JPH03274669A - Gas diffusion electrode for fuel cell - Google Patents

Gas diffusion electrode for fuel cell

Info

Publication number
JPH03274669A
JPH03274669A JP2074306A JP7430690A JPH03274669A JP H03274669 A JPH03274669 A JP H03274669A JP 2074306 A JP2074306 A JP 2074306A JP 7430690 A JP7430690 A JP 7430690A JP H03274669 A JPH03274669 A JP H03274669A
Authority
JP
Japan
Prior art keywords
electrode
catalyst layer
electrode catalyst
base material
gas diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2074306A
Other languages
Japanese (ja)
Inventor
Akira Okubo
大久保 旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2074306A priority Critical patent/JPH03274669A/en
Publication of JPH03274669A publication Critical patent/JPH03274669A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)

Abstract

PURPOSE:To improve the current-voltage characteristics and life characteristics by forming an electrode catalyst layer in which fluorine resin grains of a small grain size is used and an electrode catalyst layer consisting of fluorine resin grains of a large grain size. CONSTITUTION:A gas diffusion electrode for a fuel cell consists of a catalyst carrier 7, rare metal grains, fluorine resin grains 8A, 8B, and an electrode base material 1, where the carrier 7 is carbon black powder, so the rare metal grains are carried on the carrier 7. An electrode catalyst layer 2 is which the grain 8A of smaller grain size are used and an electrode catalyst layer 3 consisting of the grains 8B of larger grain size are formed. In this constitution, because the grain size of the fluorine resin grains is small, water repellency of phosphoric acid is large, and secular pore closing effect by phosphoric acid is eliminated, thereby the current-voltage characteristics and life characteristics can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は燃料電池用ガス拡散電極の電極触媒層に侮り
、峙に電極触媒層〆I) 7−:・素性14オ佼子に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention is concerned with an electrode catalyst layer of a gas diffusion electrode for a fuel cell, and also relates to an electrode catalyst layer.

〔従来の技術〕[Conventional technology]

第4図は従来のカス拡散!!原をマj・11ツクスとと
もに示すJ!i:0(S配置図である。1!L極基羽l
はカーボン繊維6からなり、カーボン繊維R維6の間隙
を反応ガスが流れ、電極触媒15に反6カスか供給され
る。電極触媒層5は貴会pA粒子Z、図示せr)のi持
される触媒担体であるカーボンブラック粉体7とカーボ
ンブラック粉#−7を結着するフッ素樹脂粒子8および
こnらの影成する空孔とからgt成される。マトリック
ス4はシリコンカーバイト10からなり、シリコンカー
バイド10の間隙に電解質であるリン酸が含浸される、
リン酸は電極触媒層5に所定量が供給される。電極触W
層5の内部には電極基材1つ)らの反応カスと、マトリ
ックス4からのtL解負と、tit金属粒子の担持され
た触媒担体とにより3相界面が形波され電気化学反応が
進行する。
Figure 4 shows conventional waste diffusion! ! J that shows the original with Max J 11x! i: 0 (S layout diagram. 1! L polar base feather l
is made of carbon fibers 6, and the reaction gas flows through the gaps between the carbon fibers R fibers 6, and is supplied to the electrode catalyst 15. The electrode catalyst layer 5 is composed of carbon black powder 7, which is a catalyst carrier on which pA particles Z (not shown) are supported, and fluororesin particles 8 that bind carbon black powder #-7, and their shadows. gt is formed from the vacancies that form. The matrix 4 is made of silicon carbide 10, and the gaps between the silicon carbide 10 are impregnated with phosphoric acid as an electrolyte.
A predetermined amount of phosphoric acid is supplied to the electrode catalyst layer 5. Electrode contact W
Inside the layer 5, the three-phase interface is shaped by the reaction residue from the electrode base material (one electrode base material), the tL solution from the matrix 4, and the catalyst carrier on which tit metal particles are supported, and the electrochemical reaction progresses. do.

このような燃料電池の電1!触媒層においては、時間と
ともに電解液が電極触媒層内をぬらしてゆき電極触媒層
内の空孔が!解液で塞がれるという現象がおこる。この
ために反応ガスが電極触媒層内を拡散しにくくなり、燃
料電池の特性が劣化する。
This kind of fuel cell electricity 1! In the catalyst layer, the electrolytic solution wets the electrode catalyst layer over time, creating pores in the electrode catalyst layer! A phenomenon occurs in which the solution is blocked by solution. This makes it difficult for the reaction gas to diffuse within the electrode catalyst layer, degrading the characteristics of the fuel cell.

リン酸(こよる電極触媒層空孔のV!塞を防ぐために従
来は第4図に示すように、電極触媒層のマドノックスに
近い電極触媒層lbにおいてはフッ素樹脂粒子8の童を
少なくして、撥水性を弱くし電極基材lに近い電極触媒
層15においてはフッ素樹脂粒子8の量を多くして撥水
性を強めることが行われてきた。電極触媒層16におい
てはフッ素樹脂の撥水性が弱いのでリン酸と反応ガスが
よく供給されて3相界面が形成され、電極触媒N15に
おいてはフッ素樹脂の撥水性が強いのでリン酸の滲透が
抑えられ、空孔内を反応ガスがよく拡散する。
In order to prevent phosphoric acid from clogging the pores of the electrode catalyst layer, conventionally, as shown in FIG. , the water repellency has been weakened and the amount of fluororesin particles 8 has been increased in the electrode catalyst layer 15 close to the electrode base material 1 to increase the water repellency.In the electrode catalyst layer 16, the water repellency of the fluororesin has been strengthened. Since the phosphoric acid and the reaction gas are weak, a three-phase interface is formed by well supplying phosphoric acid and the reaction gas, and in the case of the electrode catalyst N15, the fluororesin has strong water repellency, so the seepage of phosphoric acid is suppressed, and the reaction gas diffuses well within the pores. do.

〔発明が解決しようとする課題〕 しかしながら上述のような従来の電極触媒層15におい
ては、電極触媒層中のフッ素樹脂粒子の量が多いために
リン酸によるぬれは防止できるが、それとともに反応カ
スの拡散性も低下し、燃料電池の電流電圧特性が悪化す
るという問題があった。
[Problems to be Solved by the Invention] However, in the conventional electrode catalyst layer 15 as described above, since the amount of fluororesin particles in the electrode catalyst layer is large, wetting by phosphoric acid can be prevented, but at the same time, the reaction gas is There was a problem in that the diffusivity of the fuel cell also decreased, and the current-voltage characteristics of the fuel cell deteriorated.

この発明は上述の点に鑑みてなされ、その目的は電極触
媒層のフッ素樹脂粒子に改良を刃口えることにより、リ
ン酸による電極触媒層空孔の閉塞がおこらす、電流電圧
特性にも優れる燃料電池のガス拡散[4を提供すること
にある。
This invention was made in view of the above points, and its purpose is to improve the fluororesin particles of the electrode catalyst layer so that the pores of the electrode catalyst layer are blocked by phosphoric acid, and the current-voltage characteristics are also excellent. The object of the present invention is to provide gas diffusion [4] for fuel cells.

〔課題を解決するための手段〕[Means to solve the problem]

上述の目的はこの発明によれば触媒担体7と、貴金属粒
子と、フッ素樹脂粒子8A、8Bと、[種基材1とから
なり、 触媒担体はカーボンブラック粉体であり。
According to the present invention, the above-mentioned object is made up of a catalyst carrier 7, noble metal particles, fluororesin particles 8A, 8B, and a seed substrate 1, and the catalyst carrier is carbon black powder.

貴金属粒子は触媒担体の上に担持されるものであり、 フッ素樹脂粒子は貴金属粒子の担持される!ei媒担体
を結合させて電極触媒層を形成し、電極触媒層は電解質
を供給するマトリックスと反応ガスを供給する電極基材
に挟持され、この際マドノックス側の電極触媒層中に用
いられるフッ素樹脂粒子の粒径は電極基材側の電極触媒
層に用いられるフッ素樹脂粒子の粒径より大であり、 電極基材は前記電極触媒層を支持するものであるとする
ことにより達成される。
Noble metal particles are supported on a catalyst carrier, and fluororesin particles are supported on noble metal particles! The ei medium carrier is combined to form an electrode catalyst layer, and the electrode catalyst layer is sandwiched between a matrix that supplies an electrolyte and an electrode base material that supplies a reaction gas. At this time, the fluororesin used in the electrode catalyst layer on the Madnox side The particle size of the particles is larger than the particle size of the fluororesin particles used in the electrode catalyst layer on the electrode base material side, and this is achieved by providing that the electrode base material supports the electrode catalyst layer.

〔作用〕[Effect]

フッ素樹脂粒子の粒度が小さいとリン酸に対する撥水性
が増すが、反応カスに対する拡散抵抗は減少する。フッ
素樹脂粒子の粒度が大きいと撥水性が小さくなり、リン
酸のぬれ性が増大する。
When the particle size of the fluororesin particles is small, the water repellency against phosphoric acid increases, but the diffusion resistance against reaction scum decreases. When the particle size of the fluororesin particles is large, water repellency decreases and wettability with phosphoric acid increases.

〔実施例〕〔Example〕

次にこの発明の実施例を図面に基いて説明する。 Next, embodiments of the present invention will be described based on the drawings.

第1図はこの発明の実施例に係る燃料1[、a用ガス拡
散電極をマトリックスとともに示す要部配置図で従来の
ガス拡散電極とは粒径の小さいフッ1g衝脂粒+8Aを
用いる電極触媒層2と粒径の大きいフッ素樹脂粒子8B
からなる電極触媒層3が形成されている点が異なる。フ
ッ素樹脂粒子8の量は電極触媒層2,3ともに等しい。
Fig. 1 is a layout diagram of main parts showing a gas diffusion electrode for fuel 1 [, a according to an embodiment of the present invention together with a matrix. Layer 2 and large fluororesin particles 8B
The difference is that an electrode catalyst layer 3 consisting of is formed. The amount of fluororesin particles 8 is equal in both electrode catalyst layers 2 and 3.

このようなガス拡散電極の電極触媒層5は、電極触媒層
2,3を順次並布する方法、電極触媒層2.3のシート
を積層するなどの方法により容易に形成することができ
る。塗布法あるいはソート積層法などに用いられるペー
ストは以下のようにして調製される。
The electrode catalyst layer 5 of such a gas diffusion electrode can be easily formed by a method such as sequentially arranging the electrode catalyst layers 2 and 3, or stacking sheets of the electrode catalyst layer 2.3. The paste used in the coating method, the sorting layering method, etc. is prepared as follows.

比表面積が100〜2007F!7gのカーホンブラッ
ク粉体100gをイオン交換水に分散させたl@液にカ
ーボン単位il量当たり10亀量%の白金が担持される
ように濃度調整された塩化白金酸水浴g、を所定量7J
llえ、温度5U”Cで均一分散させた後、0,1〜0
.3モル1!に度のギ酸またはヒドラジン等の還元剤を
滴下し、塩化白金f1kを白金に還元すると同時にカー
ボン粉体表面に白金の微結晶を析出させる。得られた白
金担持カーホンの分散液を濾過し、イオン交換水にて十
分に水洗したのち、ふん囲気調整が可能な真空乾燥器に
て数時間乾燥し、白金を担持したカーホンブラック粉体
からなる触媒を得た。
Specific surface area is 100~2007F! A predetermined amount of a chloroplatinic acid water bath (g) whose concentration is adjusted so that platinum is supported at 10 weight percent per carbon unit (il) is added to a solution in which 100 g of 7 g of carphone black powder is dispersed in ion-exchanged water. 7J
After uniformly dispersing at a temperature of 5U"C, 0.1~0
.. 3 moles 1! A reducing agent such as formic acid or hydrazine is added dropwise to reduce platinum chloride f1k to platinum, and at the same time, microcrystals of platinum are precipitated on the surface of the carbon powder. The resulting dispersion of platinum-supported carphone was filtered, thoroughly washed with ion-exchanged water, and then dried for several hours in a vacuum dryer with adjustable atmosphere to obtain platinum-supported carphone black powder. A catalyst was obtained.

次に、上記の方法で得た触媒の所定量を界面活性剤の入
ったイオン交換水に超音波ホモジナイザー等を用いて均
一に分散させた後、触媒1グラム当たり50m11%の
フッ素樹脂粒子8Aが混合するようなフッ素樹脂粒子分
散fi(4度60%、 比l1.5)を刃口え、更lこ
均一混合して、触媒とフッ素樹脂粒子の均一分散液を作
製する。この場合フッ素樹脂粒子の粒子径は0.15μ
mである。この均一分散液lこイソプロピルアルコール
を仄え触媒とフッ素樹脂粒子を凝集させ、ろ過、あるい
は遠心分離により白金を担持したカーボンブラック粉体
とフッ素樹脂粒子のペーストを得た。フッ素樹脂粒子8
Bにりいても粒径0.3μ飢のものについて上述と同様
にしてペーストを得た。フッ素樹脂粒子はいずれも四フ
ッ化フッ素樹脂である。電極基材上にペースト+*布し
たあと乾燥する工程を2回くり返し、350℃で予備焼
成し、385℃の窒素中で本焼成を行い、ガス拡散電極
が調製される。
Next, a predetermined amount of the catalyst obtained by the above method was uniformly dispersed in ion-exchanged water containing a surfactant using an ultrasonic homogenizer, and then 50ml of 11% fluororesin particles 8A per gram of catalyst was dispersed. A fluororesin particle dispersion fi (4 degrees 60%, ratio 1.5) is cut into a knife and mixed uniformly to prepare a uniform dispersion of catalyst and fluororesin particles. In this case, the particle size of the fluororesin particles is 0.15μ
It is m. This homogeneous dispersion was diluted with isopropyl alcohol to coagulate the catalyst and fluororesin particles, and a paste of platinum-supported carbon black powder and fluororesin particles was obtained by filtration or centrifugation. Fluororesin particles 8
A paste was obtained in the same manner as described above for B with a particle size of 0.3 μm. All of the fluororesin particles are fluororesin tetrafluoride. A gas diffusion electrode is prepared by repeating the process of applying the paste+* cloth on the electrode base material and drying it twice, pre-baking at 350°C, and main firing in nitrogen at 385°C.

第2図はこの発明の実施例に係るガス拡散電極の電流電
圧特性(%性縁21)を従来のガス拡散電極の電流電圧
特性(特性縁23)と対比して示す線図である。特性@
21は電極基材側のフッ素樹脂粒子は小さいので反応ガ
スの拡散抵抗は小さく、良好な電流電圧特性である。特
性巌田は従来のフッ素樹脂粒子が大きく反応ガスの拡散
抵抗が大きく特性が悪化している。
FIG. 2 is a diagram showing the current-voltage characteristics (characteristic edge 21) of the gas diffusion electrode according to the embodiment of the present invention in comparison with the current-voltage characteristics (characteristic edge 23) of a conventional gas diffusion electrode. Characteristic@
In No. 21, the fluororesin particles on the electrode base material side are small, so the diffusion resistance of the reaction gas is small, and the current-voltage characteristics are good. Characteristics Iwata's conventional fluororesin particles are large and the diffusion resistance of the reaction gas is large, resulting in poor characteristics.

@3図はこの発明の実施例に係るカス拡散電極の寿命特
性(特性縁31)を従来のガス拡散電極の寿命%性(%
性融オ)と対比して示す線図である。
Figure @3 shows the life characteristics (characteristic edge 31) of the gas diffusion electrode according to the embodiment of this invention compared to the life % characteristics (%) of the conventional gas diffusion electrode.
FIG.

特性@31はフッ素樹脂粒子の粒径がl」・さいのでり
/rRの撥水性か大きく、リン酸による経時的なを孔閉
塞作用がなくなって寿命特性にも特性線おに比して優れ
ている。
Characteristic @31 has a large particle size of fluororesin particles with large water repellency of 1"/rR, and has no pore clogging effect over time due to phosphoric acid, and has superior life characteristics compared to characteristic line O. ing.

〔発明の効果〕〔Effect of the invention〕

この発明によれば触媒担体と、貴金属粒子と、フッ素樹
脂粒子と、電極基材と75)らなり、触媒担体はカーボ
ンブラック粉体であり、貴金属粒子は触媒担体の上會こ
担持されるものであり、 フッX樹脂粒子は貴金属粒子の担持されるm媒担体を結
合させて成極触II&7Iiを形成し、電極触媒層は電
S*を供給するマトリックスと反応ガスを供給する電極
基材に挾持され、この際マトリックス側の電極触媒層に
用いられるフッ素樹脂粒子の粒径は電極基材側の区憔m
i層に用いられるフッ素樹脂粒子の粒径より大であり、 五億基材は前記電極触媒層を支持するもめであるQ)で
粒径の小さいフッ素樹脂粒子は撥水性が大きいよ反応ガ
ス拡散抵抗が小さいので、電流電圧特性と前筒特性に優
れる燃料電池用カス拡散電極が得られる。
According to this invention, the catalyst carrier is composed of a catalyst carrier, noble metal particles, fluororesin particles, and an electrode base material (75), the catalyst carrier is carbon black powder, and the noble metal particles are supported on the catalyst carrier. The Fluorine X resin particles combine with the m-medium carrier on which the noble metal particles are supported to form polarization catalysts II & 7Ii, and the electrode catalyst layer is formed by combining the matrix that supplies electricity S* and the electrode base material that supplies reactive gas. The particle size of the fluororesin particles that are sandwiched and used in the electrode catalyst layer on the matrix side is determined by the diameter of the fluororesin particles on the electrode base material side.
The particle size is larger than that of the fluororesin particles used in the i-layer, and the 500 million base material is used to support the electrode catalyst layer.In Q), the fluororesin particles with a smaller particle size have greater water repellency and reaction gas diffusion. Since the resistance is small, a waste diffusion electrode for fuel cells with excellent current-voltage characteristics and front cylinder characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例に係る燃料電池用ガス拡散電
極をマトリックスとともに示す要部配置図、第2図はこ
の発明の実施例に係るカス拡散電極の4fii:電圧特
性(特性縁21)を従来のガス拡散を憔の電流電圧特性
(特性巌乙)と対比して示す線図、第3図はこの発明の
界流調をこ係るガス拡散電極の寿命特性(%性碕31)
を従来のガス拡散電極の寿命時!(#性縁羽)と対比し
て示す線図、第4図はに来のガス拡散電極をマトリック
スととも(こ示す要部配置図である。 1:[種基材、8A、8H:フッ素樹脂粒子、第11!
!J 1!荒2度(−んml) 第2図
FIG. 1 is a layout diagram of main parts showing a gas diffusion electrode for a fuel cell according to an embodiment of the present invention together with a matrix, and FIG. 2 is a 4fii: voltage characteristic (characteristic edge 21) of a gas diffusion electrode according to an embodiment of the present invention. Figure 3 is a diagram showing the current-voltage characteristics of the conventional gas diffusion in comparison with the current-voltage characteristics (characteristics), and Figure 3 shows the field current characteristics of the present invention in comparison with the life characteristics of the gas diffusion electrode (% characteristics 31).
At the end of the lifespan of conventional gas diffusion electrodes! Figure 4 is a diagram showing the main parts of the gas diffusion electrode in conjunction with the matrix. 1: [Seed base material, 8A, 8H: Fluorine] Resin particles, number 11!
! J1! Rough 2 degrees (-nml) Figure 2

Claims (1)

【特許請求の範囲】 1)触媒担体と、貴金属粒子と、フッ素樹脂粒子と、電
極基材とからなり、 触媒担体はカーボンブラック粉体であり、 貴金属粒子は触媒担体の上に担持されるものであり、 フッ素樹脂粒子は貴金属粒子の担持される触媒担体を結
合させて電極触媒層を形成し、電極触媒層は電解質を供
給するマトリックスと反応ガスを供給する電極基材に挾
持され、この際マトリックス側の電極触媒層に用いられ
るフッ素樹脂粒子の粒径は電極基材側の電極触媒層に用
いられるフッ素樹脂粒子の粒径より大であり、 電極基材は前記電極触媒層を支持するものであることを
特徴とする燃料電池用ガス拡散電極。
[Claims] 1) Consisting of a catalyst carrier, noble metal particles, fluororesin particles, and an electrode base material, the catalyst carrier is carbon black powder, and the noble metal particles are supported on the catalyst carrier. The fluororesin particles are combined with a catalyst carrier on which noble metal particles are supported to form an electrode catalyst layer, and the electrode catalyst layer is sandwiched between a matrix that supplies an electrolyte and an electrode base material that supplies a reactive gas. The particle size of the fluororesin particles used in the electrode catalyst layer on the matrix side is larger than the particle size of the fluororesin particles used in the electrode catalyst layer on the electrode base material side, and the electrode base material supports the electrode catalyst layer. A gas diffusion electrode for a fuel cell, characterized in that:
JP2074306A 1990-03-23 1990-03-23 Gas diffusion electrode for fuel cell Pending JPH03274669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2074306A JPH03274669A (en) 1990-03-23 1990-03-23 Gas diffusion electrode for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2074306A JPH03274669A (en) 1990-03-23 1990-03-23 Gas diffusion electrode for fuel cell

Publications (1)

Publication Number Publication Date
JPH03274669A true JPH03274669A (en) 1991-12-05

Family

ID=13543314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2074306A Pending JPH03274669A (en) 1990-03-23 1990-03-23 Gas diffusion electrode for fuel cell

Country Status (1)

Country Link
JP (1) JPH03274669A (en)

Similar Documents

Publication Publication Date Title
JP4896298B2 (en) Hybrid membrane electrode assembly
US6645660B2 (en) Screen-printing paste and screen-printing method of fabricating a gas diffusion electrode
JPH0510978B2 (en)
Pan et al. Fabrication and performance of polymer electrolyte fuel cells by self-assembly of Pt nanoparticles
EP1467422B1 (en) Catalyst electrode, and electrochemical device
JPH0817440A (en) Electrode for polymer electrolyte-type electrochemical cell
US20060287194A1 (en) Electrode for solid polymer type fuel cell and manufacturing method therefor
EP1783849A1 (en) Composite body, catalyst structure, electrode for solid polymer fuel cell, method for producing same, and solid polymer fuel cell
JPH0888007A (en) Solid polymer fuel cell and its electrode
JP2003109606A (en) High molecular electrolyte fuel cell and method of manufacturing the same
JP3326254B2 (en) Fuel cell
WO2020059503A1 (en) Anode catalyst layer for fuel cell and fuel cell using same
Yang et al. Polymer electrolyte fuel cell with vertically aligned carbon nanotubes as the electrocatalyst support
US7682725B2 (en) Gas diffusion electrode and method for its production
JPH11219710A (en) Electrode of solid electrolyte fuel cell and manufacture thereof
JP2002015745A (en) Solid polymer fuel cell
JPH03274669A (en) Gas diffusion electrode for fuel cell
JP2012212661A (en) Electrode catalyst layer for fuel cell, manufacturing method of electrode catalyst layer, membrane electrode assembly for fuel cell, and solid polymer fuel cell
JPH0218861A (en) Electrode catalyzer layer for fuel cell
JPH0227661A (en) Electrode catalyst layer for fuel cell
JPH03297061A (en) Electrode catalyst layer for fuel cell
JPH03252058A (en) Electrode catalyst layer for fuel cell
JPH03269954A (en) Gas diffusion electrode for fuel cell
JPH04274167A (en) Electrode catalyst layer for fuel cell
JP2505449B2 (en) Method for manufacturing sulfuric acid fuel cell electrode