JP2006165370A - Semiconductor device and its manufacturing method - Google Patents

Semiconductor device and its manufacturing method Download PDF

Info

Publication number
JP2006165370A
JP2006165370A JP2004356266A JP2004356266A JP2006165370A JP 2006165370 A JP2006165370 A JP 2006165370A JP 2004356266 A JP2004356266 A JP 2004356266A JP 2004356266 A JP2004356266 A JP 2004356266A JP 2006165370 A JP2006165370 A JP 2006165370A
Authority
JP
Japan
Prior art keywords
semiconductor layer
type
layer
region
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004356266A
Other languages
Japanese (ja)
Inventor
Takeshi Shimizu
壮 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP2004356266A priority Critical patent/JP2006165370A/en
Publication of JP2006165370A publication Critical patent/JP2006165370A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Bipolar Transistors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Bipolar Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device and its manufacturing method in which a stable constant voltage can be obtained without adding any steps and without affecting characteristics from an oxide film formed on pn bonding. <P>SOLUTION: On the surface of a semiconductor layer of one conduction type, the second semiconductor layer of an inverse conduction type, and the first semiconductor layer of an inverse conduction type of which an impurity concentration is lower than that of the second semiconductor layer, are provided so that their side faces overlap each other while surrounding the outer periphery of the second semiconductor layer of the inverse conduction type. On surfaces of the first semiconductor layer and the second semiconductor layer, a third semiconductor layer of one conduction type, and a fourth semiconductor layer of one conduction type of which an impurity concentration is lower than that of the third semiconductor layer, are provided with its side face brought into contact outside the third semiconductor layer. A Zener diode is formed by pn bonding with the second semiconductor layer on a bottom of the third semiconductor layer, and one terminal of the Zener diode connected to the second semiconductor layer is provided on the surface of the first semiconductor layer. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、逆方向電圧の印加により降伏させて用いるツェナダイオード構造を有する半導体装置及びその製造方法に関する。   The present invention relates to a semiconductor device having a Zener diode structure that is used by breakdown by applying a reverse voltage, and a method for manufacturing the same.

バイポーラ集積回路において、縦型NPNトランジスタのエミッタとベースを利用してツェナダイオードが形成される。このような従来のツェナダイオードを有する半導体装置を模式的に表した断面図を図4に示す。この半導体装置は次のように形成される。   In a bipolar integrated circuit, a Zener diode is formed using the emitter and base of a vertical NPN transistor. FIG. 4 is a cross-sectional view schematically showing a semiconductor device having such a conventional Zener diode. This semiconductor device is formed as follows.

まず、p型シリコン基板1上にエピタキシャル成長法でn型エピタキシャル層2を堆積させ、n型エピタキシャル層2内にボロンイオンなどを、SiO2による酸化膜などをマスクとして、選択的に注入し熱拡散してP型分離層3を形成する。 First, an n-type epitaxial layer 2 is deposited on the p-type silicon substrate 1 by an epitaxial growth method, boron ions, etc. are selectively implanted into the n-type epitaxial layer 2 using a SiO 2 oxide film as a mask and thermally diffused. Thus, the P-type separation layer 3 is formed.

次に、P型分離層3で囲まれたn型エピタキシャル層2の表面の中央部分にボロンイオンなどを選択的に注入し拡散して、p型ベース拡散層4を形成する。さらにp型ベース拡散層4の一部には、ボロンイオンなどを選択的に注入し拡散してp+型拡散層5を形成する。p+型拡散層5は、p型ベース拡散層4と後述する金属配線とのコンタクト抵抗値を低下させるために設けられる。そして、p型ベース拡散層4の表面の中央部分には、砒素イオンなどを選択的に注入し拡散させ、n+型エミッタ拡散層6を形成する。n+型エミッタ拡散層6は、その底面側および側面側において、p型ベース拡散層4との間にpn接合を形成する。 Next, boron ions or the like are selectively implanted and diffused into the central portion of the surface of the n-type epitaxial layer 2 surrounded by the P-type isolation layer 3 to form the p-type base diffusion layer 4. Further, boron ions or the like are selectively implanted and diffused in a part of the p-type base diffusion layer 4 to form the p + -type diffusion layer 5. The p + type diffusion layer 5 is provided in order to reduce the contact resistance value between the p type base diffusion layer 4 and a metal wiring described later. Then, arsenic ions or the like are selectively implanted and diffused in the central portion of the surface of the p-type base diffusion layer 4 to form an n + -type emitter diffusion layer 6. The n + -type emitter diffusion layer 6 forms a pn junction with the p-type base diffusion layer 4 on the bottom surface side and the side surface side.

次に、p+型拡散層5およびn+型エミッタ拡散層6にそれぞれ電気的に接続する金属配線10を形成し、さらに金属配線10および酸化膜9上にCVD法などによって耐湿性の高い窒化膜11を形成する。このような工程を経て、p型ベース拡散層4とn+型エミッタ拡散層6とのpn接合によるツェナダイオード構造を有する半導体装置が形成される。 Next, metal wiring 10 electrically connected to p + -type diffusion layer 5 and n + -type emitter diffusion layer 6 is formed, and nitriding with high moisture resistance is performed on metal wiring 10 and oxide film 9 by CVD or the like. A film 11 is formed. Through these steps, a semiconductor device having a Zener diode structure with a pn junction between the p-type base diffusion layer 4 and the n + -type emitter diffusion layer 6 is formed.

図2は、ツェナダイオードでの逆方向電圧印加時間に対する降伏電圧Vzの経時変化を示したものであり、線Bは、図4に示すツェナダイオードを逆方向降伏状態で使用し続けた場合、降伏電圧が上昇していく状態を表している。図4に示す構造のツェナダイオードにおいては、降伏電圧Vzがp型ベース拡散層4のベース濃度の高い領域でほぼ決められることから、Si−SiO2界面付近の逆降伏が発生する領域13で降伏現象が生じるものといえる。 FIG. 2 shows the change over time of the breakdown voltage Vz with respect to the reverse voltage application time in the Zener diode, and line B shows the breakdown when the Zener diode shown in FIG. 4 is continuously used in the reverse breakdown state. This represents a state where the voltage increases. In the Zener diode having the structure shown in FIG. 4, since the breakdown voltage Vz is almost determined in the high base concentration region of the p-type base diffusion layer 4, the breakdown occurs in the region 13 where reverse breakdown occurs near the Si-SiO 2 interface. It can be said that a phenomenon occurs.

このようなSi−SiO2界面付近での逆降伏の発生を避けるため、これまではアイソレーション領域とグラフトベース拡散領域を利用して半導体層内部でツェナダイオードを形成したり(特許文献1参照)、p+プラグイオン注入(グラフトベース拡散領域)を利用して、埋め込み型のツェナダイオードとし酸化膜へのホットキャリアの注入を抑制し、降伏電圧Vzの変動を防止していた(特許文献2参照)。 In order to avoid the occurrence of such reverse breakdown in the vicinity of the Si—SiO 2 interface, a Zener diode has been formed in the semiconductor layer using the isolation region and the graft base diffusion region (see Patent Document 1). , Using p + plug ion implantation (graft base diffusion region), a buried Zener diode is used to suppress injection of hot carriers into the oxide film and to prevent fluctuations in breakdown voltage Vz (see Patent Document 2) ).

特開昭61−228676号公報JP 61-228676 A 特開2002−299465号公報JP 2002-299465 A

バイポーラ集積回路において、縦型NPNトランジスタのエミッタとベースとを利用してツェナダイオードが形成されるが、従来構造のツェナダイオードでは、Si−SiO2界面付近の領域で降伏現象を生じているために、図2の線Bに示すように、電圧を印加し続けた場合、その影響によって降伏電圧Vzが上昇するという問題があった。 In a bipolar integrated circuit, a Zener diode is formed using the emitter and base of a vertical NPN transistor. However, in a Zener diode having a conventional structure, a breakdown phenomenon occurs in a region near the Si-SiO 2 interface. As shown by the line B in FIG. 2, when the voltage is continuously applied, there is a problem that the breakdown voltage Vz increases due to the influence.

これは、pn接合に対して、逆方向に印加される高電界により、電子および正孔が移動し、高エネルギーを得た電子および正孔(以下、ホットキャリアと呼ぶ)が酸化膜に注入されることによって起こる。このホットキャリアの注入によってアクセプタ型の界面準位が発生すると、pn接合でのSi−SiO2界面付近の電界が緩和され、図2に見られるように、その降伏電圧Vzが高くなる。 This is because electrons and holes move due to a high electric field applied in the opposite direction with respect to the pn junction, and electrons and holes that have obtained high energy (hereinafter referred to as hot carriers) are injected into the oxide film. To happen. When acceptor-type interface states are generated by the injection of hot carriers, the electric field in the vicinity of the Si-SiO 2 interface at the pn junction is relaxed, and the breakdown voltage Vz is increased as shown in FIG.

一方、Si−SiO2界面付近で逆降伏が発生することを避けるため、アイソレーション領域とグラフトベース拡散領域を利用して半導体層内部でツェナダイオードを形成したり、p+プラグイオン注入(グラフトベース拡散領域)を利用して、埋め込み型のツェナダイオードとし酸化膜へのホットキャリアの注入を抑制し、降伏電圧Vzの変動を防止していた。しかし、グラフトベース拡散領域形成の場合は通常のバイポーラ集積回路に対して工程の追加が必要になるというデメリットがあった。 On the other hand, in order to avoid reverse breakdown near the Si-SiO 2 interface, a zener diode is formed inside the semiconductor layer using the isolation region and the graft base diffusion region, or p + plug ion implantation (graft base By utilizing the diffusion region), the injection of hot carriers into the oxide film is suppressed by using a buried Zener diode, and the fluctuation of the breakdown voltage Vz is prevented. However, in the case of forming the graft base diffusion region, there is a demerit that an additional process is required for a normal bipolar integrated circuit.

本発明は、従来のこのような問題点を解消するためになされたもので、工程の追加をせず、かつpn接合上に形成される酸化膜や窒化膜などによって特性上の影響を受けることなく、安定な定電圧(降伏電圧)を得られる半導体装置及びその製造方法を提供することを目的とする。   The present invention has been made in order to solve the conventional problems as described above, and is not affected by the characteristics of the oxide film or nitride film formed on the pn junction without any additional process. An object of the present invention is to provide a semiconductor device capable of obtaining a stable constant voltage (breakdown voltage) and a method for manufacturing the same.

上記課題を解決するため、本発明の半導体装置は、一導電型の半導体層の表面に、逆導電型の第2の半導体層と、該逆導電型の第2の半導体層の外周を囲んで側面が重なり合うように、前記第2の半導体層より不純物濃度が低い逆導電型の第1の半導体層が設けられ、前記第1の半導体層と前記第2の半導体層の表面の、外周が、前記第2の半導体層の表面の外周より外側でかつ前記第1の半導体層の表面の外周の内側となる範囲で、深さが、前記第1の半導体層と前記第2の半導体層との側面の重なる部分より浅くなるような領域に、一導電型の第3の半導体層と、該第3の半導体層の外側に側面を接して、前記第3の半導体層より不純物濃度が低い一導電型の第4の半導体層とが設けられ、前記第3の半導体層の底部での前記第2の半導体層とのpn接合によりツェナダイオードが形成され、前記第1の半導体層の表面に前記第2の半導体層に接続する前記ツェナダイオードの一方の端子が設けられていることを特徴とする。   In order to solve the above problems, a semiconductor device of the present invention surrounds the surface of a one-conductivity-type semiconductor layer and surrounds the opposite-conductivity-type second semiconductor layer and the outer periphery of the reverse-conductivity-type second semiconductor layer. A reverse-conductivity-type first semiconductor layer having an impurity concentration lower than that of the second semiconductor layer is provided so that side surfaces overlap, and the outer circumferences of the surfaces of the first semiconductor layer and the second semiconductor layer are The depth between the first semiconductor layer and the second semiconductor layer is within a range outside the outer periphery of the surface of the second semiconductor layer and inside the outer periphery of the surface of the first semiconductor layer. One conductivity type third semiconductor layer and one conductivity type having a lower impurity concentration than the third semiconductor layer, in contact with the outer side of the third semiconductor layer, in a region shallower than the overlapping portion of the side surfaces A fourth semiconductor layer of the mold, and the second semiconductor at the bottom of the third semiconductor layer Zener diode is formed by the pn junction between the layers, characterized in that one terminal is provided for the zener diode to be connected to the second semiconductor layer on a surface of the first semiconductor layer.

また、本発明の半導体装置の製造方法は、一導電型の半導体層を上下に貫通する分離領域により、少なくとも第1、第2、第3の3つの領域に素子分離し、素子分離された第1の領域の一導電型の半導体層の表面に、逆導電型の第2の半導体層と、該逆導電型の第2の半導体層の外周を囲んで側面が重なり合うように、前記第2の半導体層より不純物濃度が低い逆導電型の第1の半導体層とを選択的に拡散形成し、前記第1の半導体層と前記第2の半導体層の表面の、外周が、前記第2の半導体層の表面の外周より外側でかつ前記第1の半導体層の表面の外周の内側となる範囲で、深さが、前記第1の半導体層と前記第2の半導体層との側面の重なる部分より浅くなるような領域に、一導電型の第3の半導体層と、該第3の半導体層の外側に側面を接して、前記第3の半導体層より不純物濃度が低い一導電型の第4の半導体層とを拡散形成し、前記第3の半導体層の底部での前記第2の半導体層とのpn接合により前記第1の領域にツェナダイオードを形成し、前記第1の半導体層の表面に前記第2の半導体層に接続する前記ツェナダイオードの一方の端子を設け、前記第2、第3の領域にバイポーラトランジスタとMOSFETをそれぞれ形成する半導体装置の製造方法であって、前記一導電型の半導体層を少なくとも前記3つの領域に素子分離した後、該一導電型の半導体層の前記第1の領域の表面に、第1の逆導電型の不純物を選択的に拡散して、前記第1の半導体層を形成すると同時に、前記第1の逆導電型の不純物により、前記第3の領域の表面にMOSFETの逆導電型のウエルを拡散形成する工程と、前記第1の領域に第2の逆導電型の不純物を選択的に拡散して、前記第2の半導体層を形成すると同時に、前記第2の逆導電型の不純物により、前記第2の領域にバイポーラトランジスタの逆導電型のベース層を拡散形成する工程と、前記第1の領域に一導電型の不純物を選択的に拡散して、前記第3の半導体層を形成すると同時に、前記一導電型の不純物により、少なくとも前記第2の領域に前記バイポーラトランジスタのエミッタ層を拡散形成する工程とを含むことを特徴とする。   In addition, according to the method of manufacturing a semiconductor device of the present invention, the element is separated into at least the first, second, and third regions by the separation region that vertically penetrates the one-conductivity-type semiconductor layer. The second conductive semiconductor layer having the opposite conductivity type and the side surface of the second conductive semiconductor layer of the first conductivity region are overlapped with each other so as to surround the outer periphery of the second semiconductor layer of the opposite conductivity type. A first semiconductor layer having a reverse conductivity type having an impurity concentration lower than that of the semiconductor layer is selectively diffused, and the outer circumferences of the surfaces of the first semiconductor layer and the second semiconductor layer are the second semiconductor layer. In a range that is outside the outer periphery of the surface of the layer and inside the outer periphery of the surface of the first semiconductor layer, the depth is larger than the portion where the side surfaces of the first semiconductor layer and the second semiconductor layer overlap. In a region that becomes shallower, a third semiconductor layer of one conductivity type and on the outside of the third semiconductor layer A first conductive type fourth semiconductor layer having an impurity concentration lower than that of the third semiconductor layer is diffused in contact with the surface, and a pn with the second semiconductor layer at the bottom of the third semiconductor layer is formed. A Zener diode is formed in the first region by bonding, and one terminal of the Zener diode connected to the second semiconductor layer is provided on the surface of the first semiconductor layer, and the second and third regions are provided. A method of manufacturing a semiconductor device in which a bipolar transistor and a MOSFET are respectively formed in the first region of the one-conductivity-type semiconductor layer after the one-conductivity-type semiconductor layer is separated into at least the three regions. A first reverse conductivity type impurity is selectively diffused on the surface of the first semiconductor layer to form the first semiconductor layer, and at the same time, the first reverse conductivity type impurity is added to the surface of the third region. Reverse conductivity of MOSFET Forming the second semiconductor layer by simultaneously diffusing the second reverse conductivity type impurity in the first region to form the second semiconductor layer. A step of diffusing and forming a reverse conductivity type base layer of a bipolar transistor in the second region by an impurity; and selectively diffusing one conductivity type impurity in the first region to form the third semiconductor layer And at the same time forming a diffusion layer of the emitter layer of the bipolar transistor in at least the second region by the impurity of one conductivity type.

この発明によれば、一導電型の第1の半導体層が一導電型の第2の半導体層を囲むように拡散形成され、第1の半導体層の不純物濃度を第2の半導体層より低くし、この第1と第2の半導体層の上層部に拡散形成された逆導電型の第3の半導体層と、第1と第2の半導体層内での第3の半導体層の側面上部に、第3の半導体層よりも不純物濃度を低くした逆導電型の第4の半導体層を拡散形成させたので、表面近傍の電界を緩和でき、酸化膜中へのホットキャリアの注入が制御され、ツェナダイオードの定電圧特性が維持されることになる。しかも、構造的にも比較的簡単で特にBiCMOSプロセスでは、工程を増やすことなく、バイポーラトランジスタおよびMOSFETと同時にツェナダイオードを製造することが出来るなどの優れた特徴を有するものである。   According to the present invention, the first semiconductor layer of one conductivity type is diffused and formed so as to surround the second semiconductor layer of one conductivity type, and the impurity concentration of the first semiconductor layer is made lower than that of the second semiconductor layer. , A third semiconductor layer of reverse conductivity type diffused and formed in the upper layer portion of the first and second semiconductor layers, and an upper portion of the side surface of the third semiconductor layer in the first and second semiconductor layers, Since the fourth semiconductor layer of the reverse conductivity type having an impurity concentration lower than that of the third semiconductor layer is diffused, the electric field in the vicinity of the surface can be relaxed, hot carrier injection into the oxide film is controlled, and the Zener The constant voltage characteristic of the diode is maintained. In addition, the BiCMOS process is relatively simple in structure, and has an excellent feature that a Zener diode can be manufactured simultaneously with a bipolar transistor and a MOSFET without increasing the number of steps.

図1は、本発明の一実施形態の半導体装置の概要構成を模式的に示す断面図であり、図1において、前記した図4と同一符号は、同一または相当部分を示している。以下、本発明の半導体装置及びその製造方法の一実施例について、図1により説明する。   FIG. 1 is a cross-sectional view schematically showing a schematic configuration of a semiconductor device according to an embodiment of the present invention. In FIG. 1, the same reference numerals as those in FIG. 4 denote the same or corresponding parts. An embodiment of a semiconductor device and a manufacturing method thereof according to the present invention will be described below with reference to FIG.

図1に示す半導体装置は、まず、p型シリコン基板1上にエピタキシャル成長法でn型エピタキシャル層2を堆積させ、n型エピタキシャル層2にボロンイオンなどを、SiO2による酸化膜などをマスクにして、選択的に注入し熱拡散してp型分離層3を形成する。p型分離層3は、図では省略されているn型エピタキシャル層2の他の領域にそれぞれ形成される半導体素子間を、分離するために用いられる。 In the semiconductor device shown in FIG. 1, first, an n-type epitaxial layer 2 is deposited on a p-type silicon substrate 1 by an epitaxial growth method, boron ions or the like are deposited on the n-type epitaxial layer 2, and an oxide film or the like made of SiO 2 is used as a mask. The p-type separation layer 3 is formed by selective implantation and thermal diffusion. The p-type isolation layer 3 is used to isolate semiconductor elements formed in other regions of the n-type epitaxial layer 2 which are omitted in the drawing.

周りをp型分離層3に囲まれたn型エピタキシャル層2の表面には、後で形成するp型ベース拡散層4の周辺部を囲んで一部重なるように、p型ベース拡散層4より不純物濃度が充分低いボロンイオンなどを選択的に注入し拡散して、p型ガードリング層7を形成する。次に、p型ガードリング層7の内側にp型ガードリング層7と一部重なるように、ボロンイオンを選択的に注入して拡散させ、p型ベース拡散層4を形成する。さらに、p型ガードリング層7の外周に隣接するように、p型ガードリング層7内にボロンイオンなどを選択的に注入し拡散して、コンタクト抵抗値を低下させるためのp+型拡散層5を形成する。 The surface of the n-type epitaxial layer 2 surrounded by the p-type isolation layer 3 surrounds the periphery of the p-type base diffusion layer 4 to be formed later so as to partially overlap the p-type base diffusion layer 4. A p-type guard ring layer 7 is formed by selectively implanting and diffusing boron ions having a sufficiently low impurity concentration. Next, boron ions are selectively implanted and diffused inside the p-type guard ring layer 7 so as to partially overlap the p-type guard ring layer 7, thereby forming the p-type base diffusion layer 4. Further, a p + type diffusion layer for selectively implanting and diffusing boron ions or the like into the p type guard ring layer 7 so as to be adjacent to the outer periphery of the p type guard ring layer 7 to reduce the contact resistance value. 5 is formed.

その後、p型ガードリング層7とp型ベース拡散層4との重なり部分を残すように、p型ガードリング層7とp型ベース拡散層4よりも浅く、p型ベース拡散層4、およびp型ガードリング層7の一部に跨るように砒素イオンなどを選択的に注入し拡散して、p型ガードリング層7とp型ベース拡散層4の上層部でpn接合を形成するn+型エミッタ拡散層6を形成させる。 Thereafter, the p-type base ring diffusion layer 4 and the p-type base diffusion layer 4 are shallower than the p-type guard ring layer 7 and the p-type base diffusion layer 4 so as to leave an overlapping portion between the p-type guard ring layer 7 and the p-type base diffusion layer 4. An n + type in which arsenic ions or the like are selectively implanted and diffused so as to straddle part of the type guard ring layer 7 to form a pn junction between the p type guard ring layer 7 and the p type base diffusion layer 4 An emitter diffusion layer 6 is formed.

+型エミッタ拡散層6を形成させる際、n+型エミッタ拡散層6の両側上面部分にあって、n+型エミッタ拡散層6よりもドナー濃度を充分低くしたn-拡散層8を、n型不純物としての拡散係数の大きい燐イオンを半導体基板に対して角度を有して低濃度のイオン注入を行った後(回転角度イオン注入)、拡散係数の小さい砒素イオンを通常のイオン注入により注入し、拡散処理することでn+型エミッタ拡散層6とn-型拡散層8を同時に形成することが出来る。このようにして、p型ガードリング層7とn-型拡散層8を含むp型ベース拡散層4とn+型エミッタ拡散層6とのpn接合によってツェナダイオードが構成される。 When forming the n + -type emitter diffusion layer 6, and on either side upper surface portions of the n + -type emitter diffusion layer 6, the n + -type emitter than the diffusion layer 6 was sufficiently low donor concentration the n - diffusion layer 8, n Phosphorus ions having a large diffusion coefficient as a type impurity are implanted at a low angle with respect to the semiconductor substrate (rotational angle ion implantation), and then arsenic ions having a small diffusion coefficient are implanted by ordinary ion implantation. Then, the n + -type emitter diffusion layer 6 and the n -type diffusion layer 8 can be formed simultaneously by performing the diffusion treatment. In this way, a Zener diode is constituted by the pn junction of the p-type base diffusion layer 4 including the p-type guard ring layer 7 and the n -type diffusion layer 8 and the n + -type emitter diffusion layer 6.

次に、p+型拡散層5およびn+型エミッタ拡散層6にそれぞれ電気的に接続される金属配線10を形成し、さらに金属配線10および酸化膜9上にCVD法などによって耐湿性の高い窒化膜11を形成する。 Next, the metal wiring 10 electrically connected to the p + -type diffusion layer 5 and the n + -type emitter diffusion layer 6 is formed, and the metal wiring 10 and the oxide film 9 have high moisture resistance by CVD or the like. A nitride film 11 is formed.

このように形成された図1に示すツェナダイオード構造を有する半導体装置では、ツェナダイオードに逆方向電圧を印加した場合、最も高い電界がかけられるのは、図1中での逆降伏が発生する領域12であり、バルク内で最初に降伏が発生することになる。このため、表面近傍の電界を緩和でき、酸化膜中へのホットキャリアの注入が制御され、ツェナダイオードの定電圧特性が維持されることになる。図2の線Aは、図1に示す構造のツェナダイオードの逆方向電圧印加時間に対する降伏電圧Vzの経時変化を示したものであり、逆方向降伏状態で使用し続けても逆方向電圧はほぼ一定であることを表している。   In the semiconductor device having the Zener diode structure shown in FIG. 1 formed in this way, when a reverse voltage is applied to the Zener diode, the highest electric field is applied in the region where reverse breakdown occurs in FIG. 12, yielding occurs first in the bulk. For this reason, the electric field in the vicinity of the surface can be relaxed, hot carrier injection into the oxide film is controlled, and the constant voltage characteristic of the Zener diode is maintained. Line A in FIG. 2 shows the change over time of the breakdown voltage Vz with respect to the reverse voltage application time of the Zener diode having the structure shown in FIG. 1, and the reverse voltage is almost constant even if it is continuously used in the reverse breakdown state. It shows that it is constant.

図3は他の実施形態の半導体装置を模式的に示した断面図である。この半導体装置は、p型シリコン基板1上にエピタキシャル成長法でn型エピタキシャル層2を堆積させ、かつこのn型エピタキシャル層2内にボロンイオンなどを選択的に注入し熱拡散してp型分離層3を形成している。このp型分離層3により、n型エピタキシャル層2内にそれぞれ素子分離されたn型の第1、第2,第3の素子領域が形成され、一例として、第1の素子領域に図1で示したツェナダイオード構造を有する半導体装置、第2の素子領域にバイポーラトランジスタ、第3の素子領域にn型MOSFETをそれぞれ形成したものである。   FIG. 3 is a cross-sectional view schematically showing a semiconductor device according to another embodiment. In this semiconductor device, an n-type epitaxial layer 2 is deposited on a p-type silicon substrate 1 by an epitaxial growth method, and boron ions or the like are selectively implanted into the n-type epitaxial layer 2 and thermally diffused to form a p-type separation layer. 3 is formed. The p-type isolation layer 3 forms n-type first, second, and third element regions that are isolated from each other in the n-type epitaxial layer 2, and as an example, the first element region is formed in FIG. The semiconductor device having the Zener diode structure shown is formed by forming a bipolar transistor in the second element region and an n-type MOSFET in the third element region.

この半導体装置の製造方法は、第1の素子領域に図1と同じツェナダイオードを形成するため、第1の素子領域については、図1で説明したものと同じであるが、第1の素子領域とともに、第2、第3の素子領域を同時に形成するものである。   In this semiconductor device manufacturing method, the same Zener diode as in FIG. 1 is formed in the first element region. Therefore, the first element region is the same as that described in FIG. At the same time, the second and third element regions are formed simultaneously.

つまり、n型エピタキシャル層2をP型分離層3によりn型の第1、第2,第3の素子領域に分離した後、第1の素子領域で、p型ベース拡散層4より不純物濃度が充分低いp型ガードリング層7を形成させる際に、第3の素子領域のn型MOSFETのp型ウエル14も、ボロンイオンなどを酸化膜などをマスクに、選択的に注入し拡散して同時に形成する。   That is, after the n-type epitaxial layer 2 is separated into n-type first, second, and third element regions by the P-type separation layer 3, the impurity concentration is higher than that of the p-type base diffusion layer 4 in the first element region. When the sufficiently low p-type guard ring layer 7 is formed, the p-type well 14 of the n-type MOSFET in the third element region is also selectively implanted and diffused by using boron oxide or the like as an oxide film as a mask. Form.

次に、第1の素子領域でp型ベース拡散層4を形成する際に、第2の素子領域のバイポーラトランジスタでも、ボロンイオンを選択的に注入して拡散させ、p型ベース層15を同時に形成する。さらに、第1の素子領域でn+型エミッタ拡散層6を形成する際、砒素イオンなどを選択的に注入し拡散して、バイポーラトランジスタのn+型エミッタ層16を同時に形成する。この際、n型MOSFETのソースおよびドレイン領域も同時形成したり、第1の素子領域でのn-型拡散層7についてもバイポーラトランジスタおよびn型MOSFETで同時形成することも出来る。なお、バイポーラトランジスタやn型MOSFETは一般的な構造のものであり、必要に応じて形成されるコレクタとなるn型埋込層や接続するn型拡散層についての説明は省略している。 Next, when the p-type base diffusion layer 4 is formed in the first element region, even in the bipolar transistor in the second element region, boron ions are selectively implanted and diffused, and the p-type base layer 15 is simultaneously formed. Form. Further, when the n + -type emitter diffusion layer 6 is formed in the first element region, arsenic ions or the like are selectively implanted and diffused to simultaneously form the n + -type emitter layer 16 of the bipolar transistor. At this time, the source and drain regions of the n-type MOSFET can be formed simultaneously, and the n -type diffusion layer 7 in the first element region can also be formed simultaneously by the bipolar transistor and the n-type MOSFET. Note that bipolar transistors and n-type MOSFETs have a general structure, and descriptions of an n-type buried layer serving as a collector and an n-type diffusion layer to be connected are omitted as necessary.

このように図3の構造の半導体装置の製造方法では、ツェナダイオードを有する半導体装置を構造的にも比較的簡単で特にBiCMOSプロセスでは、工程を増やすことなく、バイポーラトランジスタおよびMOSFETと同時にツェナダイオードを形成することが出来るメリットがある。   As described above, in the method of manufacturing the semiconductor device having the structure shown in FIG. 3, a semiconductor device having a Zener diode is relatively simple in structure. In particular, in the BiCMOS process, a Zener diode is formed simultaneously with a bipolar transistor and a MOSFET without increasing the number of steps. There is a merit that can be formed.

本発明の一実施形態の半導体装置の概要構成を模式的に示す断面図である。1 is a cross-sectional view schematically showing a schematic configuration of a semiconductor device according to an embodiment of the present invention. ツェナダイオードでの逆方向電圧印加時間に対する降伏電圧の経時変化を示すグラフである。It is a graph which shows a time-dependent change of the breakdown voltage with respect to the reverse voltage application time in a Zener diode. 本発明の他の実施形態による半導体装置の概要構成を模式的に示す断面図である。It is sectional drawing which shows typically schematic structure of the semiconductor device by other embodiment of this invention. 従来例の半導体装置の概要構成を模式的に示す断面図である。It is sectional drawing which shows typically schematic structure of the semiconductor device of a prior art example.

符号の説明Explanation of symbols

1 p型シリコン基板
2 n型エピタキシャル層
3 p型分離層
4 p型ベース拡散層(第2の半導体層)
5 p+型拡散層
6 n+型エミッタ拡散層(第3の半導体層)
7 p型ガードリング層(第1の半導体層)
8 n-型拡散層(第4の半導体層)
9 酸化膜
10 金属配線
11 窒化膜
12,13 逆降伏が発生する領域
14 p型ウエル
15 p型ベース層
16 n+型エミッタ層
1 p-type silicon substrate 2 n-type epitaxial layer 3 p-type isolation layer 4 p-type base diffusion layer (second semiconductor layer)
5 p + type diffusion layer 6 n + type emitter diffusion layer (third semiconductor layer)
7 p-type guard ring layer (first semiconductor layer)
8 n type diffusion layer (fourth semiconductor layer)
DESCRIPTION OF SYMBOLS 9 Oxide film 10 Metal wiring 11 Nitride film | membrane 12, 13 Area | region 14 reverse breakdown generate | occur | produces 14 p-type well 15 p-type base layer 16 n + type emitter layer

Claims (2)

一導電型の半導体層の表面に、逆導電型の第2の半導体層と、該逆導電型の第2の半導体層の外周を囲んで側面が重なり合うように、前記第2の半導体層より不純物濃度が低い逆導電型の第1の半導体層が設けられ、
前記第1の半導体層と前記第2の半導体層の表面の、外周が、前記第2の半導体層の表面の外周より外側でかつ前記第1の半導体層の表面の外周の内側となる範囲で、深さが、前記第1の半導体層と前記第2の半導体層との側面の重なる部分より浅くなるような領域に、一導電型の第3の半導体層と、該第3の半導体層の外側に側面を接して、前記第3の半導体層より不純物濃度が低い一導電型の第4の半導体層とが設けられ、
前記第3の半導体層の底部での前記第2の半導体層とのpn接合によりツェナダイオードが形成され、前記第1の半導体層の表面に前記第2の半導体層に接続する前記ツェナダイオードの一方の端子が設けられていることを特徴とする半導体装置。
Impurities from the second semiconductor layer are formed on the surface of the one-conductivity-type semiconductor layer so that the side surfaces of the opposite-conductivity-type second semiconductor layer overlap the outer periphery of the second-conductivity-type second semiconductor layer. A first semiconductor layer of a reverse conductivity type having a low concentration is provided;
The outer periphery of the surfaces of the first semiconductor layer and the second semiconductor layer is outside the outer periphery of the surface of the second semiconductor layer and inside the outer periphery of the surface of the first semiconductor layer. The third semiconductor layer of one conductivity type and the third semiconductor layer in a region where the depth is shallower than a portion where the side surfaces of the first semiconductor layer and the second semiconductor layer overlap. A first conductivity type fourth semiconductor layer having an impurity concentration lower than that of the third semiconductor layer and having a side surface in contact with the outside;
A Zener diode is formed by a pn junction with the second semiconductor layer at the bottom of the third semiconductor layer, and one of the Zener diodes connected to the second semiconductor layer on the surface of the first semiconductor layer A terminal is provided with a semiconductor device.
一導電型の半導体層を上下に貫通する分離領域により、少なくとも第1、第2、第3の3つの領域に素子分離し、
素子分離された第1の領域の一導電型の半導体層の表面に、逆導電型の第2の半導体層と、該逆導電型の第2の半導体層の外周を囲んで側面が重なり合うように、前記第2の半導体層より不純物濃度が低い逆導電型の第1の半導体層とを選択的に拡散形成し、
前記第1の半導体層と前記第2の半導体層の表面の、外周が、前記第2の半導体層の表面の外周より外側でかつ前記第1の半導体層の表面の外周の内側となる範囲で、深さが、前記第1の半導体層と前記第2の半導体層との側面の重なる部分より浅くなるような領域に、一導電型の第3の半導体層と、該第3の半導体層の外側に側面を接して、前記第3の半導体層より不純物濃度が低い一導電型の第4の半導体層とを拡散形成し、
前記第3の半導体層の底部での前記第2の半導体層とのpn接合により前記第1の領域にツェナダイオードを形成し、前記第1の半導体層の表面に前記第2の半導体層に接続する前記ツェナダイオードの一方の端子を設け、
前記第2、第3の領域にバイポーラトランジスタとMOSFETをそれぞれ形成する半導体装置の製造方法であって、
前記一導電型の半導体層を少なくとも前記3つの領域に素子分離した後、該一導電型の半導体層の前記第1の領域の表面に、第1の逆導電型の不純物を選択的に拡散して、前記第1の半導体層を形成すると同時に、前記第1の逆導電型の不純物により、前記第3の領域の表面にMOSFETの逆導電型のウエルを拡散形成する工程と、
前記第1の領域に第2の逆導電型の不純物を選択的に拡散して、前記第2の半導体層を形成すると同時に、前記第2の逆導電型の不純物により、前記第2の領域にバイポーラトランジスタの逆導電型のベース層を拡散形成する工程と、
前記第1の領域に一導電型の不純物を選択的に拡散して、前記第3の半導体層を形成すると同時に、前記一導電型の不純物により、少なくとも前記第2の領域に前記バイポーラトランジスタのエミッタ層を拡散形成する工程とを含むことを特徴とする半導体装置の製造方法。
The device is separated into at least first, second, and third regions by an isolation region that vertically penetrates the semiconductor layer of one conductivity type,
The side surface of the one-conductivity-type semiconductor layer of the first region where the element is isolated is overlapped with the opposite-conductivity-type second semiconductor layer and the side surface of the opposite-conductivity-type second semiconductor layer. , Selectively diffusing and forming a first semiconductor layer having an impurity concentration lower than that of the second semiconductor layer,
The outer periphery of the surfaces of the first semiconductor layer and the second semiconductor layer is outside the outer periphery of the surface of the second semiconductor layer and inside the outer periphery of the surface of the first semiconductor layer. The third semiconductor layer of one conductivity type and the third semiconductor layer in a region where the depth is shallower than a portion where the side surfaces of the first semiconductor layer and the second semiconductor layer overlap. A first semiconductor layer of one conductivity type having a lower impurity concentration than the third semiconductor layer is diffused and formed in contact with the side surface on the outside;
A zener diode is formed in the first region by a pn junction with the second semiconductor layer at the bottom of the third semiconductor layer, and connected to the second semiconductor layer on the surface of the first semiconductor layer Providing one terminal of the Zener diode,
A method of manufacturing a semiconductor device, wherein a bipolar transistor and a MOSFET are formed in the second and third regions, respectively.
After element isolation of the one conductivity type semiconductor layer into at least the three regions, a first reverse conductivity type impurity is selectively diffused on the surface of the first region of the one conductivity type semiconductor layer. Forming a reverse conductivity type well of the MOSFET on the surface of the third region by the first reverse conductivity type impurity simultaneously with forming the first semiconductor layer;
A second reverse conductivity type impurity is selectively diffused into the first region to form the second semiconductor layer, and at the same time, the second reverse conductivity type impurity causes the second region to enter the second region. Diffusing and forming a reverse conductivity type base layer of a bipolar transistor;
An impurity of one conductivity type is selectively diffused in the first region to form the third semiconductor layer, and at the same time, the emitter of the bipolar transistor is at least in the second region by the impurity of the one conductivity type. And a step of diffusing and forming a layer.
JP2004356266A 2004-12-09 2004-12-09 Semiconductor device and its manufacturing method Pending JP2006165370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004356266A JP2006165370A (en) 2004-12-09 2004-12-09 Semiconductor device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004356266A JP2006165370A (en) 2004-12-09 2004-12-09 Semiconductor device and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006165370A true JP2006165370A (en) 2006-06-22

Family

ID=36667032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004356266A Pending JP2006165370A (en) 2004-12-09 2004-12-09 Semiconductor device and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006165370A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8637952B2 (en) 2010-04-28 2014-01-28 Kabushiki Kaisha Toshiba Semiconductor device with zener diode and method for manufacturing same
US10541299B2 (en) 2015-12-11 2020-01-21 Seiko Epson Corporation Semiconductor device and manufacturing method thereof
CN112967927A (en) * 2021-02-26 2021-06-15 西安微电子技术研究所 Preparation method of voltage stabilizing diode with stable breakdown voltage

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60251674A (en) * 1984-05-28 1985-12-12 Nec Corp Subsurface zener diode
JPS61194874A (en) * 1985-02-25 1986-08-29 Fuji Electric Co Ltd Semiconductor device
JPH01194369A (en) * 1987-10-30 1989-08-04 Precision Monolithics Inc Buried zener diode and method of forming it
JPH0233976A (en) * 1988-07-22 1990-02-05 Mitsubishi Electric Corp Zener diode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60251674A (en) * 1984-05-28 1985-12-12 Nec Corp Subsurface zener diode
JPS61194874A (en) * 1985-02-25 1986-08-29 Fuji Electric Co Ltd Semiconductor device
JPH01194369A (en) * 1987-10-30 1989-08-04 Precision Monolithics Inc Buried zener diode and method of forming it
JPH0233976A (en) * 1988-07-22 1990-02-05 Mitsubishi Electric Corp Zener diode

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8637952B2 (en) 2010-04-28 2014-01-28 Kabushiki Kaisha Toshiba Semiconductor device with zener diode and method for manufacturing same
US10541299B2 (en) 2015-12-11 2020-01-21 Seiko Epson Corporation Semiconductor device and manufacturing method thereof
CN112967927A (en) * 2021-02-26 2021-06-15 西安微电子技术研究所 Preparation method of voltage stabilizing diode with stable breakdown voltage

Similar Documents

Publication Publication Date Title
US7655974B2 (en) Semiconductor device
JPS632370A (en) Semiconductor device
JPH06151723A (en) Bipolar transistor structure of monolithic semiconductor element and manufacture of said monolithic semiconductor element
JP2008526039A (en) SOI device further having resistance against substrate voltage
JPH01155653A (en) High voltage incorporating bipolar/cmos integrated circuit
WO2015008444A1 (en) Semiconductor device
JP2012238741A (en) Semiconductor device and manufacturing method for the same
JPH04363046A (en) Manufacture of semiconductor device
US6960797B2 (en) Semiconductor device
JP2001135719A (en) Element isolation structure for semiconductor device
JP2006295073A (en) Semiconductor device and its manufacturing method
JP3493681B2 (en) Buried avalanche diode
JP2006165370A (en) Semiconductor device and its manufacturing method
KR100563162B1 (en) Semiconductor device and method for producing the same
KR100482950B1 (en) Semiconductor device and manufacturing method thereof
US20040007713A1 (en) Bipolar transistor and semiconductor device using same
JP2518372B2 (en) Semiconductor device
JP2012009645A (en) Semiconductor device and method of manufacturing the same
JP2605392B2 (en) Semiconductor device
JPH0233976A (en) Zener diode
JP2508218B2 (en) Complementary MIS integrated circuit
JPH11233616A (en) Semiconductor device and its manufacturing method
US10424578B2 (en) Semiconductor device and method of manufacturing the same
JPH10294321A (en) Lateral p-n-p transistor and manufacture thereof
JPH07321347A (en) Manufacture of semiconductor device containing high-concentration p-n junction plane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111220