JPH03280582A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH03280582A
JPH03280582A JP8269090A JP8269090A JPH03280582A JP H03280582 A JPH03280582 A JP H03280582A JP 8269090 A JP8269090 A JP 8269090A JP 8269090 A JP8269090 A JP 8269090A JP H03280582 A JPH03280582 A JP H03280582A
Authority
JP
Japan
Prior art keywords
type
polysilicon
oxide film
substrate
type impurity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8269090A
Other languages
Japanese (ja)
Other versions
JP2926854B2 (en
Inventor
Hajime Matsuda
肇 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP8269090A priority Critical patent/JP2926854B2/en
Publication of JPH03280582A publication Critical patent/JPH03280582A/en
Application granted granted Critical
Publication of JP2926854B2 publication Critical patent/JP2926854B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To avoid influence of an irregularity in surface concentration of a P-type substrate by forming a PN junction of an N-type impurity diffused layer formed with N-type buried polysilicon as a diffusion source and a P-type impurity diffused layer of a lower part of a first recess formed in advance. CONSTITUTION:A field oxide film 2 is formed by selectively oxidizing a P-type Si substrate 1, a thin oxide film on a diode forming region is removed, and the substrate 1 is selectively etched to form a first recess. Then, an oxide film is formed on the entire surface, entirely etched by an RIE method, only a side oxide film 4 remains, and the oxide film of the other region is removed. Thereafter, after a P-type impurity diffused layer 5 is formed, a polysilicon film is grown by a CVD method, only the polysilicon of the buried part remains, and the polysilicon of the other part is removed by etching. Then, impurity is injected into the polysilicon to form an N-type buried polysilicon 7, and heat treated to form an N-type impurity diffused layer 6. Subsequently, a thin oxide film 11 is formed on a part not covered with the film 2, and an interlayer insulating film 3, a contact opening and Al wirings 8 are eventually formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置に関し、特に内部電圧安定回路等に
用いるクランプ用PN接合ダイオードに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device, and particularly to a PN junction diode for clamping used in an internal voltage stabilizing circuit or the like.

〔従来の技術〕[Conventional technology]

内部電圧安定回路等に用いる従来のクランプ用PN接合
ダイオードは、第3図に示す断面図のように、フィール
ド酸化膜2で分離されたP型Si基板1の領域に、例え
ば、イオン注入でN型不純物を導入しアニールを行なう
ことにより形成したN型不純物領域6a、およびP型S
i基板1により形成されるPN接合を用いていた。また
、従来のクランプ用PN接合ダイオードの耐圧のコント
ロールは、フィールド酸化膜2下の濃度あるいはN型不
純物領域6aの形成を高濃度の砒素および低濃度な燐の
2重イオン注入で行なう注入条件によって行なっていた
A conventional clamping PN junction diode used in an internal voltage stabilizing circuit, etc., is constructed by injecting N into a region of a P-type Si substrate 1 separated by a field oxide film 2 by, for example, ion implantation, as shown in the cross-sectional view of FIG. An N-type impurity region 6a formed by introducing type impurities and performing annealing, and a P-type S
A PN junction formed by an i-substrate 1 was used. Furthermore, the breakdown voltage of the conventional clamping PN junction diode is controlled by the concentration under the field oxide film 2 or the implantation conditions in which the N-type impurity region 6a is formed by double ion implantation of high concentration arsenic and low concentration phosphorus. I was doing it.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来のPN接合ダイオードは、構造が非常に簡
単である点は良かったが、一方で次のような欠点を有し
ていた。
The above-mentioned conventional PN junction diode had the advantage of having a very simple structure, but had the following drawbacks.

第1に、クランプ電圧(ブレークダウン電圧)がフィー
ルド酸化Il!2の膜厚のばらつきにより影響されてし
まうことである。P型Si基板1の不純物であるボロン
原子が酸化されるにしたがって酸化膜中に取り込まれ、
P型St基板1中のボロン濃度が低下してしまう。その
ため、フィールド酸化膜2のように〜1.0μmと厚い
場合、フィールド酸化膜2直下のP型Si基板1表面の
濃度の低下も大きく、フィールド酸化膜2の膜厚のばら
つきが濃度のばらつきとなり、これがクランプ電圧のば
らつきになる。
First, the clamp voltage (breakdown voltage) is the field oxidation Il! This problem is affected by variations in the film thickness of No. 2. As boron atoms, which are impurities in the P-type Si substrate 1, are oxidized, they are incorporated into the oxide film,
The boron concentration in the P-type St substrate 1 will decrease. Therefore, when the field oxide film 2 is as thick as ~1.0 μm, the concentration on the surface of the P-type Si substrate 1 directly under the field oxide film 2 decreases significantly, and variations in the film thickness of the field oxide film 2 lead to variations in concentration. , this results in variation in the clamp voltage.

第2に、ブレークダウンはN型不純物領域6aとP型S
i基板1との界面におけるP型Si基板1表面近傍で起
るため、ブレークダウンにより発生した電子−正孔対が
酸化膜中に捕獲され、特に正孔の捕獲が顕著となること
により表面近傍における界面での空乏層を拡げることに
なり、クランプ電圧が時間とともに上昇してしまうこと
がある。ことにN型不純物領域6aとP型Si基板1と
の界面におけるP型St基板1表面近傍の表面の酸化膜
はフィールド酸化膜2から薄い酸化膜11aに変る領域
でもあり、捕獲順位も多くクランプ電圧の変動も大きい
ものとなる。
Second, breakdown occurs between the N-type impurity region 6a and the P-type S
Since the breakdown occurs near the surface of the P-type Si substrate 1 at the interface with the i-substrate 1, the electron-hole pairs generated by the breakdown are captured in the oxide film. This may cause the depletion layer at the interface to expand, and the clamp voltage may increase over time. In particular, the surface oxide film near the surface of the P-type St substrate 1 at the interface between the N-type impurity region 6a and the P-type Si substrate 1 is also the region where the field oxide film 2 changes to the thin oxide film 11a, and has a large number of trapping orders. Voltage fluctuations will also be large.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体装置は、一導電型の半導体基板の所定領
域にエツチングにより形成された凹部と、凹部の側壁に
形成された絶縁膜と、凹部に埋込まれた逆導電型のポリ
シリコンと、逆導電型のポリシリコン下部の半導体基板
に逆導電型のポリシリコンからの熱拡散により形成され
た逆導電型の第1の拡散層と、逆導電型のポリシリコン
下部の前記半導体基板に形成された一導電型の第2の拡
散層とを有している。
A semiconductor device of the present invention includes a recess formed by etching in a predetermined region of a semiconductor substrate of one conductivity type, an insulating film formed on the sidewall of the recess, and polysilicon of an opposite conductivity type buried in the recess. A first diffusion layer of an opposite conductivity type formed on the semiconductor substrate under the polysilicon of the opposite conductivity type by thermal diffusion from the polysilicon of the opposite conductivity type, and a first diffusion layer formed on the semiconductor substrate under the polysilicon of the opposite conductivity type. and a second diffusion layer of one conductivity type.

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は、本発明の第1の実施例の断面図である。P型
Si基板1上に選択酸化により形成されたフィールド酸
化WA2と、選択的にP型Si基板lをエツチングして
形成した第1の凹部の側壁に形成された側壁酸化膜4と
、第1の凹部に埋込まれたN型埋込みポリシリコン7と
、N型埋込みポリシリコン7を拡散源として形成された
N型不純物拡散層6と、N型埋込みポリシリコン7の形
成前にN型不純物拡散層6よりもさらに深い領域に形成
したP型不純物拡散層5と、薄い酸化膜11と、層間絶
縁M3と、A1配線8とから本実施例の半導体装置は精
成されている0本実施例においては、P型不純物拡散屑
5とN型不純物拡散層6とによりPN接合ダイオードが
形成れている。
FIG. 1 is a sectional view of a first embodiment of the invention. Field oxidation WA2 formed on the P-type Si substrate 1 by selective oxidation, sidewall oxide film 4 formed on the sidewall of the first recess formed by selectively etching the P-type Si substrate 1, and the first N-type buried polysilicon 7 buried in the concave portion, N-type impurity diffusion layer 6 formed using N-type buried polysilicon 7 as a diffusion source, and N-type impurity diffusion layer 6 formed using N-type buried polysilicon 7 as a diffusion source. The semiconductor device of this embodiment is refined from the P-type impurity diffusion layer 5 formed in a deeper region than the layer 6, the thin oxide film 11, the interlayer insulation M3, and the A1 wiring 8. , a PN junction diode is formed by the P-type impurity diffusion waste 5 and the N-type impurity diffusion layer 6.

クランプ電圧の耐圧コントロールは、P型不純物拡散層
5の不純物濃度を変更することにより行なわれる。この
とき、P型不純物拡散層5の不純物濃度としては、P型
Si基板lの他の領域の不純物濃度より高く、従って、
クランプ電圧の耐圧コントロールはP型不純物拡散層5
とN型不純物拡散層6とのそれぞれの不純物濃度により
決定されることになる。別の方法として、N型不純物拡
散層6は上述のようにN型埋込みポリシリコン7が拡散
源であり、N型埋込みポリシリコン7中の不純物を砒素
もしくは砒素と燐の2種類にすることにより、あるいは
それぞれの濃度を変えることによって、PN接合タイオ
ードの耐圧をコントロールすることもできる。
The breakdown voltage control of the clamp voltage is performed by changing the impurity concentration of the P-type impurity diffusion layer 5. At this time, the impurity concentration of the P-type impurity diffusion layer 5 is higher than the impurity concentration of other regions of the P-type Si substrate l, and therefore,
The breakdown voltage control of the clamp voltage is performed by the P-type impurity diffusion layer 5.
It is determined by the respective impurity concentrations of the N-type impurity diffusion layer 6 and the N-type impurity diffusion layer 6. Another method is to form the N-type impurity diffusion layer 6 by using the N-type buried polysilicon 7 as the diffusion source as described above, and by changing the impurity in the N-type buried polysilicon 7 to arsenic or two types of arsenic and phosphorus. Alternatively, the breakdown voltage of the PN junction diode can be controlled by changing the respective concentrations.

次に、本実施例の構造を製造する方法について説明する
Next, a method for manufacturing the structure of this example will be explained.

まず、P型Si基板1に選択酸化を行なってフィールド
酸化膜2を形成し、ダイオード形成領域上の薄い酸化膜
を除去した後、選択的にP型Si基板1のエツチングを
行ない第1の凹部を形成する。
First, selective oxidation is performed on the P-type Si substrate 1 to form a field oxide film 2, and after removing the thin oxide film on the diode formation region, the P-type Si substrate 1 is selectively etched to form the first recess. form.

次に、例えば熱酸化法により、表面全体に酸化膜を形成
する。この酸化膜は、側壁酸化膜となるため、ダイオー
ドの耐圧に充分耐る膜厚を要す。
Next, an oxide film is formed over the entire surface by, for example, a thermal oxidation method. Since this oxide film becomes a sidewall oxide film, it needs to be thick enough to withstand the withstand voltage of the diode.

続いて、全体にRIE法によるエツチング(エッチバッ
ク)を行ない、側壁酸化膜4のみを残し、他の領域の酸
化膜を除去する。
Subsequently, the entire structure is etched (etched back) using the RIE method, leaving only the sidewall oxide film 4 and removing the oxide film in other regions.

その後、フォトリングラフィ技術およびイオン注入技術
により、P型不純物拡散層5を形成する。
Thereafter, a P-type impurity diffusion layer 5 is formed using photolithography technology and ion implantation technology.

次に、CVD法によりポリシリコン膜の成長を行ない、
エッチバックを行なうことにより埋込み部分のポリシリ
コンのみを残し、他の部分のポリシリコンはエツチング
除去する。この後、選択的にN型不純物拡散層を形成す
るための不純物をポリシリコン中に導入してN型埋込み
ポリシリコン7を形成し、熱処理を行なうことで、N型
不純物拡散層6を形成する。
Next, a polysilicon film is grown using the CVD method,
By performing etchback, only the polysilicon in the buried portion is left, and the polysilicon in other portions is etched away. After this, impurities for forming an N-type impurity diffusion layer are selectively introduced into the polysilicon to form an N-type buried polysilicon 7, and heat treatment is performed to form an N-type impurity diffusion layer 6. .

次に、フィールド酸化膜2で覆われていない部分に、熱
酸化により薄い酸化膜11を形成する。
Next, a thin oxide film 11 is formed by thermal oxidation on the portion not covered with the field oxide film 2.

最後に、眉間絶縁膜3.コンタクト開口、Aj配線8等
を形成し、本実施例の半導体装置の構造を完成する。
Finally, the glabellar insulating film 3. Contact openings, Aj wiring 8, etc. are formed to complete the structure of the semiconductor device of this example.

本実施例ではP型基板上のN型不純物拡散層でのPN接
合について説明したが、N型基板上のP型不純物拡散層
でのPN接合でも同等の効果が得られる。
In this embodiment, a PN junction in an N-type impurity diffusion layer on a P-type substrate has been described, but the same effect can be obtained with a PN junction in a P-type impurity diffusion layer on an N-type substrate.

第2図は、本発明の第2の実施例の断面図である。N型
埋込みポリシリコン7、P型不純物拡散層5.N型不純
物拡散層6等の構造、形成方法は、第1の実施例と同じ
である。
FIG. 2 is a cross-sectional view of a second embodiment of the invention. N-type buried polysilicon 7, P-type impurity diffusion layer 5. The structure and formation method of the N-type impurity diffusion layer 6 and the like are the same as in the first embodiment.

P型Si基板1への電極を形成する場所は、シリーズ抵
抗が最小になるように、最もP型不純物拡散層5に近い
領域にすべきである。N型埋込みポリシリコン7の形成
方法と同様の方法により、P壁埋込みポリシリコン10
を形成し、N型不純物拡散層6を形成する時の熱処理で
P型不純物拡散層9も同時に形成する。
The location where the electrode is formed on the P-type Si substrate 1 should be the region closest to the P-type impurity diffusion layer 5 so that the series resistance is minimized. P-wall buried polysilicon 10 is formed by a method similar to that of N-type buried polysilicon 7.
, and a P-type impurity diffusion layer 9 is also formed at the same time by heat treatment when forming the N-type impurity diffusion layer 6.

これにより、P型Si基板1側のシリーズ抵抗を最小に
することが可能となる。
This makes it possible to minimize the series resistance on the P-type Si substrate 1 side.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、実施例に示した導電型の
場合において、N型埋込みポリシリコンを拡散源として
形成したN型不純物拡散層とあらこしぬ形成しておいた
第1の凹部下部のP型不純物拡散層とによりPN接合を
形成しており、N型埋込みポリシリコンは第1の凹部の
側壁に形成された絶縁膜によりP型基板と絶縁されてい
るため、PN接合ダイオードのブレークダウンを起す箇
所はP型基板の内部となり、P型基板の表面濃度のばら
つきの影響を受けることはまったくないことになる。
As explained above, in the case of the conductivity type shown in the embodiment, the present invention provides a first recess lower part formed in the same way as an N-type impurity diffusion layer formed using N-type buried polysilicon as a diffusion source. A PN junction is formed with the P-type impurity diffusion layer, and since the N-type buried polysilicon is insulated from the P-type substrate by the insulating film formed on the side wall of the first recess, the break of the PN junction diode The location where down occurs is inside the P-type substrate, and is not affected by variations in the surface concentration of the P-type substrate at all.

また、PN接合ダイオードのブレークダウンを起す箇所
の近傍には正孔を捕獲しやすい酸化膜はほとんどなく、
クランプ電圧の時間変動もほとんどないクランプ用PN
接合タイオードを実現できる。
In addition, there is almost no oxide film that easily captures holes near the point where breakdown occurs in the PN junction diode.
PN for clamps with almost no time variation in clamp voltage
A junction diode can be realized.

これらの効果は、導電型を逆転しても同様に得られる。These effects can be similarly obtained even if the conductivity types are reversed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例の断面図、第2図は本発
明の第2の実施例の断面図、第3図は従来のPN接合ダ
イオードの断面図である。 1・・・P型Si基板、2・・・フィールド酸化膜、3
・・眉間絶縁膜、4・・・側壁酸化膜、5.9・・・P
型不純物拡散層、6・・・N型不純物拡散層、7・・・
N型埋込みポリシリコン、8・・・A(配線、10・・
・P壁埋込みポリシリコン、11.lla・・・薄い酸
化膜。
FIG. 1 is a sectional view of a first embodiment of the invention, FIG. 2 is a sectional view of a second embodiment of the invention, and FIG. 3 is a sectional view of a conventional PN junction diode. 1... P-type Si substrate, 2... Field oxide film, 3
・・Glabella insulating film, 4... Sidewall oxide film, 5.9...P
type impurity diffusion layer, 6...N type impurity diffusion layer, 7...
N-type buried polysilicon, 8...A (wiring, 10...
・P-wall embedded polysilicon, 11. lla...thin oxide film.

Claims (1)

【特許請求の範囲】 1、一導電型の半導体基板の所定領域にエッチングによ
り形成された第1の凹部と、 前記第1の凹部の側壁に形成された絶縁膜と、前記第1
の凹部に埋込まれた逆導電型のポリシリコンと、 前記逆導電型のポリシリコン下部の前記半導体基板に、
前記逆導電型のポリシリコンからの熱拡散により形成さ
れた逆導電型の第1の拡散層と、前記逆導電型のポリシ
リコン下部の前記半導体基板に形成された一導電型の第
2の拡散層と、を有することを特徴とする半導体装置。 2、前記半導体基板の所定領域にエッチングにより形成
された第2の凹部と、 前記第2の凹部の側壁に形成された絶縁膜と、前記第2
の凹部に埋込まれた一導電型のポリシリコンと、 前記一導電型のポリシリコン下部の前記半導体基板に、
前記一導電型のポリシリコンからの熱拡散により形成さ
れた逆導電型の第3の拡散層と、を有することを特徴と
する請求項1記載の半導体装置。
[Claims] 1. A first recess formed by etching in a predetermined region of a semiconductor substrate of one conductivity type; an insulating film formed on a side wall of the first recess;
polysilicon of opposite conductivity type embedded in the recess of the semiconductor substrate below the polysilicon of opposite conductivity type,
a first diffusion layer of opposite conductivity type formed by thermal diffusion from the polysilicon of opposite conductivity type; and a second diffusion layer of one conductivity type formed in the semiconductor substrate below the polysilicon of opposite conductivity type. A semiconductor device characterized by having a layer. 2. a second recess formed by etching in a predetermined region of the semiconductor substrate; an insulating film formed on a sidewall of the second recess;
polysilicon of one conductivity type embedded in the recess of the semiconductor substrate below the polysilicon of one conductivity type,
2. The semiconductor device according to claim 1, further comprising a third diffusion layer of an opposite conductivity type formed by thermal diffusion from the polysilicon of the one conductivity type.
JP8269090A 1990-03-29 1990-03-29 Semiconductor device Expired - Lifetime JP2926854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8269090A JP2926854B2 (en) 1990-03-29 1990-03-29 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8269090A JP2926854B2 (en) 1990-03-29 1990-03-29 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH03280582A true JPH03280582A (en) 1991-12-11
JP2926854B2 JP2926854B2 (en) 1999-07-28

Family

ID=13781414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8269090A Expired - Lifetime JP2926854B2 (en) 1990-03-29 1990-03-29 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2926854B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6740552B2 (en) 1996-03-01 2004-05-25 Micron Technology, Inc. Method of making vertical diode structures
JP2009277756A (en) * 2008-05-13 2009-11-26 Denso Corp Zener diode and method of manufacturing the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6740552B2 (en) 1996-03-01 2004-05-25 Micron Technology, Inc. Method of making vertical diode structures
US6784046B2 (en) 1996-03-01 2004-08-31 Micron Techology, Inc. Method of making vertical diode structures
US6787401B2 (en) 1996-03-01 2004-09-07 Micron Technology, Inc. Method of making vertical diode structures
US7166875B2 (en) 1996-03-01 2007-01-23 Micron Technology, Inc. Vertical diode structures
US7170103B2 (en) 1996-03-01 2007-01-30 Micron Technology, Inc. Wafer with vertical diode structures
US7279725B2 (en) 1996-03-01 2007-10-09 Micron Technology, Inc. Vertical diode structures
US7563666B2 (en) 1996-03-01 2009-07-21 Micron Technology, Inc. Semiconductor structures including vertical diode structures and methods of making the same
US8034716B2 (en) 1996-03-01 2011-10-11 Micron Technology, Inc. Semiconductor structures including vertical diode structures and methods for making the same
JP2009277756A (en) * 2008-05-13 2009-11-26 Denso Corp Zener diode and method of manufacturing the same

Also Published As

Publication number Publication date
JP2926854B2 (en) 1999-07-28

Similar Documents

Publication Publication Date Title
CA1063731A (en) Method for making transistor structures having impurity regions separated by a short lateral distance
JP3307112B2 (en) Method for manufacturing semiconductor device
KR0128339B1 (en) Bipolar transistor fabrication utilizing cmos techniques
KR960019776A (en) Semiconductor device and manufacturing method
KR890011033A (en) Manufacturing Method of Semiconductor Device
JPH03280582A (en) Semiconductor device
JPH0555593A (en) Manufacture of insulated-gate field-effect transistor
JPS5947468B2 (en) Bipolar transistor manufacturing method
CN1020991C (en) Isolation method of semiconductor device
JPS63166271A (en) Manufacture of mis semiconductor device
JP2817247B2 (en) Semiconductor device
KR100385655B1 (en) Bipolar Transistors and Manufacturing Method
JPH036863A (en) Semiconductor device
JP2809662B2 (en) Method for manufacturing double-diffused MOSFET device
JP2859400B2 (en) Manufacturing method of gate turn-off thyristor
JP2890509B2 (en) Method for manufacturing semiconductor device
KR900017177A (en) Semiconductor device and manufacturing method thereof
US20040191995A1 (en) Method of manufacturing a semiconductor device
KR100193338B1 (en) Separation structure of semiconductor device and manufacturing method thereof
JP2006165370A (en) Semiconductor device and its manufacturing method
JPH01123474A (en) Insulated gate type semiconductor device
KR100274604B1 (en) Method for fabricating semiconductor device
KR0151122B1 (en) A method for making a bipolar device
JPH06326320A (en) Semiconductor device and its manufacture
JPH02180022A (en) Manufacture of semiconductor device