JPH10167770A - Production of carbon-coated optical core fiber - Google Patents

Production of carbon-coated optical core fiber

Info

Publication number
JPH10167770A
JPH10167770A JP8321498A JP32149896A JPH10167770A JP H10167770 A JPH10167770 A JP H10167770A JP 8321498 A JP8321498 A JP 8321498A JP 32149896 A JP32149896 A JP 32149896A JP H10167770 A JPH10167770 A JP H10167770A
Authority
JP
Japan
Prior art keywords
optical fiber
carbon
coated optical
coated
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8321498A
Other languages
Japanese (ja)
Inventor
Kyoichi Ito
恭一 伊藤
Kunio Ogura
邦男 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP8321498A priority Critical patent/JPH10167770A/en
Publication of JPH10167770A publication Critical patent/JPH10167770A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/12General methods of coating; Devices therefor
    • C03C25/22Deposition from the vapour phase
    • C03C25/223Deposition from the vapour phase by chemical vapour deposition or pyrolysis
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/104Coating to obtain optical fibres
    • C03C25/106Single coatings
    • C03C25/1061Inorganic coatings
    • C03C25/1062Carbon

Abstract

PROBLEM TO BE SOLVED: To provide a production process for carbon-coated optical core fiber that can reduce the increase of optical loss by solving the structural defects causing the loss increase in the core line or the glass peripheral to the core line. SOLUTION: In this production process for carbon-coated optical fiber core line 13, the starting gases are introduced into the reaction furnace 5 and allowed to react with each other, while an optical fiber 4 is passed through the reaction furnace 5 to synthesize a carbon layer on the surface of the optical fiber 4. Then, the optical fiber is coated with a resin on its outer periphery to give objective carbon-coated optical fiber core line 13. In this case, immediately after the carbon layer is synthesize on the surface of the optical fiber 4, the optical fiber 8 is exposed to the deuterium atmospheres 9 and 10 for a prescribed time from >=600 deg.C down to <=600 deg.C, then the fiber is coated with a resin.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、線引き直後の光フ
ァイバにカーボン膜を合成してカーボンコート光ファイ
バ心線を製造する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a carbon coated optical fiber by synthesizing a carbon film on an optical fiber immediately after drawing.

【0002】[0002]

【従来の技術】海底光ケーブルのように長距離用光ケー
ブルにおいては1km以上の長さの光ファイバを使用す
ることがある。長い光ファイバを使用するときの技術上
の問題は、光ファイバの機械的強度が不足していること
である。現在、海底光ケーブルのような長距離用光ケー
ブルに用いられる光ファイバは200000p.s.i.以上
の機械的強度が要求されているが、通常の光ファイバの
抗張力は50000乃至80000p.s.i.の範囲にあ
る。通常の光ファイバも理論的には線引き直後の機械的
強度は100万p.s.i.のオーダがあると言われているの
であるが、実際には光ファイバの線引きの間等に受ける
機械的摩擦及び周囲の雰囲気中の水蒸気や汚染物質、特
に水素の化学的な作用によって光ファイバ表面にサブミ
クロンオーダの微細な応力腐食による傷が発生して、強
度が低下すると考えられている。
2. Description of the Related Art In a long-distance optical cable such as a submarine optical cable, an optical fiber having a length of 1 km or more may be used. A technical problem when using long optical fibers is the lack of mechanical strength of the optical fibers. At present, an optical fiber used for a long-distance optical cable such as a submarine optical cable is required to have a mechanical strength of 200,000 psi or more, but the tensile strength of a normal optical fiber is in a range of 50,000 to 80,000 psi. It is said that the mechanical strength of a normal optical fiber immediately after drawing is on the order of 1 million psi, but in actuality, the mechanical friction and the surrounding It is considered that the chemical action of water vapor and contaminants, particularly hydrogen, in the atmosphere causes scratches on the surface of the optical fiber due to microscopic stress corrosion on the order of submicron, thereby lowering the strength.

【0003】この対策として、線引き直後の光ファイバ
にハーメチックコートを施す方法が提案されている。ハ
ーメチックコート光ファイバの製造方法としては、線引
直後の光ファイバ表面に熱CVD法を用いて200〜1
000Åの無機材料層を合成することが一般的に行われ
ている。このような方法で製造される光ファイバとし
て、表面に炭素及び炭素化合物膜からなる無機材料層
(以下、単にカーボン膜という)を有するものがよく知
られている。カーボン膜はH2 の侵入をほぼ完全に防ぐ
ため、カーボンコート光ファイバの耐水素特性は従来の
光ファイバに比べて著しく改善されている。同時に、前
記カーボン膜はH2 Oの侵入も防ぐので、カーボンコー
ト光ファイバには石英ガラスに見られるH2 Oに起因す
る応力腐食が発生せず、当然疲労特性も著しく改善され
る。
As a countermeasure, a method of applying a hermetic coat to an optical fiber immediately after drawing has been proposed. As a method of manufacturing a hermetic-coated optical fiber, the surface of the optical fiber immediately after drawing is heated to 200 to 1 using a thermal CVD method.
It is common practice to synthesize an inorganic material layer of 000 °. As an optical fiber manufactured by such a method, a fiber having an inorganic material layer (hereinafter, simply referred to as a carbon film) made of carbon and a carbon compound film on its surface is well known. Since the carbon film almost completely prevents H 2 penetration, the hydrogen resistance of the carbon coated optical fiber is significantly improved as compared with the conventional optical fiber. At the same time, since the carbon film also prevents H 2 O from entering, stress corrosion due to H 2 O found in quartz glass does not occur in the carbon-coated optical fiber, and fatigue characteristics are naturally significantly improved.

【0004】[0004]

【発明が解決しようとする課題】以上説明したように光
ファイバの表面にカーボン膜を形成することにより機械
的強度が向上したが、次のような問題があることが判明
した。従来のカーボン膜の合成方法は、線引炉から引き
出された光ファイバの余熱を利用して、熱CVD法で炭
化水素ガスからカーボンを成膜している。このため、通
常の光ファイバの線引に比較してプリフォームをより高
温に加熱する必要がある。加えてカーボン成膜時に反応
熱により再加熱されることもあって、光ファイバには熱
により−Si−O−Si−の結合が切れた状態、いわゆ
るカラーセンターと呼ばれる構造欠陥が生じ易い。この
構造欠陥に起因するロス増の吸収ピークは620nm 付近に
あるものの、通信に使用する1550nmにもそのピークが裾
をひくため、低損失なカーボンコート光ファイバを得る
ことが困難であった。
As described above, the mechanical strength was improved by forming the carbon film on the surface of the optical fiber, but the following problems were found. In a conventional method for synthesizing a carbon film, carbon is formed from a hydrocarbon gas by a thermal CVD method using the residual heat of an optical fiber drawn from a drawing furnace. For this reason, it is necessary to heat the preform to a higher temperature than in the case of drawing an ordinary optical fiber. In addition, the carbon fiber may be reheated by the reaction heat during the film formation, so that the optical fiber is liable to have a structure in which the bond of -Si-O-Si- is broken by heat, that is, a so-called color center. Although the absorption peak of the increase in loss due to this structural defect is near 620 nm, the peak also peaks at 1550 nm used for communication, making it difficult to obtain a low-loss carbon-coated optical fiber.

【0005】通常の光ファイバでは、線引終了後に一定
時間・常温で重水素(D2 )雰囲気に晒せば、線引工程
等で生じたガラスの構造欠陥を低減でき、伝送ロスを低
減させられることが報告されている。原理は以下の通り
である。D2 は石英光ファイバ内を容易に拡散するの
で、ロス増の原因となっているコアもしくはコア周辺の
ガラスの構造欠陥と結合し、短時間にSi- ODやSi
- Dを生成する。生成したSi- ODやSi- Dは、通
信に使用する1550nm帯には吸収を持たず、更に処理に使
用した未反応のD2 分子の吸収帯も1550nm付近にはな
い。その結果、構造欠陥を持つ光ファイバをD2 雰囲気
に晒せば、1550nm帯にロス増を生じさせるガラス中の構
造欠陥を低減することができる。
[0005] In a normal optical fiber, if it is exposed to a deuterium (D 2 ) atmosphere for a certain period of time at room temperature after the completion of drawing, it is possible to reduce the structural defects of glass generated in the drawing process and the like, and to reduce the transmission loss. It has been reported. The principle is as follows. Since D 2 easily diffuses in the quartz optical fiber, it combines with the structural defect of the core or the glass around the core, which causes an increase in the loss, and in a short time, the Si-OD or the Si
-Generate D. The resulting Si- OD and Si- D is the 1550nm band used for communication has no absorption, not in the vicinity of 1550nm even further absorption band of D 2 molecules of unreacted used for processing. As a result, if Sarase an optical fiber having a structural defect in D 2 atmosphere, it is possible to reduce the structural defects in the glass to cause loss increase to 1550nm band.

【0006】しかしながら、カーボンコート光ファイバ
心線でこの処理を行うと、当然のこととして光ファイバ
表面に形成されているカーボン膜ではD2 の拡散が極端
に遅いため、短時間かつ常温で被覆樹脂層の外側からD
2 をカーボン膜を通過させて光ファイバのコア部まで到
達させることは困難である。敢えてそれを行うには、D
2 の拡散速度を上げるために高温での処理が求められる
が、高温処理を行うと被覆樹脂が熱で痛むため、実際に
はそのような処理は不可能である。つまり、カーボンコ
ート光ファイバ心線では、通常の光ファイバのように線
引までに生じた構造欠陥を、D2 処理などの手法低減さ
せ、ロス増を生じさせないようにすることはできなかっ
た。
However, if this treatment is performed with a carbon-coated optical fiber core wire, the diffusion of D 2 is extremely slow in the carbon film formed on the surface of the optical fiber. D from outside of layer
It is difficult to pass 2 through the carbon film to reach the core of the optical fiber. To dare do that, D
The treatment at a high temperature is required to increase the diffusion speed of 2 , but such a treatment is not possible in practice because the high temperature treatment causes the coating resin to be damaged by heat. That is, in the carbon coated optical fiber, the structural defects caused by drawing like normal optical fibers, to methods reduce such D 2 treatment, it was not possible to avoid causing an increase in loss.

【0007】本発明は上記の課題を解決し、ロス増の原
因となっているコアもしくはコア周辺のガラスの構造欠
陥を解消してロス増を低減させるカーボンコート光ファ
イバ心線の製造法を目的とするものである。
An object of the present invention is to solve the above-mentioned problems and to provide a method of manufacturing a carbon-coated optical fiber which reduces the loss by eliminating structural defects of the core or the glass around the core causing the loss. It is assumed that.

【0008】[0008]

【課題を解決するための手段】本発明は上記の課題を解
決するために以下のような手段を有している。
The present invention has the following means to solve the above problems.

【0009】本発明のうち請求項1のカーボンコート光
ファイバ心線の製造法は、光ファイバを反応炉に通しつ
つ、前記反応炉内に供給する原料ガスを化学反応させて
前記光ファイバの表面にカーボン膜を合成し、その外周
に樹脂被覆を施して、カーボンコート光ファイバ心線を
製造するカーボンコート光ファイバ心線の製造法におい
て、前記カーボン膜を合成した直後の光ファイバを600
°C未満になるまで重水素雰囲気に晒して、その後に樹
脂被覆を施すことを特徴とする。
According to a first aspect of the present invention, there is provided a method of manufacturing a carbon coated optical fiber core wire, wherein a raw material gas supplied into the reaction furnace is chemically reacted while passing the optical fiber through the reaction furnace. In a method of manufacturing a carbon-coated optical fiber core for manufacturing a carbon-coated optical fiber core by manufacturing a carbon-coated optical fiber core by applying a resin coating to the outer periphery thereof, an optical fiber immediately after synthesizing the carbon film is 600.
It is characterized in that it is exposed to a deuterium atmosphere until the temperature becomes less than ° C, and thereafter, a resin coating is applied.

【0010】本発明のうち請求項2のカーボンコート光
ファイバ心線の製造法は、重水素雰囲気に晒す時間と温
度の関係が次の式 t>1.2 ×10-10 ・δ2 ・exp(90/RT) tは処理時間(秒)、δはカーボンの膜厚(nm)、Tは
処理温度(K)、Rは気体定数:8.31441 [Jmol
-1-1] を満足することを特徴とする。
In the method of manufacturing a carbon coated optical fiber according to the second aspect of the present invention, the relationship between the time of exposure to a deuterium atmosphere and the temperature is represented by the following equation: t> 1.2 × 10 −10 · δ 2 · exp (90 / RT) t is processing time (second), δ is carbon film thickness (nm), T is processing temperature (K), R is gas constant: 8.31441 [Jmol
-1 K -1 ].

【0011】本発明のカーボンコート光ファイバ心線の
製造法によれば、カーボン膜を合成した直後の光ファイ
バがカーボン膜合成直後の高温の状態から600 °C未満
になるまでD2 雰囲気に晒すので、効率よくロス低減の
効果が達成される。その理由を以下に説明する。D2
カーボン自体とは反応しないため、D2 雰囲気での高温
処理の目的は、カーボン膜中にD2 を飽和した状態にな
るように閉じ込めることにある。高温処理中にカーボン
膜を通過したD2 は、600 °C以上では石英ガラス中を
拡散して行く速度よりも石英ガラス中でOD基を生成す
る速度の方が速いため、進入した殆どのD2 がクラッド
外周部でトラップされてしまう。実質的に、高温のD2
雰囲気に晒している段階では、コアやコア周辺までD2
が到達することはない。従って光ファイバのロス低減は
進まない。
According to the method of manufacturing a carbon coated optical fiber of the present invention, the optical fiber immediately after the carbon film is synthesized is exposed to a D 2 atmosphere from a high temperature immediately after the synthesis of the carbon film until the temperature becomes lower than 600 ° C. Therefore, the effect of loss reduction is efficiently achieved. The reason will be described below. Since D 2 does not react with carbon itself, the purpose of the high-temperature treatment in the D 2 atmosphere is to confine D 2 in the carbon film so as to be in a saturated state. Most of the D 2 that has passed through the carbon film during the high-temperature treatment has a higher rate of generating OD groups in quartz glass than at 600 ° C. because of the rate of diffusion in quartz glass. 2 is trapped at the outer periphery of the clad. Substantially high temperature D 2
At the stage of exposure to the atmosphere, D 2
Never reach. Accordingly, the loss of the optical fiber cannot be reduced.

【0012】そこで、少なくともカーボン膜合成直後光
ファイバをその温度が600 °C未満となるまでD2 雰囲
気に保持して、光ファイバ表面近くのカーボン膜内にそ
の欠陥を埋めるに充分な量のD2 を閉じ込める必要があ
る。600 °C未満まで温度が下がるとカーボン膜内に閉
じ込められたD2 は光ファイバ中心に向かって拡散を始
め前記D2 の一部は途中でOD基とならず光ファイバの
コア部まで到達する。その結果、ロス増に大きく寄与す
るコアおよびコア周辺の構造欠陥を化学結合によって埋
めることができ、大幅なロスの低減が実現できる。も
し、未反応のD 2 がそのまま光ファイバ内に残存したと
しても、1550nmに吸収ピークを持たないため、通信に使
用する波長帯のロスへの影響は殆どない。
Therefore, at least the light immediately after the synthesis of the carbon film is used.
The fiber until the temperature is below 600 ° C.TwoAtmosphere
And place it in the carbon film near the surface of the optical fiber.
Enough D to fill the defectTwoNeed to confine
You. When the temperature drops to less than 600 ° C, it closes in the carbon film.
D trappedTwoBegins to diffuse toward the center of the optical fiber.
Said DTwoPart of the optical fiber
Reach the core. As a result, it greatly contributes to loss increase
Core and surrounding structural defects by chemical bonding
And a significant reduction in loss can be realized. Also
And unreacted D TwoRemains in the optical fiber
However, since it does not have an absorption peak at 1550 nm, it is used for communication.
There is almost no effect on the loss of the wavelength band used.

【0013】[0013]

【発明の実施の形態】以下に本発明を実施の形態により
詳細に説明する。図1は本発明のカーボンコート光ファ
イバ心線の製造に使用した装置の概略図である。コア部
にGeO2 がドーパントとして添加されたシングルモー
ド光ファイバ母材1をヒーター2を内包する線引炉3で
紡糸する。その線引き直後の光ファイバ4を線引炉3の
直下に設置された熱CVD反応炉5に導入する。この熱
CVD反応炉5内には原料ガス供給口6より原料ガスが
供給され、該原料ガスの熱分解により線引き直後の裸光
ファイバ4の表面にカーボン膜を形成してカーボンコー
ト光ファイバ8ができる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail with reference to embodiments. FIG. 1 is a schematic view of an apparatus used for producing a carbon coated optical fiber core according to the present invention. A single mode optical fiber preform 1 in which GeO 2 is added as a dopant to a core portion is spun in a drawing furnace 3 including a heater 2. The optical fiber 4 immediately after the drawing is introduced into a thermal CVD reactor 5 installed immediately below the drawing furnace 3. A raw material gas is supplied from a raw material gas supply port 6 into the thermal CVD reactor 5, and a carbon film is formed on the surface of the bare optical fiber 4 immediately after drawing by thermal decomposition of the raw material gas. it can.

【0014】その後、カーボンコート光ファイバ8を2
段に構成されたD2 処理炉9、10に導入してカーボン
コート光ファイバ8に生じた構造欠陥を化学結合によっ
て埋る。しかる後、その表面に液状の樹脂被覆を施すダ
イス部11に導き、さらに硬化装置12にて硬化させて
カーボンコート光ファイバ心線13とし、巻取機14に
巻き取られる。なお、本実施の形態では被覆樹脂として
紫外線硬化型樹脂を用いたので硬化装置12としては紫
外線照射ランプを有するものを用いた。図1において、
符号15は外径測定器、符号16、17は赤外線放射温
度計、符号9A、10Aは原料ガスである炭化水素ガス
の導入口、符号9B、10Bは排気ガス導出口である。
Thereafter, the carbon coated optical fiber 8 is
The structural defects generated in the carbon-coated optical fiber 8 by being introduced into the D 2 processing furnaces 9 and 10 arranged in stages are filled by chemical bonding. Thereafter, the surface is guided to a die section 11 for applying a liquid resin coating on the surface thereof, and further cured by a curing device 12 to form a carbon-coated optical fiber core 13, which is wound by a winder 14. In this embodiment, an ultraviolet curing resin is used as the coating resin, and therefore, a curing device having an ultraviolet irradiation lamp is used as the curing device 12. In FIG.
Reference numeral 15 denotes an outer diameter measuring instrument, reference numerals 16 and 17 denote infrared radiation thermometers, reference numerals 9A and 10A denote inlet ports for hydrocarbon gas as a raw material gas, and reference numerals 9B and 10B denote exhaust gas outlet ports.

【0015】(実施例)上記の装置の線引炉3で光ファ
イバ4を線速10m/秒で引出し、炭化水素ガスが充填
された熱CVD反応炉5に導入する。光ファイバ4に線
引の余熱がある間に炭化水素ガスと接触させ、光ファイ
バ4表面に熱分解反応でカーボン膜を形成する。カーボ
ンの膜厚が50nm程度になるよう炉内の炭化水素ガスの濃
度を調節する。熱CVD反応炉5を通過させてカーボン
膜が形成されたカーボンコート光ファイバ8を、2段に
構成されD2 雰囲気に保たれたD2 処理炉9、10に導
入する。ここで、カーボンコート光ファイバ8が所定の
温度でD2 処理炉9に入るように、線引炉3の下筒3A
とD2 処理炉9の距離を調整可能とした。また、上段の
2 処理炉9の長さが異なるものを数種類用意してカー
ボンコート光ファイバ8のD2 処理炉9内の滞在時間も
調整可能とした。さらに、上段のD2 処理炉9は外部に
ヒータ9Cを備え外部からも加熱することで、カーボン
コート光ファイバ8を所定の温度で一定時間処理するこ
とができるようにした。
(Embodiment) An optical fiber 4 is drawn at a drawing speed of 10 m / sec by a drawing furnace 3 of the above-mentioned apparatus, and introduced into a thermal CVD reactor 5 filled with a hydrocarbon gas. The optical fiber 4 is brought into contact with a hydrocarbon gas while there is residual heat for drawing, and a carbon film is formed on the surface of the optical fiber 4 by a thermal decomposition reaction. The concentration of hydrocarbon gas in the furnace is adjusted so that the film thickness of carbon becomes about 50 nm. The carbon coated optical fiber 8 carbon film by passing through a thermal CVD reaction furnace 5 is formed, it is configured in two stages to introduce the D 2 treatment furnace 9,10 kept at D 2 atmosphere. Here, as carbon coated optical fiber 8 enters the D 2 treatment furnace 9 at a predetermined temperature, below the drawing furnace 3 tube 3A
To have adjustable distance D 2 treatment furnace 9. Also, several types of the upper D 2 processing furnace 9 having different lengths were prepared, and the stay time of the carbon-coated optical fiber 8 in the D 2 processing furnace 9 was also adjustable. Further, the upper D 2 treatment furnace 9 is also heated from the outside with a heater 9C outside, which make it possible for a certain time processing the carbon coated optical fiber 8 at a predetermined temperature.

【0016】この装置では、D2 処理炉9に入る直前の
カーボンコート光ファイバ8の温度を赤外放射温度計1
6で測定し、これと同じ温度にD2 処理炉9のヒータ9
Cを保つように設定した。また、カーボンコート光ファ
イバ8が冷却しながら通過する下段のD2 処理炉10
は、飽和状態にあるD2 がカーボン膜から逃げてしまわ
ないよう、上段のD 2 処理炉9と同じD2 分圧(炉内常
圧で濃度20%、80%分はヘリウム希釈)に設定した。下
段のD2 処理炉10から出てきたカーボンコート光ファ
イバ8の表面の温度も、赤外放射温度計17で測定し
た。下段のD2 処理炉10も長さを変えて、引き出され
たカーボンコート光ファイバ8の温度が600 °C前後
で、数種類異なるように設定した。
In this device, DTwoImmediately before entering the processing furnace 9
Infrared radiation thermometer 1
6, measured at the same temperature as DTwoHeater 9 of processing furnace 9
C was set to be maintained. In addition, carbon coated optical fiber
The lower D through which the iva 8 passes while coolingTwoProcessing furnace 10
Is the saturated DTwoEscaped from the carbon film
D TwoD same as processing furnace 9TwoPartial pressure (normal in furnace)
The pressure was set to 20% and the helium dilution for 80%). under
Step DTwoCarbon coated optical fiber coming out of the processing furnace 10
The temperature of the surface of the iva 8 was also measured by the infrared radiation thermometer 17.
Was. Lower DTwoThe processing furnace 10 is also changed in length and pulled out.
The temperature of the carbon-coated optical fiber 8 is around 600 ° C
, So that it was set to be different in several types.

【0017】上記の装置で、図2に示す条件でカーボン
コート光ファイバ8を線引し、損失波長特性を測定し
た。同じ処理温度であるが、処理時間(上段のD2 処理
炉9の長さ)を変えて作成したカーボンコート光ファイ
バ8の1550nmの損失値を、図2にプロットして実線で示
した。処理時間が短いところでは、0.23dB/km以上であ
ったが、時間が長くなると安定して0.20dB/kmを示し
た。この結果から、図3に示すように損失が低減される
のに必要な処理時間をアレニウスプロットで示した。こ
れから求めた活性化エネルギーと、カーボン膜を通過す
る時間が膜厚の二乗に反比例する関係を用いることで、
以下の関係式が得られることがわかった。
With the above apparatus, the carbon-coated optical fiber 8 was drawn under the conditions shown in FIG. 2, and the loss wavelength characteristics were measured. The same treatment temperature, but the loss value of 1550nm processing time (upper D 2 treatment furnace 9 in length) carbon coated optical fiber 8 was prepared by changing the, indicated by the solid lines plotted in FIG. When the processing time was short, it was 0.23 dB / km or more, but when the processing time was long, it stably showed 0.20 dB / km. From these results, the processing time required to reduce the loss as shown in FIG. 3 was shown by an Arrhenius plot. By using the relationship between the activation energy obtained from this and the time required to pass through the carbon film, which is inversely proportional to the square of the film thickness,
It was found that the following relational expression was obtained.

【0018】 t>1.2 ×10-10 ・δ2 ・exp(90/RT) tは処理時間(秒)、δはカーボンの膜厚(nm)、Tは
処理温度(K)、Rは気体定数:8.31441 [Jmol
-1-1]である。逆に、上式に合うように上段のD2
理炉9の長さ、線引速度、処理温度を設定すると、カー
ボンコート光ファイバ8の伝送損失を大幅に低減でき
る。上記の実験は、下段のD2 処理炉10から出てきた
ときのカーボンコート光ファイバ8の温度を600 °C未
満とした場合(実測値で580 °C)の結果である。一
方、下段のD2 処理炉10を短くして、カーボンコート
光ファイバ8の表面温度が600 °C以上の高温(実測値
で650 °C、625 °C、600 °C)にある間に取り出し
た場合は、どの様なD2 処理を行っても、ロスは0.23dB
/km以上であった。
T> 1.2 × 10 -10 · δ 2 · exp (90 / RT) t is processing time (second), δ is carbon film thickness (nm), T is processing temperature (K), and R is gas constant : 8.31441 [Jmol
-1 K -1 ]. Conversely, if the length, drawing speed, and processing temperature of the upper D 2 processing furnace 9 are set to meet the above equation, the transmission loss of the carbon-coated optical fiber 8 can be greatly reduced. The above experiment is the result (580 ° C in actual measurement) carbon when the temperature of the coated optical fiber 8 is less than 600 ° C when emerging from the lower part of D 2 processing furnace 10. On the other hand, the lower D 2 processing furnace 10 is shortened and taken out while the surface temperature of the carbon coated optical fiber 8 is at a high temperature of 600 ° C. or higher (actually measured values of 650 ° C., 625 ° C., 600 ° C.). If was, be subjected to any kind of D 2 processing, loss 0.23dB
/ Km or more.

【0019】[0019]

【発明の効果】以上述べたように、本発明のカーボンコ
ート光ファイバ心線の製造法によれば、カーボン膜を合
成した後、光ファイバが600 °C未満になるまでD2
囲気に晒すので、効率よくロス低減の効果が達成され
る。すなわち、光ファイバの温度が600 °C未満となる
までD2 雰囲気に保持することによって、光ファイバ表
面近くのカーボン膜内に欠陥を埋めるに充分な量のD2
を閉じ込める。600 °C未満まで温度が下がるとカーボ
ン膜内に閉じ込められたD2 が光ファイバ中心に向かっ
て拡散を始める。そのD2 の一部は途中でOD基となら
ず光ファイバのコア部まで到達する。その結果、ロス増
に大きく寄与するコアおよびコア周辺の構造欠陥を化学
結合によって埋めることができ、大幅なロスの低減が実
現できる。また、未反応のD2 がそのまま光ファイバ内
に残存したとしても、1550nmに吸収ピークを持たないた
め、通信に使用する波長帯のロスへの影響は殆どない。
As described above, according to the method for manufacturing a carbon coated optical fiber core wire of the present invention, after synthesizing a carbon film, the optical fiber is exposed to a D 2 atmosphere until the temperature becomes lower than 600 ° C. Thus, the effect of efficiently reducing the loss is achieved. That is, by maintaining the D 2 atmosphere until the temperature of the optical fiber becomes less than 600 ° C., a sufficient amount of D 2 is filled in the carbon film near the surface of the optical fiber.
Confine. When the temperature drops below 600 ° C., D 2 confined in the carbon film starts to diffuse toward the center of the optical fiber. Part of the D 2 reaches to the core portion of the middle optical fiber does not become OD group. As a result, the core and the structural defects around the core, which greatly contribute to the increase in the loss, can be filled by the chemical bonding, and a significant reduction in the loss can be realized. Further, even if unreacted D 2 remains in the optical fiber as it is, it does not have an absorption peak at 1550 nm, and thus has little effect on the loss of the wavelength band used for communication.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のカーボンコート光ファイバ心線の製造
法の一実施の形態を示す概略説明図である。
FIG. 1 is a schematic explanatory view showing one embodiment of a method for manufacturing a carbon coated optical fiber core wire of the present invention.

【図2】図1のカーボンコート光ファイバ心線の製造法
で行った実験結果を示す説明図である。
FIG. 2 is an explanatory view showing the results of an experiment performed by the method for manufacturing a carbon-coated optical fiber core wire of FIG.

【図3】本発明のカーボンコート光ファイバ心線の製造
法における重水素処理時間と重水素処理温度の関係を示
す説明図である。
FIG. 3 is an explanatory diagram showing a relationship between a deuterium treatment time and a deuterium treatment temperature in the method for producing a carbon-coated optical fiber core wire according to the present invention.

【符号の説明】[Explanation of symbols]

1 光ファイバ母材 3 線引炉 4 光ファイバ 5 熱CVD反応炉 6 原料ガス供給口 8 カーボンコート光ファイバ 9 D2 処理炉 10 D2 処理炉 11 ダイス部 12 硬化装置 13 カーボンコート光ファイバ心線 14 巻取機1 optical fiber preform 3-wire drawing furnace 4 optical fiber 5 thermal CVD reactor 6 the material gas feed port 8 carbon coated optical fiber 9 D 2 processing furnace 10 D 2 treatment furnace 11 die section 12 curing device 13 carbon coated optical fiber 14 Winding machine

【手続補正書】[Procedure amendment]

【提出日】平成9年11月21日[Submission date] November 21, 1997

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0002[Correction target item name] 0002

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0002】[0002]

【従来の技術】海底光ケーブルのように長距離用光ケー
ブルにおいては80km以上の長さの光ファイバを使用
することがある。長い光ファイバを使用するときの技術
上の問題は、光ファイバの機械的強度が不足しているこ
とである。現在、海底光ケーブルのような長距離用光ケ
ーブルに用いられる光ファイバは200000p.s.
i.以上の機械的強度が要求されているが、通常の光フ
ァイバの抗張力は50000乃至80000p.s.
i.の範囲にある。通常の光ファイバも理論的には線引
き直後の機械的強度は100万p.s.i.のオーダが
あると言われているのであるが、実際には光ファイバの
線引きの間等に受ける機械的摩擦及び周囲の雰囲気中の
水蒸気や汚染物質、特に水素の化学的な作用によって光
ファイバ表面にサブミクロンオーダの微細な応力腐食に
よる傷が発生して、強度が低下すると考えられている。
2. Description of the Related Art In a long-distance optical cable such as a submarine optical cable, an optical fiber having a length of 80 km or more may be used. A technical problem when using long optical fibers is the lack of mechanical strength of the optical fibers. Currently, an optical fiber used for a long-distance optical cable such as a submarine optical cable is 200,000 p. s.
i. Although the above mechanical strength is required, the tensile strength of a normal optical fiber is 50,000 to 80,000 p. s.
i. In the range. In a normal optical fiber, the mechanical strength immediately after drawing is 1,000,000 p. s. i. Although it is said that there is an order of magnitude, the surface of the optical fiber is actually affected by mechanical friction applied during drawing of the optical fiber and the chemical action of water vapor and contaminants, especially hydrogen, in the surrounding atmosphere. It is thought that the surface is damaged by minute stress corrosion on the order of submicron and the strength is reduced.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 光ファイバを反応炉に通しつつ、前記反
応炉内に供給する原料ガスを化学反応させて前記光ファ
イバの表面にカーボン膜を合成し、その外周に樹脂被覆
を施して、カーボンコート光ファイバ心線を製造するカ
ーボンコート光ファイバ心線の製造法において、前記カ
ーボン膜を合成した直後の光ファイバを600 °C未満に
なるまで重水素雰囲気に晒して、その後に樹脂被覆を施
すことを特徴とするカーボンコート光ファイバ心線の製
造法。
1. While passing an optical fiber through a reaction furnace, a raw material gas supplied into the reaction furnace is chemically reacted to synthesize a carbon film on the surface of the optical fiber. In a method of manufacturing a coated optical fiber core fiber for manufacturing a coated optical fiber core fiber, the optical fiber immediately after synthesizing the carbon film is exposed to a deuterium atmosphere until the temperature becomes less than 600 ° C., and then a resin coating is performed. A method for producing a carbon coated optical fiber core, comprising:
【請求項2】 重水素雰囲気に晒す時間と温度の関係が
次の式 t>1.2 ×10-10 ・δ2 ・exp(90/RT) tは処理時間(秒)、δはカーボンの膜厚(nm)、Tは
処理温度(K)、Rは気体定数:8.31441 [Jmol
-1-1] を満足することを特徴とする請求項1に記載のカーボン
コート光ファイバ心線の製造法。
2. The relationship between the time of exposure to a deuterium atmosphere and the temperature is represented by the following equation: t> 1.2 × 10 -10 · δ 2 · exp (90 / RT) where t is the processing time (second) and δ is the film thickness of carbon. (Nm), T is the processing temperature (K), R is the gas constant: 8.31441 [Jmol
-1 K -1 ]. The method for producing a carbon-coated optical fiber core according to claim 1, wherein
JP8321498A 1996-12-02 1996-12-02 Production of carbon-coated optical core fiber Pending JPH10167770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8321498A JPH10167770A (en) 1996-12-02 1996-12-02 Production of carbon-coated optical core fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8321498A JPH10167770A (en) 1996-12-02 1996-12-02 Production of carbon-coated optical core fiber

Publications (1)

Publication Number Publication Date
JPH10167770A true JPH10167770A (en) 1998-06-23

Family

ID=18133239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8321498A Pending JPH10167770A (en) 1996-12-02 1996-12-02 Production of carbon-coated optical core fiber

Country Status (1)

Country Link
JP (1) JPH10167770A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001311848A (en) * 2000-05-01 2001-11-09 Sumitomo Electric Ind Ltd Optical fiber and optical transmission system
WO2002006868A3 (en) * 2000-07-14 2003-05-22 Tycom Us Inc Fiber optic cable with minimized long term signal attenuation and method of production thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001311848A (en) * 2000-05-01 2001-11-09 Sumitomo Electric Ind Ltd Optical fiber and optical transmission system
WO2002006868A3 (en) * 2000-07-14 2003-05-22 Tycom Us Inc Fiber optic cable with minimized long term signal attenuation and method of production thereof
US6577795B2 (en) 2000-07-14 2003-06-10 Tyco Telecommunications (Us) Inc. Device and method for improved long term signal attenuation performance of fiber optic cable and apparatus interfaces

Similar Documents

Publication Publication Date Title
US5059229A (en) Method for producing optical fiber in a hydrogen atmosphere to prevent attenuation
JP2002518288A (en) Optical fiber preform having OH blocking layer and method of manufacturing the same
JP2975642B2 (en) Hermetic coated fiber and manufacturing method thereof
CN114415287B (en) Hydrogen-resistant carbon-coated fiber grating string and preparation method and preparation device thereof
JPH10167770A (en) Production of carbon-coated optical core fiber
JP4089250B2 (en) Optical fiber processing method
US20040099015A1 (en) Method of fabricating an optical fiber
US20030031441A1 (en) Optical fibre and method of manufacturing an optical fibre
JP2798790B2 (en) Optical fiber manufacturing method
JP3039949B2 (en) Optical fiber manufacturing method
JP2734586B2 (en) Optical fiber strand
JPH04224144A (en) Manufacture of hermetically-coated fiber and its device thereof
JPS63129035A (en) Production of optical fiber
JPH11189438A (en) Production of radiation-resistant optical fiber
JP2727702B2 (en) Manufacturing method of carbon coated optical fiber
JP3039948B2 (en) Optical fiber manufacturing method
JPH02263741A (en) Production of carbon-coated optical fiber
JPH0717400B2 (en) Optical fiber manufacturing method
JP2683070B2 (en) Optical fiber manufacturing method
JPH07165444A (en) Method for producing carbon-coated optical fiber
JPH0437623A (en) Production of preform for optical fiber
JP2595364B2 (en) Optical fiber manufacturing method
JPH02275736A (en) Production of optical fiber of hermetic coating
JPH02289450A (en) Optical fiber
WO2004002912A1 (en) Process for producing glass fibrous material and apparatus therefor

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040330

A61 First payment of annual fees (during grant procedure)

Effective date: 20040412

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20080514

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20080514

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20090514

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20110514

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20110514

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20120514

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20120514

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20130514

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20130514