JPH0328221A - Aromatic copolyester - Google Patents

Aromatic copolyester

Info

Publication number
JPH0328221A
JPH0328221A JP15149490A JP15149490A JPH0328221A JP H0328221 A JPH0328221 A JP H0328221A JP 15149490 A JP15149490 A JP 15149490A JP 15149490 A JP15149490 A JP 15149490A JP H0328221 A JPH0328221 A JP H0328221A
Authority
JP
Japan
Prior art keywords
polymer
aromatic
copolyester
reaction
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15149490A
Other languages
Japanese (ja)
Inventor
Takanori Urasaki
浦崎 隆徳
Wataru Funakoshi
渉 船越
Yasuji Hirabayashi
平林 保治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP15149490A priority Critical patent/JPH0328221A/en
Publication of JPH0328221A publication Critical patent/JPH0328221A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prepare a linear arom. copolyester having an excellent heat resistance and transparency and giving a melt molded product with an excellent moist heat resistance by incorporating three specific structural units in a specified molar ratio into the copolyester. CONSTITUTION:A linear atom. copolyester which comprises the structural units of formulas I, II and III, in which the number of moles of formula I is substantially equal to the total number of moles of formulas II and III and the molar ratio of formula II to formula III is (9:1)-(4:6), and which has no halogen atom directly attached to the molecular backbone and has a reduced viscosity (calculated from a relative viscosity measured at 35 deg.C in a 4:6 mixed solvent of phenol and tetrachloroethane) of 0.6-2.0. The copolyester is excellent in the resistance and transparency and gives a melt molded product excellent in the moist heat resistance.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、すぐれた耐熱性と透明性を有し、且つ耐湿熱
性の良好な溶融成形品を与える新規な芳香族コポリエス
テルに関するものである.(従来技術》 従来より、イソフタル酸を主たる酸成分とし、ハイドロ
キノンを主たるジオール成分とする芳香族ポリエステル
はよく知られている.そしてその製造方法として、イソ
フタル酸クロライドとハイドロキノンとを高沸点の熱媒
中で270℃以上の高温で直接反応させる方法が提案さ
れている(特開昭46−5546号参照). また、かかる芳香族ポリエステルの製法として、ジヒド
ロキシ芳香族化合物のジアセテートと芳香族ジカルボン
酸とを反応させる方法も提案されている. しかし、これらの芳香族ポリエステルは、末端力ルボキ
シル基量が多いためか、または分子鎖に結合したハロゲ
ン原子を有するためか、a)耐湿熱性が劣る b)耐熱性.耐溶融安定性が劣る C)溶融成形した成形品の色調が悪い d)透明性が劣る などの欠点があり、そのため上記方法で重合した芳香族
ポリエステルを、溶融或形特に溶融製膜することにより
、耐熱性および耐湿熱性の高く、かつ色調及び透明性の
良好な成形品(特にフィルム》を製造することが困難で
あった. 一方、近年、たとえばテレフタル酸ジフエニルやイソフ
タル酸ジフエニル等とハイドロキノン、,レゾルシン等
のジオキシベンゼンとから溶融重合法で芳香族ポリエス
テルを’jf!遺し、ついでこの芳香族ポリエステルを
溶融或形する方法が提案された(特開昭53−5425
2号参照〉.しかし、この方法によって得られた芳香族
ポリエステルは暗褐色を示し、本発明者らによって1)
ボリマーが分岐しているためか、以下Gこ示したフロー
インデックスが小さく(たとえば約0.6),ここで得
られる芳香族ポリエステルは延仲性に乏しい 2)透明性が良好でない などの欠点のあることが見出された. (発明が解決しようとする課題) 本発明は、かかる欠点のない:/8融成形が可能な芳香
族コポリエステルを提供しようとするものである. (課題を解決するための千段) 本発明者は、酸戊分としてイソフタル酸を用llXると
共に、ジオール成分として/’tイドロキノンおよび4
,4゛−ジオキシビフエニルを併用し、且つ、ハイドロ
キノンと4,4゜−ジオキシビフエニノレとのモル比が
特定の範囲内にある共重合体は、上述の欠点がなく、良
好な成形品となし得ることを見出し、本発明に到達した
. すなわち、本発明は、実質的に下記[I] [■]およ
び[I[I]の楕造単位からなる実質的に線状の芳香族
コポリエステルであって、 o−Go − ・・・[11 該芳香族コポリエステル中の前記[I]のモル数と[n
]と[I[I]との合計モル数が実質的に等しく、前記
[II]と[II[]の共重合モル比が9=1〜4:6
であり、且つ分子鎖に結合したハロゲン原子を有しない
、0.6〜2.0の還元粘度(フェノール/テトラクロ
ルエタン−4/6の混合溶媒に溶解し35℃で測定した
相対粘度より算出)をもつ芳香族コポリエステルである
. 本発明に係る新規な芳香族コポリエステルは、実質上、
インフタル酸を酸成分とし、ハイドロキノンおよび4.
4゛−ジオキシビフエニルをジオール成分とする実質的
に線状の芳香族コポリエステルであって、該芳香族コポ
リエステル中のハイドロキノン戚分と4.4“−ジオキ
シビフエニル成分の共重合モル比は9:1〜4:6の範
囲内にあり、かつ還元粘度にして0.6〜2.0の高い
重合度を有するものである.すなわちこの芳香族コポリ
エステルは下記の繰返し単位Ta)及び(b)を芳香族
コポリエステルを横成する全繰返し単位に対し少くとも
90モル%以上、好ましくは95モル%以上含み、(a
)と(b)のモル比が9:1〜4:6の範囲内にあるも
のである. 該芳香族コポリエステルにおいて10モル%以下、特に
5モル%以下の割合で共重合してもよい共重合成分(第
四成分)は、たとえば、テレフタル酸.ナフタレン−2
.6−ジカルボン酸.ナフタレンー27−ジカルボン酸
,ジフエニルジカルボン酸,ジフェニルエーテルジカル
ボン酸などの芳香族ジカルボン酸ならびにエチレングリ
コール,ネオベンチレングリコール.ビスβ−ヒドロA
シエトキシベンゼンなどの脂肪族クリコールなどがある
.かかる本発明の芳香族コボリエスデルを製造する方法
としては、 (八)インフタノレ酸ジアリーノレエステlレ.ハイド
ロ吉ノンおよび4.4゛−ジオ吉シビフエニルを所定割
合に混合し、重合触媒のイf在下に、坐成するヒドロキ
シ芳香族化合物を除去しつつ350℃以下の温度で且つ
溶融状態を維持しつつ加熱重縮合せしめ、必要に応じ、
更にこれを囚相重合せしめて還元粘度0.6〜2.0の
ボリマーを形成せしめる方法《以下、A法という》、あ
るいは、 (8)イソフタル酸,ハイドロキノン,4,4゜−ジオ
Aシビフエニルおよびジアリールカーボネートを所定割
合に混合し、重合触媒の存在下に、坐成ずるヒドロ吉シ
芳香族化合物および二酸化炭素を除去しつつ350’C
以下の温度で■1つ溶融状態を維持しつつ加熱垂縮合せ
しめ、必要に応じ、史にこれを固相重合せしめて還元粘
度0.6〜2.0のボリマーを形成せしめる方法(以下
、B法という) が採用される. 上記A法において芳香族コポリエステルを製造する場合
、出発原利は、酸戚分としてはイソフタル酸ジアリール
エステル又はこれと少呈の他の芳香族ジカルボン酸アリ
ールエステルとの混合物が、またジオール成分としては
前記2種のジヒドロキシ芳香族化合物又はこれに少量の
脂肪族グリコールを混合したものが用いられる. 本発明で用いるイソフタル酸ジアリールエスデルの例と
しては、ジフェニルイソフタレ−1・.ジl・リルイソ
フタレート.ジ(エチルフェニル)イソフタレート,ジ
(ジメチルフェニル)インフタレー1・.ジ(グロピル
フエニル)インフタルレート,ジ(プチルフエニル)イ
ンフタレート,ジ(オクチルフエニル)インフタレート
.フェニル1−リルイソフタレートの如きイソフタル酸
の非置換またはアルキル置換フェノールとのジアリール
エステルなどがあげられる.これと少量併用し得る他の
芳香族ジカルボン酸ジアリールエステルとしては、たと
えばジフエニルデレフタレート.ジフェニルナフタレン
−2.6−ジカルボキシレート.ジフエニルナフタレン
−2.7−ジカルポキシレー1− ,ジフエニルジフエ
ニル−4.4゛−ジカルボキシレート.ジフェニルジフ
ェニルエーテル−4,4゜ジカルボキシレートをあげる
ことができる.本発明では、イソフタル酸成分を主とす
る芳香族ジカルボン欣成分と反応させる芳香族ジオール
成分として、ハイドロキノンと4,4゜−ジオキシビフ
エニルの両名が用いられるが、この両者の割合は上述の
モル比となるように選定される.ハイドロキノン成分と
4,4゜−ジオキシビフエニル成分との共重合比が9:
1〜4:6(特に8二2〜6:4)の範囲内のときは、
生成コポリエステルの融点が適度に低くなり溶融成形性
のすぐれたボリマーとなる. 本発明では、この両者に加え、少量の他のジオールを併
用してもよい.かかるジオールとしては、たとえば上述
の脂肪族グリコールをあげることができる。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a novel aromatic copolyester that has excellent heat resistance and transparency and provides melt-molded products with good moist heat resistance. .. (Prior art) Aromatic polyesters containing isophthalic acid as the main acid component and hydroquinone as the main diol component have been well known.As a method for producing them, isophthalic acid chloride and hydroquinone are used as a high boiling point heating medium. Among them, a method of direct reaction at a high temperature of 270°C or higher has been proposed (see JP-A-46-5546). In addition, as a method for producing such an aromatic polyester, diacetate of a dihydroxy aromatic compound and an aromatic dicarboxylic acid have been proposed. However, these aromatic polyesters have a) poor moist heat resistance, b) probably because they have a large amount of terminal carboxyl groups or because they have halogen atoms bonded to their molecular chains. )Heat-resistant. There are drawbacks such as poor melt stability; C) poor color tone of melt-molded molded products; and d) poor transparency. However, in recent years, it has been difficult to produce molded products (especially films) with high heat resistance and moist heat resistance, as well as good color tone and transparency.On the other hand, in recent years, for example, diphenyl terephthalate, diphenyl isophthalate, etc., and hydroquinone, A method has been proposed in which an aromatic polyester is produced by a melt polymerization method with dioxybenzene such as resorcinol, and then this aromatic polyester is melted or shaped (Japanese Patent Laid-Open No. 53-5425
See issue 2>. However, the aromatic polyester obtained by this method exhibits a dark brown color, and the inventors reported 1)
Perhaps because the polymer is branched, the flow index shown below is small (for example, about 0.6), and the aromatic polyester obtained here has poor ductility.2) It has disadvantages such as poor transparency. Something was discovered. (Problems to be Solved by the Invention) The present invention aims to provide an aromatic copolyester which is free from such drawbacks and is capable of being melt-molded. (A Thousand Steps to Solving the Problem) The present inventor uses isophthalic acid as an acid component, and also uses /'t hydroquinone and 4 as a diol component.
, 4゛-dioxybiphenyl, and the molar ratio of hydroquinone and 4,4゛-dioxybiphenyl is within a specific range. We have discovered that it can be made into a molded product, and have arrived at the present invention. That is, the present invention provides a substantially linear aromatic copolyester consisting essentially of the following elliptical units [I] [■] and [I[I], o-Go - ...[ 11 The number of moles of the above [I] in the aromatic copolyester and [n
] and [I[I] have substantially the same total number of moles, and the copolymerization molar ratio of [II] and [II[] is 9=1 to 4:6
and has no halogen atoms bonded to the molecular chain, and has a reduced viscosity of 0.6 to 2.0 (calculated from the relative viscosity measured at 35°C after dissolving in a mixed solvent of phenol/tetrachloroethane-4/6). ) is an aromatic copolyester. The novel aromatic copolyester according to the present invention essentially comprises:
Inphthalic acid as the acid component, hydroquinone and 4.
A substantially linear aromatic copolyester containing 4'-dioxybiphenyl as a diol component, which is a copolymerization of a hydroquinone relative in the aromatic copolyester and a 4.4"-dioxybiphenyl component. The molar ratio is within the range of 9:1 to 4:6, and the reduced viscosity is 0.6 to 2.0, which is a high degree of polymerization.In other words, this aromatic copolyester has the following repeating unit Ta. ) and (b) at least 90 mol% or more, preferably 95 mol% or more, based on the total repeating units forming the aromatic copolyester, and (a
) and (b) in a molar ratio of 9:1 to 4:6. The copolymer component (fourth component) which may be copolymerized in the aromatic copolyester at a rate of 10 mol% or less, particularly 5 mol% or less, is, for example, terephthalic acid. Naphthalene-2
.. 6-dicarboxylic acid. Aromatic dicarboxylic acids such as naphthalene-27-dicarboxylic acid, diphenyl dicarboxylic acid, and diphenyl ether dicarboxylic acid, as well as ethylene glycol and neobenzene glycol. bis β-hydro A
These include aliphatic glycols such as ethoxybenzene. As a method for producing the aromatic cobolyesdel of the present invention, (8) inftanoleic acid diaryl ester. Hydrokiyone and 4.4'-diokisibiphenyl are mixed in a predetermined ratio, and the molten state is maintained at a temperature of 350°C or less while removing the hydroxy aromatic compound that forms in the presence of a polymerization catalyst. Polycondensate by heating, if necessary,
This is further subjected to prison phase polymerization to form a polymer with a reduced viscosity of 0.6 to 2.0 (hereinafter referred to as method A), or (8) isophthalic acid, hydroquinone, 4,4°-geo-A cibiphenyl and Diaryl carbonates were mixed in a predetermined ratio and heated at 350'C in the presence of a polymerization catalyst while removing the hydrocarbon aromatic compound and carbon dioxide.
A method of heating and condensing while maintaining a molten state at the following temperature, and if necessary, solid-phase polymerizing this to form a polymer with a reduced viscosity of 0.6 to 2.0 (hereinafter referred to as B law) will be adopted. When producing an aromatic copolyester using the above method A, the starting material is isophthalic acid diaryl ester or a mixture of this and a small amount of other aromatic dicarboxylic acid aryl ester as the acid component, and as the diol component. The above two types of dihydroxy aromatic compounds or a mixture thereof with a small amount of aliphatic glycol are used. Examples of diaryl isophthalate used in the present invention include diphenyl isophthalate-1. Di-lylisophthalate. Di(ethylphenyl) isophthalate, di(dimethylphenyl) inphthalate 1. Di(glopylphenyl) inphthalate, di(butylphenyl) inphthalate, di(octylphenyl) inphthalate. Examples include diaryl esters of isophthalic acid with unsubstituted or alkyl-substituted phenols such as phenyl 1-lyl isophthalate. Other aromatic dicarboxylic acid diaryl esters that can be used in small amounts in combination with this include, for example, diphenyl derephthalate. Diphenylnaphthalene-2,6-dicarboxylate. Diphenylnaphthalene-2,7-dicarpoxylate 1-, diphenyldiphenyl-4,4'-dicarboxylate. One example is diphenyl diphenyl ether-4,4° dicarboxylate. In the present invention, both hydroquinone and 4,4°-dioxybiphenyl are used as the aromatic diol component to be reacted with the aromatic dicarbonate component mainly containing the isophthalic acid component, and the ratio of the two is as described above. The molar ratio is selected to be . The copolymerization ratio of hydroquinone component and 4,4°-dioxybiphenyl component is 9:
When it is within the range of 1 to 4:6 (especially 822 to 6:4),
The melting point of the resulting copolyester is moderately low, resulting in a polymer with excellent melt moldability. In the present invention, in addition to these two, small amounts of other diols may be used in combination. Examples of such diols include the aliphatic glycols mentioned above.

また、B法において芳香族コポリエステルを製造する場
合、出発原料は酸成分としては前記の芳香族ジカルボン
酸が、またジオール成分としては前記のジヒドロキシ・
化合物がそれぞれ用いられるほかに、ジアリールカーボ
ネートが用いられる.ここでジアリールカーボネートと
は、フェノール.クレゾール.エチルフェノール,ジメ
チルフェノール.プロビルフェノール,プチルフェノー
ル,オクチルフェノール,ナフトールなどの非置換もし
くはアルキル置換フェノール、またはナフ1・−ルの如
きモノヒドロキシ芳香族化合物の炭欣エステルである. このようなジアリールカーボネートの具体的としては、
ジフエニルカーボネート,ジトリルカーボネート.ジ《
エチルフェニル)カーボネート,ジ(ジメチルフェニル
)カーボネート.ジ(プロビルフェニル)カーボネート
.ジ(プチルフェニル)カーボネート,ジ(オクチルフ
ェニル)カーボネート,ジナフチルカーボネート,フエ
ニルトリルカーボネートなどをあげることができる.上
記A法による場合、出発原料の仕込み割合は、原料中の
アリールエステル基に対し原料中のヒドロキシ基が1:
Iから1 : 1.2となるように、また、ジアリール
イソフタレートとハイドロキノン及び4,4゜−ジオキ
シビフエニルのモル数の和が仕込み原料中で90モル%
以上、好ましくは95モル%以上になるようにする. 一般に重綿合反応は重縮合触媒のもとて200℃で始ま
るが、反応速度がおそいので昇温し、反応系内のボリマ
ーの還元粘度が0.08に達する前は反応系内のボリマ
ーの結晶融点以上で、反応の結果生成するモノしドロキ
シ芳香族化合物を反応系外に除去しつつ重縮合させる. 本発明の芳香族コポリエステルにおいて、重縮合反応温
度は、最終的に芳香族コポリエステルの結晶融点以下で
且つ350℃以下、特に320〜330℃まで高めるの
が好ましい.重合温度が350℃よりも高いとボリマー
に分岐が発生しやすくなり、また、得られるコボリヱス
テルの末端力ルボキシル基量が増大する傾向かあるので
、最高温度を350″C又はそれ以下に制御ずべきであ
る.重縮合反応の初期は大気圧のもとで行なわれるが、
その後は減圧下または不活性ガスを流し、強制的に反応
の結果生成するモノヒドロキシ芳香族化合物および必要
に応じて過剰に用いたハイド1コキノンなどのジヒドロ
キシ芳香族化合物を反応系外に除去しつつ行なわれる。
In addition, when producing an aromatic copolyester in Method B, the starting materials are the above-mentioned aromatic dicarboxylic acid as the acid component and the above-mentioned dihydroxy dicarboxylic acid as the diol component.
In addition to each compound used, diaryl carbonate is also used. Here, diaryl carbonate refers to phenol. Cresol. Ethylphenol, dimethylphenol. They are unsubstituted or alkyl-substituted phenols such as propylphenol, butylphenol, octylphenol, naphthol, or carbon esters of monohydroxy aromatic compounds such as naphthol. Specific examples of such diaryl carbonates include:
Diphenyl carbonate, ditolyl carbonate. Ji《
Ethylphenyl) carbonate, di(dimethylphenyl) carbonate. Di(propylphenyl) carbonate. Examples include di(butylphenyl) carbonate, di(octylphenyl) carbonate, dinaphthyl carbonate, and phenyltolyl carbonate. In the case of method A above, the charging ratio of the starting materials is 1:1: hydroxyl groups in the raw materials to aryl ester groups in the raw materials.
I to 1:1.2, and the sum of the moles of diarylisophthalate, hydroquinone and 4,4°-dioxybiphenyl is 90 mol% in the raw materials.
The above should preferably be 95 mol% or more. Polymerization reaction generally starts at 200°C using a polycondensation catalyst, but since the reaction rate is slow, the temperature rises and the polymerization reaction takes place before the reduced viscosity of the polymer in the reaction system reaches 0.08. At temperatures above the crystal melting point, polycondensation is carried out while removing mono-droxy aromatic compounds produced as a result of the reaction from the reaction system. In the aromatic copolyester of the present invention, the polycondensation reaction temperature is preferably raised to a final temperature below the crystalline melting point of the aromatic copolyester and below 350°C, particularly from 320 to 330°C. If the polymerization temperature is higher than 350°C, branching tends to occur in the polymer, and the amount of terminal carboxyl groups in the resulting copolyester tends to increase, so the maximum temperature should be controlled to 350°C or lower. The initial stage of the polycondensation reaction is carried out under atmospheric pressure,
After that, under reduced pressure or by flowing an inert gas, monohydroxy aromatic compounds produced as a result of the reaction and dihydroxy aromatic compounds such as hydro-1 coquinone used in excess as necessary are removed from the reaction system. It is done.

反応系内に生成したボリマーの還元粘度が約0.1に達
する前に、反応の結果生成するモノヒドロキシ化合物お
よび必要に応じて過剰に用いたハイドロキノンなどのジ
ヒドX:7キシ化合物を反応系外に強制的に、好ましく
は減圧下に除去することか好ましい.更に好ましくは上
記大気圧のもとに行なわれる重縮合反L6は、たとえば
250〜290’Cまでの温度でモノヒドロキシ芳香族
化合物の留出社が理論値の50〜70%になるまで続け
られる.この後反応系の圧力は減圧され、最終的に32
0〜350℃、特に好ましくは320〜330℃になる
まで昇温しつつ1時間以内に反応系の圧力は20+m+
lIQ、またはそれ以下にされる.好適な条件下では、
溶融重縮合反応は5時間以内に終了する. また、本発明に係る芳香族コポリエステルの溶融重縮合
において、減圧下または不活性ガスを流し、強制的に反
応の結果生或するモノヒドロキシ芳香族化合物および必
要に応じて過剰に用いたハイドロキノンなどのジヒドロ
キシ芳香族化合物を反応系外に除去しつつ行なう重縮合
反応時間は3時間以内である. 重縮合触媒としては、従来公知のエステル交換触媒が用
いられる.このような触媒のうち好適なものの例は、た
とえば酢酸マグネシウム.安息香酸カルシウム.酢酸ス
トロンチウム.プロビオン酸バリウム.炭酸ランタン.
酸化セリウム.酢酸マンガン.酢酸;!バルト.酢酸亜
鉛,酸化ゲルマニウム,酢酸第1スズ.酸化鉛.三酸化
アンチモン,三酸1ヒビスマスなどがある.これらの垂
縮合触媒とともに安定剤を併用することか好ましい.好
ましい安定剤の例は従来公知の3価もしくは5価のリン
化合物またはそのエステルである。
Before the reduced viscosity of the polymer produced in the reaction system reaches approximately 0.1, the monohydroxy compound produced as a result of the reaction and, if necessary, an excess dihydro It is preferable to remove it forcibly, preferably under reduced pressure. More preferably, the polycondensation reaction L6, which is carried out under atmospheric pressure, is continued at a temperature of, for example, 250 to 290'C until the distillation rate of monohydroxy aromatic compounds is 50 to 70% of the theoretical value. .. After this, the pressure of the reaction system was reduced, and finally 32
While increasing the temperature to 0 to 350°C, preferably 320 to 330°C, the pressure of the reaction system is reduced to 20+m+ within 1 hour.
IQ or lower. Under favorable conditions,
The melt polycondensation reaction is completed within 5 hours. In addition, in the melt polycondensation of the aromatic copolyester according to the present invention, under reduced pressure or by flowing an inert gas, a certain monohydroxy aromatic compound produced as a result of the reaction and, if necessary, an excess of hydroquinone, etc. The polycondensation reaction time, which is carried out while removing the dihydroxy aromatic compound from the reaction system, is within 3 hours. As the polycondensation catalyst, a conventionally known transesterification catalyst is used. Suitable examples of such catalysts include, for example, magnesium acetate. Calcium benzoate. Strontium acetate. Barium probionate. Lanthanum carbonate.
Cerium oxide. Manganese acetate. Acetic acid;! Baltic. Zinc acetate, germanium oxide, stannous acetate. Lead oxide. Examples include antimony trioxide and mono-hibismuth trioxide. It is preferable to use a stabilizer together with these polycondensation catalysts. Examples of preferred stabilizers are conventionally known trivalent or pentavalent phosphorus compounds or esters thereof.

また、上記B法による場合には、出発原料の仕込み割合
は、原料中のカルボキシル基に対して原料中のヒドロキ
シル基が1:1から1:1.2となるように、また原料
中のカルボキシル基に対して原料中のジアリールカーボ
ネートがl:1がら1:1.05となるように、更にイ
ソフタル酸.ハイドロキノン及び4,4゜−ジオキシビ
フエニルのモル数の和がジアリールカーボネートを除い
た仕込み原利中で90モル%以上、好ましくは95モル
%以上になるようにする. 上記B法で芳香族コポリエステルを製造する場合、ジア
リールカーボネートは用いた芳香族ジカルボン酸と反応
し(以下エステル化反応と呼ぶ)、炭酸ガスの発生をと
もなって芳香族ジカルボン酸をアリールエステルに変換
させる.そこで上記B法で芳香族ポリエステルを製造す
る場合には、般には下記の(B−1)の方法による.(
B〜1)芳香族ジカルボン酸,ジヒドロキシ芳香族化合
物及びジアリールカーボネートからなる混合物を加熱重
縮合させる方法.また、下記の(B−2>の方法による
こともできる. (B−2)芳香族ジカルボン酸とジアリールカーボネー
トを予め反応させて芳香族ジカルボン酸のアリールエス
テルを形或させ、ついでジオキシ芳香族化合物を加えて
加熱重縮合させる方法。
In addition, in the case of method B, the charging ratio of the starting materials is such that the ratio of hydroxyl groups in the raw materials to carboxyl groups in the raw materials is 1:1 to 1:1.2, and Furthermore, isophthalic acid. The sum of the moles of hydroquinone and 4,4°-dioxybiphenyl is adjusted to be 90 mol % or more, preferably 95 mol % or more in the starting material excluding diaryl carbonate. When producing an aromatic copolyester using method B above, the diaryl carbonate reacts with the aromatic dicarboxylic acid used (hereinafter referred to as esterification reaction), and the aromatic dicarboxylic acid is converted to an aryl ester with the generation of carbon dioxide gas. Let. Therefore, when producing aromatic polyester by the above method B, the following method (B-1) is generally used. (
B-1) A method of heating and polycondensing a mixture consisting of an aromatic dicarboxylic acid, a dihydroxy aromatic compound, and a diaryl carbonate. Alternatively, the following method (B-2>) can also be used. (B-2) An aromatic dicarboxylic acid and a diaryl carbonate are reacted in advance to form an aryl ester of the aromatic dicarboxylic acid, and then a dioxyaromatic compound is formed. A method of heating and polycondensing by adding

以上、(B−1)(B−2)のいずれの方法によるとき
もffi縮合反応は、A法と同様な重縮合触媒の存在下
行なわれ、また重縮合反応初期は大気圧のもとに行なう
.この時点で反応系外に除去されるモノオNシ芳香族化
合物の藍はエステル化反応において生成するモノオキシ
芳香族化合物の量(使用した芳香族ジカルボン酸の2倍
モルで使用したジアリールカーボネートのモル数にほぼ
等しい)と、A法におけると同様重縮合反応によって生
戒するモノオキシ芳香族化合物の理論量の50〜70モ
ル%に相当する量の和である. A法とB法の相違点はこのように反応の比較的初1υl
の段階に限られ、以後の重縮合反応は両方法とも全く同
様にして行なわせることができる.すなわち、B法にお
いても上記大気圧下での反応のあとは、重縮合反応温度
を上昇させつつ、また重縮合反応の結果、生成するモノ
オキシ芳香族1ヒ合物および必要に応じて過剰に用いた
芳香族ジオキシ化合物を反応系外に強制的に除去しつつ
重縮合反応が行なわれる. かくして得られた重合体は、0.1〜0.7の還元粘度
を有するが、更に還元粘度の高められた重合体を望む場
合は、上連の溶融垂合法(A法又はB法)により得られ
た重合体をそれ自体公知の方法で減圧下または不活性気
体を通じつつ固相重させしめることにより還元粘度の高
い高重合度のボリマーを製造することができる.この固
相重合に供する溶融重合による重合体の還元粘度は、好
ましくは0.1〜0.5である. 固相重合は、芳香族ポリエステルの固相重合において知
られているように、重合体粒子か小さいほど、所望の重
合度まで速やかに到達するため、通常5メッシュより大
きな値をもつ粒径のものについて、好ましくは6〜30
0メッシュのものについて行なわれる.あまり粒径が小
さいと粉砕や取扱い上の困難が大きくなり、望ましくな
い.固相重合は、約230℃以上で且つ通常粒子同士が
凝集しないような温度、好ましくは約250〜300℃
の温度で不活性ガス雰囲気中常圧〜減圧下、好ましくは
減圧下(たとえばIImlIllg以下)で行なわれる
.t記固相重合法によれば還元粘度がより高められた重
合体、たとえば溶融重合による還元粘度が約0.1〜0
.15の重合体から、還元粘度が約0.6〜0.7の重
合体が得られ、また還元粘度が約0,15〜0.5の重
合体からは還元粘度が0、7〜2.0の重合体が得られ
る. 本発明の芳香族コボリヱステルは、90当i/106g
以下、好ましくは5〜60当!t/106g、より好ま
しくは10〜50当量/106 gの末端力ルボキシル
基を有するものとして提供される.また、本発明の芳香
族コポリエステルは、好ましくは0.6〜2.0、より
好ま゛しくは0.7〜1.5の還元粘度を有するものと
して提供される.木允1明の芳香族コポリエステルは、
さらに分子鎖中に結合したハロゲン原子(たとえば塩素
,臭素など)を実質的に含有しない.分子鎖中に結合し
たハロゲン原子とは、たとえば分子鎖末端のハロゲン原
子(たとえば酸クロライドの形態にあるハロゲン原子)
、あるいは分子鎖の芳香環に結合したハロゲン原子(た
とえばハロゲン化ハイドロキノン等の原料に山来するハ
ロゲン原子)などを意味している. かかるハロゲン原子は、重合体を有機溶媒で抽出すると
か、あるいは重合体の有機溶媒溶液がら沈澱させるとか
の方法によっても重合体中にハロゲン原子が含まれるこ
とによって証明できる.これに対し、従来法により酸ハ
ロゲン化物を原料として製造した重合体中には、ハロゲ
ン原子を約0.3重量%以一L含有する. 本発明の芳香族コポリエステルは、更に、実質的に線状
である.このような重合体は、たとえばフローインデッ
クスが、すり速度が約50〜500sec−1の間にお
いて、平均約0.7〜1、より好ましくは0.7〜0,
9の間の値にある, 上述の如き本発明に係る芳香族コポリエステルは、f!
融成形法によってずぐれた性能のフィルムを与える. 該芳香族コポリエステルは、溶融成形が可能な温度に加
熟され、スリットより好ましくは100〜180℃に加
熱されたドラム上に押出し、フィルムに成形される.成
形時のドラフト率は通常約2〜10とされる.スリット
としては一般にスリットrp0.5・〜5關のものが用
いられる. かくして芳香族コポリエステルからなる未延伸フィルム
が得られるが、この未延伸フィルムは透明性が良好で、
260℃で1分間熱処理してもその透明性を維持し、強
度保持率は85%以上で、仲度は30%以上有し、且つ
寸法変化が1%以下と極めて小さい.また、アセトンな
どの有機溶剤中でも1法変化やam的性質の変化が小さ
い.未延仲フィルムは、ついで一軸延仲または同時的ら
しくは逐次的な二軸延仲を施すことができる.延伸は1
80〜280℃、好ましくは190〜220℃で行なわ
れる.延伸倍率は、一軸延仲の場合には2〜4倍程度で
あり、二軸延仲の場合にはタテ.ヨ:2各1.7〜3.
5倍程度が好ましい。二軸延仲の場合は、面積倍率を2
.8〜10倍とするのがよい。延伸フィルムは、ついで
熱固定を施し寸法安定性を改笹することができる. 熟固定はフィルム温度約250’C以上の温度、虹まし
くは重合体の融点より20℃低い温度以下で、且つ約3
30℃以下の温度で行なうことができる.悲固定の時間
は1秒以上、好ましくは10秒〜5分の間で行なうこと
ができる.この熱固定は緊張下実施され、熱固定により
結晶化が進行する.熱固定を受けたフィルムは、ついで
熱収縮処理を受けるのが好ましい.この処理によって熱
収縮率の小さい耐熱性の良好なフィルムが得られる。
As mentioned above, in both methods (B-1) and (B-2), the ffi condensation reaction is carried out in the presence of the same polycondensation catalyst as in method A, and the initial stage of the polycondensation reaction is under atmospheric pressure. Do it. The amount of monooxyaromatic compounds removed from the reaction system at this point is the amount of monooxyaromatic compounds produced in the esterification reaction (the number of moles of diaryl carbonate used at twice the mole of the aromatic dicarboxylic acid used). ) and an amount corresponding to 50 to 70 mol% of the theoretical amount of monooxyaromatic compound to be recovered by the polycondensation reaction as in Method A. The difference between Method A and Method B is that the reaction is relatively initial 1υl.
The subsequent polycondensation reactions can be carried out in exactly the same manner in both methods. That is, in Method B, after the above reaction under atmospheric pressure, the polycondensation reaction temperature is raised, and the monooxyaromatic compound produced as a result of the polycondensation reaction and, if necessary, an The polycondensation reaction is carried out while the aromatic dioxy compounds present are forcibly removed from the reaction system. The thus obtained polymer has a reduced viscosity of 0.1 to 0.7, but if a polymer with an even higher reduced viscosity is desired, it can be prepared by the Kamiren melt tanning method (method A or method B). A polymer with a high reduced viscosity and a high degree of polymerization can be produced by solid-phase polymerizing the obtained polymer by a method known per se under reduced pressure or while passing an inert gas. The reduced viscosity of the melt polymerized polymer subjected to this solid phase polymerization is preferably 0.1 to 0.5. In solid phase polymerization, as is known in the solid phase polymerization of aromatic polyester, the smaller the polymer particles, the faster the desired degree of polymerization is reached. , preferably 6 to 30
This is done for objects with 0 mesh. If the particle size is too small, it becomes difficult to crush and handle, which is not desirable. The solid phase polymerization is carried out at a temperature of about 230°C or higher and at a temperature at which particles do not aggregate with each other, preferably about 250 to 300°C.
The reaction is carried out at a temperature of 1,000 ml in an inert gas atmosphere at normal pressure to reduced pressure, preferably under reduced pressure (for example, less than IImlIllg). According to the solid phase polymerization method described in t, a polymer with a higher reduced viscosity, for example, a reduced viscosity obtained by melt polymerization of about 0.1 to 0.
.. From the polymer No. 15, a polymer with a reduced viscosity of about 0.6 to 0.7 is obtained, and from the polymer with a reduced viscosity of about 0.15 to 0.5, a reduced viscosity of about 0.7 to 2. 0 polymer is obtained. The aromatic cobolyester of the present invention is 90 equivalent i/106 g
Below, preferably 5 to 60! t/106 g, more preferably 10 to 50 equivalents/106 g. Further, the aromatic copolyester of the present invention is provided as having a reduced viscosity of preferably 0.6 to 2.0, more preferably 0.7 to 1.5. Mu Yun's aromatic copolyester is
Furthermore, it does not substantially contain halogen atoms (for example, chlorine, bromine, etc.) bonded in the molecular chain. A halogen atom bonded in a molecular chain is, for example, a halogen atom at the end of a molecular chain (for example, a halogen atom in the form of an acid chloride).
, or a halogen atom bonded to an aromatic ring in a molecular chain (for example, a halogen atom found in raw materials such as halogenated hydroquinone). Such halogen atoms can be verified by the presence of halogen atoms in the polymer by extracting the polymer with an organic solvent or by precipitating a solution of the polymer in an organic solvent. On the other hand, polymers produced by conventional methods using acid halides as raw materials contain halogen atoms of about 0.3% by weight or more. The aromatic copolyesters of the present invention are further substantially linear. Such a polymer has, for example, a flow index of about 0.7 to 1, more preferably 0.7 to 0, on average at a slip rate of about 50 to 500 sec-1.
The aromatic copolyester according to the invention as described above has a value between f!
The melt forming process provides films with superior performance. The aromatic copolyester is cured to a temperature that allows melt molding, and extruded onto a drum heated to preferably 100 to 180°C through slits to form a film. The draft rate during molding is usually about 2 to 10. Generally, a slit with a slit rp of 0.5 to 5 is used. In this way, an unstretched film made of aromatic copolyester is obtained, and this unstretched film has good transparency.
It maintains its transparency even after heat treatment at 260°C for 1 minute, has a strength retention rate of 85% or more, a consistency of 30% or more, and has an extremely small dimensional change of 1% or less. In addition, even in organic solvents such as acetone, there is little change in one method or change in am-like properties. The unrolled film can then be subjected to uniaxial stretching or simultaneous or sequential biaxial stretching. Stretching is 1
It is carried out at a temperature of 80 to 280°C, preferably 190 to 220°C. The stretching magnification is approximately 2 to 4 times in the case of uniaxially drawn medium, and the stretching ratio is about 2 to 4 times in the case of biaxially drawn medium. Yo: 2 each 1.7~3.
About 5 times is preferable. In the case of biaxial extension, increase the area magnification by 2.
.. It is preferable to increase the amount by 8 to 10 times. The stretched film can then be heat set to improve its dimensional stability. Ripe fixation is performed at a film temperature of about 250°C or higher, or at a temperature lower than 20°C below the melting point of the polymer, and at a temperature of about 30°C or less.
It can be carried out at temperatures below 30°C. The period of stabilization can be 1 second or more, preferably 10 seconds to 5 minutes. This heat fixation is performed under tension, and crystallization progresses due to heat fixation. Preferably, the heat-set film is then subjected to a heat-shrinking treatment. By this treatment, a film with low heat shrinkage and good heat resistance can be obtained.

熱収縮処理は、フィルム温度約200℃以上重合体の融
点より20℃低い温度以下で、且つ320℃以下の温度
、好ましくは約200℃と熱固定温度より10゛C以上
低い温度との間の温度、特に約220℃と熱固定温度よ
り10℃以上低い温度との間の温度で行つ。
The heat shrinking treatment is carried out at a film temperature of about 200°C or above and below a temperature of 20°C below the melting point of the polymer, and below 320°C, preferably between about 200°C and a temperature at least 10°C below the heat setting temperature. The temperature is preferably between about 220° C. and at least 10° C. below the heat setting temperature.

(発明の効果) かくして本発明によれば、分岐が少なく、末端力ルボキ
シル基量が約90当Ji/10’g以下、特に5〜60
当i/106gで、且つ還元粘度が0.6〜0.2、好
ましくは0.7〜1.5であって、実質的にハロゲンを
含まない芳香族コボリヱステルが提供される. 本発明に係る芳香族;1ポリエステルは、末延仲でも耐
熱性の良好なポリエステルシ一トまたはフィルムを与え
、またこのシートまたはフィルムは耐湿熱性もすぐれ、
工業的に有用なものである。
(Effects of the Invention) Thus, according to the present invention, there is little branching, and the amount of terminal carboxyl groups is about 90 equivalent Ji/10'g or less, particularly 5 to 60
Provided is an aromatic cobolyester having a reduced viscosity of 0.6 to 0.2, preferably 0.7 to 1.5, and substantially halogen-free. The aromatic;
It is industrially useful.

また、本発明の芳香族コポリエステルは透明性と耐熱性
を要求されるボトル,パイ1等にも使用できる. (実施rIA) 以下、実施例により本発明方法について詳述するが、そ
の前に測定法について記述する.くサンプルの調整〉 a) M元粘度(ηSO/C )およびカルボキシル基
1 ( [COOI+] ”J測定用サンプル:本発明
方法によるボリマーは結晶性であり、固相重合のような
長時間の熱処理を受けたものはフェノールとテトラクロ
ルエタンの混合溶剤には溶解が困難である.そこで、固
相重合したボリマーのηsp/cおよび[COOII]
の測定に際しては、ボリマーを予め150℃で乾燥し、
ついでこのボリマー約1gを直径1間、長さ5IIll
のノズルを備えた断面積1−のシリンダーに充填し、つ
いでボリマーを融点以上の温度(実施例では380℃)
で2分間加熱溶融後押出し、上記測定用サンプルとした
. 溶融押出し成形した未延仲フィルム,延伸フィルム
.熱固定されたフィルムおよび熱収縮させたフィルムな
どは、そのままηSD/ Cおよび[COOH]測定用
サンプルとした. b)融点測定用サンプル: ボリマーの融点の測定に際しては、ポリマ−を予め20
0℃で1時間然処理したもの用いた.く還元粘度〈ηs
p/c )の測定〉 サンプル120#を10mlのフェノールとテトラクロ
ルエタンとの混合溶剤(フェノール:テトラクロルエタ
ン(董量比−4:6)に溶かし、35゜Cでオストワル
ドの粘度計を用いて相対粘度(η『)を測定し、下記式
によりηsp/ cを算出した. [A−B]x5 ボリマー量(g) 0.5 くカルボキシル基量( [COOI+] )の定量〉サ
ンプル100 mgを10mlのフェノールとテトラク
ロルエタンとの混合溶剤(フェノール:テトラク口ルエ
タン(重量比=4:6)に溶かし、ブロムクレゾールグ
リーンを指示薬として0.1規定の苛性ソーダのベンジ
ルアルコール溶液を用いて滴定し、下記式を用いて[ 
COOI+ ]を算出した. くボリマー融点の測定〉 示差熱分析装置(理学電機807501型)を用いて、
10℃/分の昇温速度で常法によりそのピーク位置より
融点を求めた. くフローインデックスの測定〉 ボリマー約1gを直径IIul、長さ5曲のノズルを備
えた断面積1−のシリンダーに充填し、ついでボリマー
の溶融押出し可能な温度で種々の加圧下に溶融押出し、
フローインデックスを求めた. くハロゲンの定量〉 X線スペク1〜口メーター アンセンブリKG−X(理
学電機》を用い、螢光X線法により定量した.検量線は
試料にP−ハロゲン置換安息香酸(ハロゲン原子が塩素
の場合、P−クロル安息香酸)を添加し作成した. く強度、仲度およびヤング率の測定〉 強度、仲度およびヤング率は、巾5關、長さ60一mの
フィルムを25℃、湿度65%の雰囲気のもとチャンク
間距離20關でつかみ、毎分100%(20mm+/分
)の引張り速度仲張させて求めた。
Furthermore, the aromatic copolyester of the present invention can be used for bottles, pies, etc. that require transparency and heat resistance. (Implementation rIA) Hereinafter, the method of the present invention will be explained in detail with reference to Examples, but before that, the measurement method will be described. Preparation of sample> a) M original viscosity (ηSO/C) and carboxyl group 1 ([COOI+] Sample for J measurement: The polymer produced by the method of the present invention is crystalline and cannot be subjected to long-term heat treatment such as solid state polymerization. The obtained product is difficult to dissolve in a mixed solvent of phenol and tetrachloroethane.Therefore, the ηsp/c and [COOII] of the solid phase polymerized polymer were determined.
When measuring, the polymer was dried at 150°C in advance,
Next, about 1 g of this polymer was placed into a tube with a diameter of 1 inch and a length of 5 IIll.
The polymer is then heated to a temperature above its melting point (380°C in the example).
After heating and melting for 2 minutes, the sample was extruded and used as the sample for the above measurement. Melt-extruded unrolled film and stretched film. The heat-set films and heat-shrinked films were used as samples for ηSD/C and [COOH] measurements. b) Sample for melting point measurement: When measuring the melting point of a polymer, prepare the polymer at 20%
The samples were treated at 0°C for 1 hour and then used. Reduced viscosity〈ηs
Measurement of p/c) Sample 120# was dissolved in 10 ml of a mixed solvent of phenol and tetrachloroethane (phenol:tetrachloroethane (volume ratio -4:6), and measured at 35°C using an Ostwald viscometer. The relative viscosity (η') was measured, and ηsp/c was calculated using the following formula. [A-B] was dissolved in 10 ml of a mixed solvent of phenol and tetrachloroethane (phenol:tetrachloroethane (weight ratio = 4:6), and titrated using a 0.1N solution of caustic soda in benzyl alcohol using bromcresol green as an indicator. , using the following formula [
COOI+] was calculated. Measurement of melting point of polymer> Using a differential thermal analyzer (Rigaku Denki model 807501),
The melting point was determined from the peak position using a conventional method at a heating rate of 10°C/min. Measurement of Flow Index> Approximately 1 g of the polymer was filled into a cylinder with a diameter of IIul and a cross-sectional area of 1 - equipped with a nozzle with a length of 5 turns, and then melt-extruded under various pressures at a temperature at which the polymer could be melt-extruded.
The flow index was calculated. Quantitative determination of halogen> X-ray spec 1 to halogen meter assembly KG-X (Rigaku Denki) was used for quantitative determination using the fluorescent X-ray method. Measurement of strength, density and Young's modulus The strength, density and Young's modulus were determined by measuring the strength, density and Young's modulus of a film with a width of 5 cm and a length of 60 m at 25°C and humidity. It was determined by gripping the chunks at a distance of 20 mm in an atmosphere of 65% and tensioning at a tensile rate of 100% per minute (20 mm+/min).

く透明性〉 ボリマーの透明性は、厚さ300μの未延仲フィルムを
サンプルとして用い、フィルム面に垂直に波長700m
μの可視光を照射し、その透過率を測定して評価した. 以下、実施例中、単に「部」とあるところは「重量部」
を表わす。
Transparency〉 The transparency of the polymer is determined by using an unrolled film with a thickness of 300μ as a sample, and applying a wavelength of 700m perpendicular to the film surface.
It was evaluated by irradiating it with visible light of μ and measuring its transmittance. In the examples below, "parts" simply means "parts by weight."
represents.

実施例1 ジフエニルイソフタレート190.80部.ハイドロキ
ノン55. 44部, 4.4’−ジオ′キシビフエニ
ル21.26部.二酸化アンチモン0. 070部およ
びトリフェニルホスフエート0. 098部を撹拌機付
き重合反応器に仕込み、250〜290℃に2時間加熱
し、反応の結果生成するフェノール65部(理論値の約
58%)を留出させた(反応系内の生成物のηSEI/
Cと融点はそれぞれ0.08, 285゜Cであった)
.ついで、反応系の圧力を徐々に減圧にするのと一緒に
反応温度を上げ始め、約1時間を要して圧力を201l
+nll(1、反応温度を330℃とし(この際反応系
内のポリマーのηsp/’cと融点はそれぞれ0. 1
6,360℃であった)この条件下で30分間重量を続
けた.得られたボリマーのηSO/ Cと融点は、それ
ぞれ0.50, 360℃であった. ここで溶融重縮合を停止し、ボリマーを冷却後12〜2
0メッシュに粉砕し、0.2mHi;lの減圧下250
℃で2時間、更に0.2mHQの減圧下290℃で12
時間固相垂合を行なった.得られたボリマーはηsp/
c =0.98、[COOI+] =26当量/10”
 gおよび融点=365゜Cであった.また、380℃
で求めたこのボリマーのフローインデックスは0.75
であった.実施例2 ジフェニルイソフタレート190.80部.ハイドロキ
ノン45.05部, 4.4’−ジオキシビフエニル4
1.01部.三酸化アンチモン0. 105部及びトリ
フェニルホスフエート0.098部を撹拌機付き重合反
応器に仕込み、窒素雰囲気下250〜290℃に2時間
加熱し、反応の結果生成するフェノール73部(理論値
の約65%)を留出させた(反応系内の生成物のηsp
/ cは0、08であった).ついで、反応系の圧力を
徐々に減圧にするのとともに反応温度を上げ始め、約1
時間を要して圧力を20ns+tlJ、反応温度を33
0℃とし(この際反応系内のボリマーのηsp/ cと
融点はそれぞれ0.153,55℃であった)、この条
件下で更に30時間重量を続けた.得られたボリマーの
ηSp/ cと融点は、それぞれ0.45, 355℃
であった.ここで溶融重合を停止し、ボリマーを冷却後
12〜50メッシュに粉砕し、0.05alIHgの減
圧下250℃で2時間、更に0.05一〇(lの減圧下
290℃で10時間固相重合を行なった.得られたボリ
マーはηSO/c=1.02、[ COOH ]は20
当41/106 gおよび融点は365℃であった.ま
た、380゜Cで求めたこのポリマーのフローインデッ
クスは0.75であった。
Example 1 190.80 parts of diphenyl isophthalate. Hydroquinone 55. 44 parts, 4.4'-dio'oxybiphenyl 21.26 parts. Antimony dioxide 0. 070 parts and 0.070 parts of triphenyl phosphate. 098 parts were charged into a polymerization reactor equipped with a stirrer and heated at 250 to 290°C for 2 hours, and 65 parts of phenol (approximately 58% of the theoretical value) produced as a result of the reaction was distilled out (products in the reaction system ηSEI/
C and melting point were 0.08 and 285°C, respectively)
.. Next, the pressure of the reaction system was gradually reduced and the reaction temperature started to increase, and it took about 1 hour to reduce the pressure to 201 liters.
+nll (1, the reaction temperature was 330°C (at this time, the ηsp/'c and melting point of the polymer in the reaction system were each 0.1
The weighing was continued under these conditions for 30 minutes (6,360°C). The ηSO/C and melting point of the obtained polymer were 0.50 and 360°C, respectively. At this point, the melt polycondensation was stopped, and after cooling the polymer,
Grind to 0 mesh, 250 ml under reduced pressure of 0.2 mHi;
℃ for 2 hours, and then at 290℃ under a reduced pressure of 0.2 mHQ for 12 hours.
Time-solid phase merging was performed. The obtained polymer is ηsp/
c = 0.98, [COOI+] = 26 equivalents/10”
g and melting point = 365°C. Also, 380℃
The flow index of this polymerer calculated by is 0.75
Met. Example 2 190.80 parts of diphenyl isophthalate. Hydroquinone 45.05 parts, 4.4'-dioxybiphenyl 4
1.01 part. Antimony trioxide 0. 105 parts of triphenyl phosphate and 0.098 parts of triphenyl phosphate were placed in a polymerization reactor equipped with a stirrer and heated at 250 to 290°C for 2 hours under a nitrogen atmosphere, resulting in 73 parts of phenol (approximately 65% of the theoretical value) produced as a result of the reaction. was distilled out (ηsp of the product in the reaction system
/c was 0.08). Next, the pressure of the reaction system was gradually reduced and the reaction temperature started to increase until about 1
It takes time to increase the pressure to 20 ns + tlJ and the reaction temperature to 33
The temperature was set at 0°C (at this time, the η sp/c and melting point of the polymer in the reaction system were 0.153 and 55°C, respectively), and weighing was continued under these conditions for an additional 30 hours. The ηSp/c and melting point of the obtained polymer were 0.45 and 355°C, respectively.
Met. At this point, the melt polymerization was stopped, and the polymer was cooled and ground to 12 to 50 mesh, solidified at 250°C for 2 hours under a reduced pressure of 0.05 alIHg, and then for 10 hours at 290°C under a reduced pressure of 0.05 lHg. Polymerization was carried out.The obtained polymer had ηSO/c=1.02 and [COOH] of 20
The weight was 41/106 g and the melting point was 365°C. Further, the flow index of this polymer determined at 380°C was 0.75.

実施…13 ジフェニルイソフタレート190.80部.ハイドロキ
ノン38.12部,4,4゜−ジオキシビフエニル52
. 73部および酢酸第1スズ0. 088部を撹拌機
付き重合反応器に仕込み、窒素雰囲気下、250〜29
0゜Cに2時間加熱し、反応の結果生或ずるフェノール
68部(理論値の約60%)を留出させたく反応系内の
生成物のηsp/ cは0. 07であった)。
Implementation...13 Diphenylisophthalate 190.80 parts. Hydroquinone 38.12 parts, 4,4°-dioxybiphenyl 52
.. 73 parts and 0.0 parts stannous acetate. 088 parts was charged into a polymerization reactor equipped with a stirrer, and under a nitrogen atmosphere, 250 to 29
It was heated to 0°C for 2 hours to distill off 68 parts of phenol (approximately 60% of the theoretical value) produced as a result of the reaction.The ηsp/c of the product in the reaction system was 0. 07).

ついで、反応系の圧力を徐々に減圧にするのとともに反
応温度を上げ始め、約1時間を要して圧力を20amH
g、反応温度を340℃とした(この際、反応系内のボ
リマーのηsp/cと融点はそれぞれ0.19, 36
5℃であった). ここで溶融重合を停止し、ボリマーを冷却後12〜50
メッシュに粉砕し、250℃、0.1+w+tlqの減
『下で2時間、更に0.1關11!+の減圧下290゜
Cで8時間固相重合を行なった.得られたボリマーはη
Sp/c =0.90、[ COOH] = 15当量
710” .および融点は365℃であった.また、3
80℃で求めたこのボリマーのフローインデックスは0
.77であった.実施例4 実施例1〜3において得たボリマーをそれぞれ380゜
Cの温度でエクストルーダー中で溶融し、スリ7 トF
13 1,5 ii+ノTダイより100゜Cに加熱さ
れたキャスティングドラム上に押出し、平滑性,透明性
共に良好で、淡褐色の厚さ約300μmの未延伸フィル
ムを得た.これら未延仲フイルムは気泡を含まず透明な
ものであった.各フィルムのボリマー性能を表1に、a
械的性能および透明性を表2に示す. なお、各未延伸フィルムはアセトン中で24時間放置し
たが、寸法変化は1%以下で、且つ強度,仲度.ヤング
率共にほとんど変化がみとめられなかった. 表  1 表  2 実施例5 実施例4によって得た未延仲フィルムを切断後150℃
で24時間乾燥後直径1關、長さ5關のノズルを備えた
断面積1aaのシリンダーに充填し、380℃で5分間
溶融した後30kg/一の加圧下で押出した.糸状で得
られたボリマーのηso/c?:測定し、この溶融操作
前後のηSD/ Cの変化より本発明の芳香族コポリエ
ステルの溶融安定性を評価した(以下テストAとする)
Next, the pressure of the reaction system was gradually reduced and the reaction temperature started to increase, and it took about 1 hour to reduce the pressure to 20 amH.
g, the reaction temperature was 340°C (at this time, the ηsp/c and melting point of the polymer in the reaction system were 0.19 and 36, respectively).
). After stopping the melt polymerization and cooling the polymer,
Grind into a mesh, 250℃, 0.1+w+tlq reduction for 2 hours, then 0.1 x 11! Solid phase polymerization was carried out at 290°C under + vacuum for 8 hours. The obtained polymer is η
Sp/c = 0.90, [COOH] = 15 equivalents 710''. and melting point was 365°C. Also, 3
The flow index of this polymer, determined at 80°C, is 0.
.. It was 77. Example 4 The polymers obtained in Examples 1 to 3 were each melted in an extruder at a temperature of 380° C.
It was extruded from a 13 1,5 ii + T die onto a casting drum heated to 100°C to obtain an unstretched film with a light brown color and a thickness of about 300 μm, which had good smoothness and transparency. These unfinished films were transparent and did not contain air bubbles. The polymer performance of each film is shown in Table 1, a
The mechanical performance and transparency are shown in Table 2. Each unstretched film was left in acetone for 24 hours, but the dimensional change was less than 1%, and the strength and consistency were . Almost no change was observed in both Young's modulus. Table 1 Table 2 Example 5 The unrolled intermediate film obtained in Example 4 was cut at 150°C.
After drying for 24 hours, the mixture was filled into a cylinder with a cross-sectional area of 1 aa equipped with a nozzle with a diameter of 1 mm and a length of 5 mm, melted at 380°C for 5 minutes, and then extruded under a pressure of 30 kg/cm. ηso/c of the polymer obtained in the form of threads? : The melt stability of the aromatic copolyester of the present invention was evaluated from the change in ηSD/C before and after the melting operation (hereinafter referred to as test A).
.

また、湿熱安定性は実施例4によって得た未延伸フィル
ムを水と共にガラス管に入れ、ガラス管を溶封後120
℃のオートクレープ中で24時間保持して後、未延仲フ
ィルムのηsp/ cを測定し、この湿熱処理操作の前
後のηsp/cの変化より温熱安定性を評価した(以下
テストBとする).その結果は表3に示す。
In addition, the wet heat stability was determined by putting the unstretched film obtained in Example 4 into a glass tube with water, and after melting and sealing the glass tube.
After being held in an autoclave at ℃ for 24 hours, the ηsp/c of the unrolled film was measured, and the thermal stability was evaluated from the change in ηsp/c before and after this moist heat treatment operation (hereinafter referred to as test B). ). The results are shown in Table 3.

表  3 実施例10 イソフタル酸99.60部.ハイドロキノン55.44
部、4,4゜−ジオキシビフェニル21.26部.ジフ
ェニルカーボネート128.40部及び三酸化アンチモ
ン0.105部を撹拌機付き重合反応器に仕込み、窒素
雰囲気下250〜290℃に3時間加熱し、反応の結果
生成するフェノール124部(使用したジフエニルカー
ボネートのモル数と重合体を形成するためのエステル交
換反応により生成する理論鼠の60%との和に相当する
)を留出させたく反応系内の生成物のηSp/’Cと融
点はそれぞれ0.08, 290 ’Cであった). ついで、反応系に窒素を導入しつつ、反応系のの圧力を
徐々に減圧にするのとともに反応温度を上げ始め、約1
時間を要して圧力を20nmlllj、反応温度を33
0℃とし、この条件下で更に30分間重合させた.得ら
れたのボリマーのηsp/ cと融点は0.47, 3
60℃であった. ここで溶融重合を停止し、ボリマーを冷却後15〜24
メッシュに粉砕し、250゜C .. 0. 0 1r
vntlgの減圧下で1時間、ついで290℃、0.0
21uItlgの減圧下で13時間固相重合させた. このようにして得られたボリマーは、ηsp/ cO.
96、[COOI+] =24当ffi/106ir,
融点= 360゜Cであった.また、このボリマーの3
80 ’Cにおけるフローインデックスは0.76であ
った.また、このポリマーからハロゲンは検出されなか
った.このボリマーは実施例1のボリマーと同様フィル
ムに溶融成形できることが確められた.また、このボリ
マーを380゜C″i′直径0.3n+I+のノズルよ
り押出して100rn/分で巻取って得られた繊維は、
強度1r/de、仲度70%であった.このIIm維も
、フィルムの場合と同様、耐湿熱性がすぐれていた.
Table 3 Example 10 Isophthalic acid 99.60 parts. Hydroquinone 55.44
parts, 21.26 parts of 4,4°-dioxybiphenyl. 128.40 parts of diphenyl carbonate and 0.105 parts of antimony trioxide were placed in a polymerization reactor equipped with a stirrer and heated at 250 to 290°C for 3 hours under a nitrogen atmosphere. ηSp/'C and melting point of the product in the reaction system are respectively 0.08, 290'C). Next, while introducing nitrogen into the reaction system, the pressure of the reaction system was gradually reduced and the reaction temperature began to increase until about 1
It took time to increase the pressure to 20nmlllj and the reaction temperature to 33%.
The temperature was set to 0°C, and polymerization was continued for an additional 30 minutes under these conditions. The obtained polymer has ηsp/c and melting point of 0.47.3
The temperature was 60℃. After stopping the melt polymerization and cooling the polymer,
Grind into mesh and heat at 250°C. .. 0. 0 1r
vntlg vacuum for 1 hour, then 290°C, 0.0
Solid phase polymerization was carried out for 13 hours under a reduced pressure of 21 uItlg. The polymer thus obtained has a ηsp/cO.
96, [COOI+] =24offfi/106ir,
The melting point was 360°C. Also, 3 of this polymer
The flow index at 80'C was 0.76. Furthermore, no halogen was detected in this polymer. It was confirmed that this polymer, like the polymer of Example 1, could be melt-formed into a film. In addition, the fiber obtained by extruding this polymerer through a nozzle with a diameter of 0.3n+I+ at 380°C″i′ and winding it at 100rn/min is as follows:
The strength was 1r/de and the density was 70%. Like the film, this IIm fiber also had excellent moisture and heat resistance.

Claims (1)

【特許請求の範囲】[Claims] (1)実質的に下記[ I ][II]および[III]の構造
単位からなる実質的に線状の芳香族コポリエステルであ
って、 ▲数式、化学式、表等があります▼ ▲数式、化学式、表等があります▼ ▲数式、化学式、表等があります▼ 該芳香族コポリエステル中の前記[ I ]のモル数と[
II]と[III]との合計モル数が実質的に等しく、前記
[II]と[III]の共重合モル比が9:1〜4:6であ
り、且つ分子鎖に結合したハロゲン原子を有しない、0
.6〜2.0の還元粘度(フェノール/テトラクロルエ
タン=4/6の混合溶媒に溶解し35℃で測定した相対
粘度より算出)をもつ芳香族コポリエステル。
(1) A substantially linear aromatic copolyester consisting essentially of the following structural units [I], [II] and [III], ▲There are mathematical formulas, chemical formulas, tables, etc.▼ ▲Mathematical formulas, chemical formulas , tables, etc. ▼ ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ The number of moles of [I] above in the aromatic copolyester and [
The total number of moles of [II] and [III] is substantially equal, the copolymerization molar ratio of [II] and [III] is 9:1 to 4:6, and the halogen atoms bonded to the molecular chain are do not have, 0
.. An aromatic copolyester having a reduced viscosity of 6 to 2.0 (calculated from the relative viscosity measured at 35°C after being dissolved in a mixed solvent of phenol/tetrachloroethane = 4/6).
JP15149490A 1990-06-12 1990-06-12 Aromatic copolyester Pending JPH0328221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15149490A JPH0328221A (en) 1990-06-12 1990-06-12 Aromatic copolyester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15149490A JPH0328221A (en) 1990-06-12 1990-06-12 Aromatic copolyester

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP14473481A Division JPS5847019A (en) 1981-09-16 1981-09-16 Copolyester and its production

Publications (1)

Publication Number Publication Date
JPH0328221A true JPH0328221A (en) 1991-02-06

Family

ID=15519727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15149490A Pending JPH0328221A (en) 1990-06-12 1990-06-12 Aromatic copolyester

Country Status (1)

Country Link
JP (1) JPH0328221A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04372647A (en) * 1991-06-20 1992-12-25 Teijin Ltd Resin composition
JPH055024A (en) * 1990-08-22 1993-01-14 Teijin Ltd Crystalline wholly aromatic polyester production thereof, resin composition using the same and molded article the resin
US5216109A (en) * 1990-08-22 1993-06-01 Teijin Limited Crystalline wholly aromatic polyester, process for its production, resin composition containing it, and articles from the resin composition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4921440A (en) * 1972-06-19 1974-02-25
JPS5629684A (en) * 1979-08-14 1981-03-25 Mitsui Toatsu Chem Inc Production of hydrogen

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4921440A (en) * 1972-06-19 1974-02-25
JPS5629684A (en) * 1979-08-14 1981-03-25 Mitsui Toatsu Chem Inc Production of hydrogen

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH055024A (en) * 1990-08-22 1993-01-14 Teijin Ltd Crystalline wholly aromatic polyester production thereof, resin composition using the same and molded article the resin
US5216109A (en) * 1990-08-22 1993-06-01 Teijin Limited Crystalline wholly aromatic polyester, process for its production, resin composition containing it, and articles from the resin composition
JPH04372647A (en) * 1991-06-20 1992-12-25 Teijin Ltd Resin composition

Similar Documents

Publication Publication Date Title
EP0045499B1 (en) Novel wholly aromatic copolyester, process for production thereof, and film melt-shaped therefrom
EP1341834B1 (en) Medical device made of amorphous copolyesters having improved resistance to lipids
EP0024499B1 (en) Biaxially oriented wholly aromatic polyester film and process for producing same
JPS6289722A (en) Polyester from 3-hydroxy-4'-(4-hydroxyphenyl) benzophenone or 3, 4'-dihydroxybenzophenone and carboxylic acid
JPH0328221A (en) Aromatic copolyester
JPH0253451B2 (en)
JPH0231096B2 (en) ZENHOKOZOKUHORIESUTERUOYOBISONOSEIZOHO
JPH02242818A (en) Wholly aromatic polyester and production thereof
JP7041130B2 (en) Method for Producing Solid-Phase Polymerized Poly (Tetramethylene-2,5-Flange Carboxylate) Polymer and Produced Polymer
JPS5853418A (en) Preparation of polyester film
JP2702323B2 (en) Method for producing crystalline wholly aromatic polyester polymer
JP3101453B2 (en) Polyester copolymer
JPH0362727B2 (en)
JPH0353323B2 (en)
EP0119731A2 (en) Copolyester of polyethylene terephthalate, process for making it and its use in producing molded articles
JP2003160648A (en) Polytrimethylene terephthalate composition
JP3071588B2 (en) Resin composition
JP3238424B2 (en) Transparent polyester film, sheet and method for producing the same
JPS6050821B2 (en) copolymerized polyester
BR112019006753B1 (en) PROCESS FOR THE PRODUCTION OF A POLYMER POLY(TETRAMETHYLENE-2,5-FURANDICARBOXYLATE) POLYMERIZED IN SOLID STATE, AND, POLYMER (TETRAMETHYLENE-2,5-FURANDICARBOXYLATE)
JPH04154835A (en) Aromatic copolyester and its production
JPH02279722A (en) Aromatic polyester carbonate and its production
JP2005171179A (en) Polyester-based heat shrinkable film
JPS5931531B2 (en) Polyester molded products
JPS5829819A (en) Melt-anisotropic aromatic polyester and its production