JPH03271141A - Production of optical fiber - Google Patents

Production of optical fiber

Info

Publication number
JPH03271141A
JPH03271141A JP2068620A JP6862090A JPH03271141A JP H03271141 A JPH03271141 A JP H03271141A JP 2068620 A JP2068620 A JP 2068620A JP 6862090 A JP6862090 A JP 6862090A JP H03271141 A JPH03271141 A JP H03271141A
Authority
JP
Japan
Prior art keywords
optical fiber
raw material
hydrogen
gas
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2068620A
Other languages
Japanese (ja)
Other versions
JP2595364B2 (en
Inventor
Takeshi Shimomichi
毅 下道
Keiji Ohashi
圭二 大橋
Koji Tsurusaki
幸司 鶴崎
Shinji Araki
荒木 真治
Hideo Suzuki
秀雄 鈴木
Nobuyuki Yoshizawa
信幸 吉澤
Yutaka Katsuyama
豊 勝山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Fujikura Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd, Nippon Telegraph and Telephone Corp filed Critical Fujikura Ltd
Priority to JP2068620A priority Critical patent/JP2595364B2/en
Publication of JPH03271141A publication Critical patent/JPH03271141A/en
Application granted granted Critical
Publication of JP2595364B2 publication Critical patent/JP2595364B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Abstract

PURPOSE:To improve the hydrogen-resistance and mechanical strength by specifying the flow rate of raw material gas in a reaction tube. CONSTITUTION:A bare wire 1 of an optical fiber produced by thermal spinning with an optical fiber spinning furnace 2 is introduced through a cooling tube 12 into a reaction tube 4 of a CVD reaction furnace 3. Separately, a raw material gas is supplied from a line 6 to the reaction tube 4 at a flow rate of 40-60m/min and thermally decomposed by heating with a heater 6 at 1200-1500 deg.C to form a carbon film on the surface of the bare wire 1. The coated wire is passed through a diamond spot 9 for resin coating and the applied resin coat is cured by passing the wire through a curing apparatus 10.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、炭素被膜が設けられた光ファイバの製造方
法に関し、所定の流速で原料ガスを流しつつ成膜するこ
とにより、より優れた耐水素特性および機械的強度を有
する光ファイバを生産できるようにしたものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing an optical fiber provided with a carbon film, and it is possible to achieve better durability by forming the film while flowing a raw material gas at a predetermined flow rate. This makes it possible to produce optical fibers with hydrogen properties and mechanical strength.

[従来の技術と発明が解決しようとする課題]石英系光
ファイバは、水素と接触するとファイバ内に拡散した水
素分子の分子振動に起因する吸収損失が増大する。さら
にドーパントとして含有されているP to 5.G 
eo 2.B to 3などが水素と反応しOH基とし
てファイバガラス中に取り込まれるため、OH基の吸収
による伝送損失も増大してしまう問題かある。
[Prior Art and Problems to be Solved by the Invention] When a silica-based optical fiber comes into contact with hydrogen, absorption loss due to molecular vibration of hydrogen molecules diffused within the fiber increases. Furthermore, P to 5. is contained as a dopant. G
eo 2. Since B to 3 and the like react with hydrogen and are incorporated into the fiber glass as OH groups, there is a problem in that transmission loss due to absorption of OH groups also increases.

このような弊害に対処するため、水素吸収能を有する液
状の組成物を光ケーブル内Zこ充填すること(特願昭6
1−251808号)が考えられているが、その効果が
不十分であるうえ、構造か複雑となって経済的にも問題
がある。
In order to deal with such adverse effects, it is necessary to fill the inside of the optical cable with a liquid composition having hydrogen absorption ability (Japanese Patent Application No. 6, 1983).
No. 1-251808) has been considered, but it is not only insufficiently effective, but also has a complicated structure, which poses economical problems.

このような問題を解決するため、最近化学気相成長法(
以下、CVD法と略称する)によって光ファイバ表面に
炭素被膜を形成し、これによって光ファイバの耐水素性
を向上させうることか発表されている。この製造方法は
、光ファイバ裸線表面にCVD法によって炭素被膜を形
成した後、紫外線硬化型樹脂や熱硬化型樹脂によって保
護被覆層を形成する方法である。
In order to solve these problems, chemical vapor deposition method (
It has been announced that a carbon film can be formed on the surface of an optical fiber by a CVD method (hereinafter abbreviated as CVD method), thereby improving the hydrogen resistance of the optical fiber. This manufacturing method is a method in which a carbon coating is formed on the surface of a bare optical fiber by a CVD method, and then a protective coating layer is formed using an ultraviolet curable resin or a thermosetting resin.

ところがこのような製造方法によって同じように製造さ
れた光ファイバであっても、その耐水素特性や疲労特性
に大きな差異が生じる場合があっfこ。
However, even if optical fibers are manufactured in the same manner using such manufacturing methods, there may be large differences in their hydrogen resistance and fatigue characteristics.

この発明は前記事情に鑑みてなされたもので、より優れ
た耐水素特性および機械的強度を有する光ファイバを製
造できる製造方広を提供することを目的とする。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a wide range of manufacturing methods that can produce optical fibers having superior hydrogen resistance and mechanical strength.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、炭素被覆された光ファイバの耐水素特性
および機械的強度の向上について鋭意研究を重ねた結果
、炭素被膜形成時の原料ガスの流速を40m/分〜80
m/分の範囲に設定することによって、光ファイバの耐
水素特性および機械的強度を格段に向上できることを見
出だした。
As a result of extensive research into improving the hydrogen resistance and mechanical strength of carbon-coated optical fibers, the inventors of the present invention have determined that the flow rate of the raw material gas during carbon coating formation is 40 m/min to 80 m/min.
It has been found that the hydrogen resistance and mechanical strength of the optical fiber can be significantly improved by setting the speed within the range of m/min.

原料ガスの流速が40m/分未満になると形成される炭
素被膜は、煤が堆積したような、クラスタが大きく水分
や水素分子の透過防止性能に劣るものとなる。そして製
造された光ファイバは、耐水素特性、機械的強度に劣る
ものとなる。また流速が80m/分を越えると、成膜速
度が低下し不経済である。
When the flow rate of the raw material gas is less than 40 m/min, the carbon film formed has large clusters that look like deposits of soot, and has poor performance in preventing permeation of moisture and hydrogen molecules. The manufactured optical fiber is inferior in hydrogen resistance and mechanical strength. Furthermore, if the flow rate exceeds 80 m/min, the film formation rate decreases and is uneconomical.

ここで原料ガスとは、化学気相成長法を実施する反応管
に供給されたガスで、少なくとも原料化合物とキャリア
ガスとか混合されてはるものである。
Here, the raw material gas is a gas supplied to a reaction tube for carrying out the chemical vapor deposition method, and is a gas in which at least a raw material compound and a carrier gas are mixed.

本発明の製造方法で用いる原料化合物は、揮発性を有し
かつ熱分解して炭素を生成する化合物であれば特に限定
されないか、形成される炭素被膜の性状およびその析出
速度の観点から炭素数15以下の炭化水素またはハロゲ
ン化炭化水素が好適である。また置換するハロゲン原子
としては、取り扱い性等の観点から塩素原子が好ましい
。具体例としては、メタン、エタン、プロパン、ヘンゼ
ン、トルエン等のほか、これら化合物の水素原子を塩素
原子に置換したクロロメタン、クロロベンゼンなどを挙
げることができる。
The raw material compound used in the production method of the present invention is not particularly limited as long as it is volatile and generates carbon by thermal decomposition, or the number of carbon atoms is 15 or less hydrocarbons or halogenated hydrocarbons are preferred. Further, as the halogen atom to be substituted, a chlorine atom is preferable from the viewpoint of ease of handling. Specific examples include methane, ethane, propane, henzene, toluene, etc., as well as chloromethane, chlorobenzene, etc. in which the hydrogen atoms of these compounds are replaced with chlorine atoms.

また前記キャリアガスとしては、ヘリウムガス、アルゴ
ンガス、水素ガスなど公知の種々のものを利用できる。
Furthermore, various known carrier gases such as helium gas, argon gas, and hydrogen gas can be used as the carrier gas.

原料ガスには、この他にも塩素ガス等の希釈ガスを混合
することもできる。
In addition to this, a diluent gas such as chlorine gas can also be mixed with the raw material gas.

前記条件で炭素被膜を形成する場合、原料ガス中の原料
化合物濃度は1〜6容積%程度に設定されることが望ま
しい。
When forming a carbon film under the above conditions, the concentration of the raw material compound in the raw material gas is preferably set to about 1 to 6% by volume.

原料化合物の濃度が前記の範囲未満になると、得られる
炭素被膜のクラスタサイズのばらつきが大きくなる。さ
らに成膜速度が低下して不経済である。他方濃度が前記
の範囲を越えると、得られる炭素被膜のクラスタサイズ
が拡大する傾向が顕著となる。
When the concentration of the raw material compound is less than the above range, the variation in cluster size of the obtained carbon film becomes large. Furthermore, the film formation rate decreases, making it uneconomical. On the other hand, when the concentration exceeds the above range, the cluster size of the obtained carbon film tends to increase significantly.

この製造方法で炭素被膜を形成する場合、CVD反応炉
内の温度は600℃以上に設定されることか望ましい。
When forming a carbon film using this manufacturing method, it is desirable that the temperature in the CVD reactor be set at 600° C. or higher.

これよりも温度が低いと、原料化合物の熱分解が進行し
ない。またCVD反応炉に導入される際の光ファイバ裸
線の温度(予熱温度)は、1200〜1500℃の範囲
に設定されることが望ましい。予熱温度が1500℃を
越えると、石英で形成されている光ファイバ裸線の表面
が溶融状態になるので好ましくない。また予熱温度が1
200℃未満になると、CVD反応炉を通過する間に光
ファイバ裸線が原料化合物の熱分解が進行しない600
℃未満まで冷える恐れがあるので好ましくない。
If the temperature is lower than this, thermal decomposition of the raw material compound will not proceed. Further, the temperature (preheating temperature) of the bare optical fiber when introduced into the CVD reactor is desirably set in the range of 1200 to 1500°C. If the preheating temperature exceeds 1500° C., the surface of the bare optical fiber made of quartz will become molten, which is not preferable. Also, the preheating temperature is 1
When the temperature is lower than 200°C, thermal decomposition of the raw material compound in the bare optical fiber does not proceed while passing through the CVD reactor600
This is not preferable as it may cool down to below ℃.

[作用 ] この発明の製造方広ては、原料ガスが高速で流されるの
で、原料ラジカルか気相において反応して生じるラジカ
ル種が大きくなるのを防止できる。
[Function] In the manufacturing method of the present invention, since the raw material gas is flowed at high speed, it is possible to prevent radical species generated by reacting raw material radicals in the gas phase from increasing in size.

この結果、光ファイバ裸線上に、クラスタサイズが小く
かつサイズのばらつきも小さい炭素被膜を成膜できる。
As a result, a carbon film having a small cluster size and small size variations can be formed on the bare optical fiber.

クラスタサイズの小さい炭素被膜は、水分や水素ガスの
透過防止性能に優杷ているので、光ファイバの耐水素特
性を向上できる。そのうえクラスタサイズが小さくしか
も安定している炭素被膜が光ファイバ裸線上に成膜され
ると、光ファイバの機械的強度も改善される。
A carbon film with a small cluster size has excellent performance in preventing the permeation of moisture and hydrogen gas, so it can improve the hydrogen resistance properties of the optical fiber. Moreover, when a carbon coating with a small cluster size and stability is deposited on a bare optical fiber, the mechanical strength of the optical fiber is also improved.

〔実施例〕〔Example〕

(実施例1) 第1図は、この発明の光ファイバの製造方法に好適に用
いられる光ファイバの製造装置の一例を示したものであ
る。第1図中、符号1は光ファイバ裸線である。光ファ
イバ裸線lは光ファイバ母材(図示せず)を先ファイバ
紡糸炉2内で加熱紡糸したもので、紡糸さ乙た光ファイ
バ裸線lは、冷却用ヘリウムが流通する冷却−管12を
経てCVD反応炉3内へ導かれるようになっている。こ
のCVD反応炉3は、その内部にてCVD反応を進行さ
せ光ファイバ裸線1表面に炭素被膜を形成するもので、
反応管4と発熱体5とで概略構成さt。
(Example 1) FIG. 1 shows an example of an optical fiber manufacturing apparatus suitably used in the optical fiber manufacturing method of the present invention. In FIG. 1, reference numeral 1 indicates a bare optical fiber. The bare optical fiber 1 is obtained by heating and spinning an optical fiber base material (not shown) in a fiber spinning furnace 2, and the bare optical fiber 1 after spinning is passed through a cooling tube 12 through which helium for cooling flows. It is designed to be guided into the CVD reactor 3 through the. This CVD reactor 3 allows a CVD reaction to proceed inside it and forms a carbon film on the surface of the bare optical fiber 1.
It is roughly composed of a reaction tube 4 and a heating element 5.

ている。反応管4は、内径50■、長さ900R11の
ほぼ円筒状のものである。この反応管4の上部には、原
料ガスを供給するための供給管6が設けられており、下
部には未反応ガス等を排気する排気管7か設けられてい
る。発熱体5には、赤外線を放射する発熱抵抗体が用い
られている。CVD反応炉3の反応管4の下端には、反
応炉3内の気密を保つガスシール機構8が連設されてい
る。このCVD反応炉3の下方には、樹脂コート用ダイ
スボッ)・9と硬化装置10とが連続して設けられてお
り、上記CVD反応炉3内で形成された炭素被膜上に保
護被膜層を形成できるようになっている。
ing. The reaction tube 4 has a substantially cylindrical shape with an inner diameter of 50 cm and a length of 900 R11. A supply pipe 6 for supplying raw material gas is provided at the upper part of the reaction tube 4, and an exhaust pipe 7 for exhausting unreacted gas and the like is provided at the lower part. The heating element 5 uses a heating resistor that emits infrared rays. A gas seal mechanism 8 is connected to the lower end of the reaction tube 4 of the CVD reactor 3 to keep the inside of the reactor 3 airtight. Below this CVD reactor 3, a resin coating die box 9 and a curing device 10 are successively provided, and a protective film layer is formed on the carbon film formed in the CVD reactor 3. It is now possible to do so.

この光ファイバ製造装置を用いて次のように光ファイバ
を製造した。
Using this optical fiber manufacturing apparatus, an optical fiber was manufactured as follows.

まず光ファイバ紡糸炉2に、Ge○、がトープ材として
含浸されたコア部を有する外径30mtttの単一モー
ドファイバ母材を設置した。この光ファイバ母材を20
00°Cに加熱し15m /分の紡糸速度で外径125
μmの単一モードファイバニ紡糸した。そしてこの紡糸
されたファイバ裸線lを、冷却rrJ12で50℃に冷
却した後CVD反応炉3に導入して炭素被膜を形成した
First, in the optical fiber spinning furnace 2, a single mode fiber preform having an outer diameter of 30 mttt and having a core impregnated with Ge◯ as a taupe material was installed. 20 pieces of this optical fiber base material
External diameter 125 with heating to 00°C and spinning speed of 15 m/min.
A single mode fiber of μm was spun. Then, the spun bare fiber 1 was cooled to 50° C. by cooling rrJ12, and then introduced into the CVD reactor 3 to form a carbon film.

成膜条件は以下の通りである。The film forming conditions are as follows.

原料ガスには、ベンゼン化合物中にキャリアガスとして
のヘリウムガスを導入することによって発生させたベン
ゼン/ヘリウム混合ガスを用いた。
A benzene/helium mixed gas generated by introducing helium gas as a carrier gas into a benzene compound was used as the raw material gas.

上記反応炉3を通過し炭素被膜で被覆された光ファイバ
裸線lを、ウレタンアクリレート樹脂液(ヤング率70
 kg/ xyyt”、伸び60%)か封入された樹脂
コート用ダイスボット9に挿通し、ついでUVランプを
備えた硬化装置IOにより塗布された樹脂を硬化させて
保護被覆層とし、外径250μmの光ファイバとした。
The bare optical fiber l passed through the reactor 3 and coated with a carbon film was heated with a urethane acrylate resin solution (Young's modulus: 70
kg/ Optical fiber was used.

(他の実施例および比較例) 原料ガスの流速を変化させて光ファイバを作成した。他
の条件は実施例1と同様である。各光ファイバを製作し
た際の原料ガスの流速は、第1表に示す。
(Other Examples and Comparative Examples) Optical fibers were created by changing the flow rate of the raw material gas. Other conditions are the same as in Example 1. Table 1 shows the flow rate of the raw material gas when manufacturing each optical fiber.

(試験1) 上述の如き条件で製造されγ二光ファイバをそれぞれL
kxとり、波長1.24μmにおける伝送損失を測定し
た。この後、これらを直径150mmに巻いて束状とし
、温度80℃、水素分圧1 atmの水素評価用加圧容
器の中に48時間放置した。この後、再度波長1.24
μmにおける伝送損失を測定して、水素による吸収損失
の増加を調べた。
(Test 1) Two γ optical fibers manufactured under the above conditions were
kx and measured the transmission loss at a wavelength of 1.24 μm. Thereafter, these were wound into a bundle with a diameter of 150 mm, and left in a pressurized container for hydrogen evaluation at a temperature of 80° C. and a hydrogen partial pressure of 1 atm for 48 hours. After this, the wavelength is 1.24 again.
The transmission loss in μm was measured to investigate the increase in absorption loss due to hydrogen.

結果を第1表に示す。The results are shown in Table 1.

(試験2) 製造した各光ファイバの引っ張り強度を測定した。引っ
張り試験の条件は、試験本数25本、ケージ長3m、歪
速度10%7分、温度23℃、相対湿度50%とし、破
断確率と引っ張り強度のワイブルプロットを行い、50
%破断確率の引っ張り強度で評価した。この結果を第1
表に併せて示す。
(Test 2) The tensile strength of each manufactured optical fiber was measured. The conditions for the tensile test were 25 test pieces, a cage length of 3 m, a strain rate of 10% for 7 minutes, a temperature of 23°C, and a relative humidity of 50%, and a Weibull plot of the probability of breakage and tensile strength was performed.
The tensile strength was evaluated as a percentage of breakage probability. This result is the first
It is also shown in the table.

(試験3) 製造された光ファイバの炭素被膜を走査型電子顕微鏡で
岐察してクラスタサイズを測定した。結果を第1表に記
す。
(Test 3) The carbon coating of the manufactured optical fiber was examined using a scanning electron microscope to measure the cluster size. The results are shown in Table 1.

以下余白 第 ■ 表 第1表の結果から、原料ガスの流速を40m/分未満に
設定すると(比較例1,2)、形成される炭素被膜のク
ラスタサイズが大きくなり、得られる光ファイバは耐水
素特性に劣るものとなることが判明した。
From the results in Table 1 below, it can be seen that when the flow rate of the raw material gas is set to less than 40 m/min (Comparative Examples 1 and 2), the cluster size of the carbon film formed becomes large, and the resulting optical fiber becomes resistant. It was found that the hydrogen properties were inferior.

また原料ガスを80m/分を越える流速で流すと(比較
例3,4)、炭素被膜の成膜速度が極めて遅くなり、通
常の紡糸速度の範囲では必要な膜厚の炭素被膜を形成で
きないことが判明した これに対して原料ガスの流速を40〜80m/分の範囲
で設定すると(実施例1〜3)、クラスタサイズが小さ
くしかもサイズが安定した炭素被膜を形成できた。そし
て得られる光ファイバは耐水素特性および引っ張り特性
が共に良好なものとなることが判明した。
Furthermore, when the raw material gas is flowed at a flow rate exceeding 80 m/min (Comparative Examples 3 and 4), the carbon film formation rate becomes extremely slow, and a carbon film of the required thickness cannot be formed within the normal spinning speed range. On the other hand, when the flow rate of the raw material gas was set in the range of 40 to 80 m/min (Examples 1 to 3), a carbon film with a small cluster size and a stable size could be formed. The resulting optical fiber was found to have good hydrogen resistance and tensile properties.

〔発明の効果〕〔Effect of the invention〕

以上説明したようにこの発明の光ファイバの製造方法で
は、原料ガスの流速を40〜80m/分に設定したので
、原料ラジカルが気相で反応して生じるラジカル種が大
きくなるのを阻止できる。
As explained above, in the optical fiber manufacturing method of the present invention, since the flow rate of the raw material gas is set to 40 to 80 m/min, it is possible to prevent the radical species generated by the reaction of the raw material radicals in the gas phase from increasing.

この結果、クラスタサイズか小さく、水分や水素ガス透
過防止性能に優れ、しかも機械的強度の点でも優れた炭
素被膜を光ファイバ裸線上に形成できる。よってこの発
明の光ファイバの製造方法によれば、より優れた耐水素
特性および機械的強度を有する光ファイバを製造できる
As a result, a carbon coating having a small cluster size, excellent moisture and hydrogen gas permeation prevention performance, and excellent mechanical strength can be formed on a bare optical fiber. Therefore, according to the optical fiber manufacturing method of the present invention, an optical fiber having better hydrogen resistance and mechanical strength can be manufactured.

【図面の簡単な説明】[Brief explanation of drawings]

第り図は、実施例で用いた光ファイバ製造装置を示す概
略構成図である。 第1図
FIG. 2 is a schematic configuration diagram showing an optical fiber manufacturing apparatus used in Examples. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 紡糸された光ファイバ裸線上に熱化学気相成長法により
炭素被膜を形成するに際し、反応管中の原料ガス流速を
40m/分〜80m/分に設定したことを特徴とする光
ファイバの製造方法。
A method for producing an optical fiber, characterized in that when forming a carbon film on a spun bare optical fiber by thermochemical vapor deposition, the flow rate of the raw material gas in the reaction tube is set at 40 m/min to 80 m/min. .
JP2068620A 1990-03-19 1990-03-19 Optical fiber manufacturing method Expired - Fee Related JP2595364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2068620A JP2595364B2 (en) 1990-03-19 1990-03-19 Optical fiber manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2068620A JP2595364B2 (en) 1990-03-19 1990-03-19 Optical fiber manufacturing method

Publications (2)

Publication Number Publication Date
JPH03271141A true JPH03271141A (en) 1991-12-03
JP2595364B2 JP2595364B2 (en) 1997-04-02

Family

ID=13378985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2068620A Expired - Fee Related JP2595364B2 (en) 1990-03-19 1990-03-19 Optical fiber manufacturing method

Country Status (1)

Country Link
JP (1) JP2595364B2 (en)

Also Published As

Publication number Publication date
JP2595364B2 (en) 1997-04-02

Similar Documents

Publication Publication Date Title
JP2975642B2 (en) Hermetic coated fiber and manufacturing method thereof
US5235666A (en) Production of a hermetically coated optical fiber
JPH03271141A (en) Production of optical fiber
JP3039948B2 (en) Optical fiber manufacturing method
JP2955787B2 (en) Manufacturing method of silica glass optical fiber
JP2798790B2 (en) Optical fiber manufacturing method
JP2644018B2 (en) Optical fiber manufacturing method
JP2683070B2 (en) Optical fiber manufacturing method
JPH02289450A (en) Optical fiber
JP3039949B2 (en) Optical fiber manufacturing method
JP3039961B2 (en) Optical fiber manufacturing method
JP2710402B2 (en) Optical fiber
JP2796167B2 (en) Optical fiber manufacturing equipment
JPH04119944A (en) Method and device for producing optical fiber
JPH02208246A (en) Production of optical fiber
JPH02160642A (en) Production of optical fiber
JPH02263741A (en) Production of carbon-coated optical fiber
JPH02160643A (en) Production of optical fiber
JPH10167770A (en) Production of carbon-coated optical core fiber
JP2683147B2 (en) Optical fiber manufacturing method
JPH03271139A (en) Producing apparatus of optical fiber
JPH02184546A (en) Production apparatus of optical fiber
JPH02149450A (en) Production of optical fiber
JPH0312345A (en) Production of hermetically-coated optical fiber
JPH0235404A (en) Optical fiber

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees