silica glass

Also Published As

Publication number Publication date
JPS59131539A (en) 1984-07-28

Similar Documents

Publication Publication Date Title
US4801318A (en) Silica glass formation process
EP1258456A1 (en) Silica glass formation process
JPS643812B2 (en)
JPS59116135A (en) Manufacture of quartz glass
JPH01183421A (en) Production of quartz glass
JPH0124734B2 (en)
KR100722379B1 (en) A method of preparing transparent silica glass
JPS60215532A (en) Production of quartz glass
JPH0328382B2 (en)
KR100722378B1 (en) A method of preparing transparent silica glass
JPH0114177B2 (en)
JPH02145442A (en) Production of glass
JPS643811B2 (en)
JPS632820A (en) Production of glass
JP3582093B2 (en) Method for producing silica glass
JPS62113737A (en) Production of quartz glass
JPS6126525A (en) Production of quartz glass
JPS6054929A (en) Production of quartz glass
JPS63171630A (en) Spherical porous body and its production
JPH0822749B2 (en) Glass manufacturing method
JPS61256928A (en) Production of glass
JPS62226821A (en) Production of glass
JPH02289435A (en) Production of foam glass
JPH0328380B2 (en)
JPS61186227A (en) Production of quartz glass