JPH03267113A - Method and device for treating gas by using high-frequency creeping discharge - Google Patents

Method and device for treating gas by using high-frequency creeping discharge

Info

Publication number
JPH03267113A
JPH03267113A JP2067769A JP6776990A JPH03267113A JP H03267113 A JPH03267113 A JP H03267113A JP 2067769 A JP2067769 A JP 2067769A JP 6776990 A JP6776990 A JP 6776990A JP H03267113 A JPH03267113 A JP H03267113A
Authority
JP
Japan
Prior art keywords
gas
gas treatment
creeping discharge
dielectric layer
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2067769A
Other languages
Japanese (ja)
Inventor
Senichi Masuda
増田 閃一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2067769A priority Critical patent/JPH03267113A/en
Publication of JPH03267113A publication Critical patent/JPH03267113A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To effectively and inexpensively make the gases to be treated pollution-free by introducing the gases to be treated into a gas treating section from a gas inlet so as to pass the gases near high-frequency creeping discharge generating surfaces and treating the above-mentioned gases by a plasma chemical effect. CONSTITUTION:The waste combustion gases contg. SO2 and NO are passed from a boiler through an upstream side duct 4 and after gaseous ammonia is injected from an injecting section 7 into these gases, the gases are passed through a screen 8 and are introduced at a uniform gas flow rate distribution into the inside 27 of the gas treating section 1 from a gas inlet 2 thereof. The SO2 is oxidized to SO3 and the NO to NO2 by the effect of the ample radicals, chemically active species, etc., formed by the plasma chemical effect during the flow through spacings 28, 29 of the planar high-frequency creeping discharge element groups 9, 10. Further, both thereof react with the ammonia and form the solid aerosol particles of the double salt of ammonium sulfate and nitrate. These particles are removed from the gaseous flow by an electrostatic precipitator 24 through a gas outlet 3.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は空気あるいは燃焼ガス等は含まれるNOx、 
 SOx、)いし分解除去し、安全かつ清浄なガスとし
て外部仁排出するための、有効かつ安価なガス処理方法
およびガス処理装置番二間するもので、特にガス量が中
低塵ないし比較的少ない場合に適したものである。
[Detailed Description of the Invention] [Industrial Application Fields] The present invention is applicable to air or combustion gas containing NOx,
This is an effective and inexpensive gas processing method and gas processing equipment for decomposing and removing SOx, etc., and discharging it externally as a safe and clean gas, especially when the amount of gas is medium to low dust or relatively small. suitable for the case.

[従来の技術] 従来この種の方法ないし装置としては、触媒を用いて対
象ガス成分を接触反応(こより分解するもの、固体ない
し液体吸収剤を用いて対象ガス成分を吸収・除去するも
の、活性炭やモレキュラーシーブ等の吸着剤で対象ガス
成分を吸着・除去するもの、バーナー等の燃焼器で対象
ガス成分を熱分解するもの5等々が用いられてきた。し
かし、上記従来のガス処理方式は、いずれも設備費や運
転費か高く、ガス量が中低度ないし比較的少ない場合に
は経済性が極度に悪(なって適用が困難であったーまた
対象ガス成分の種類によってはこれらの従来技術では効
果が低く、対象ガスの充分な無害化ないし浄化か不可能
であった7 [本発明が解決しようとする課題] 本発明の目的は、従来のガス処理技術仁おける上記の問
題を克服し、殆どあらゆる対象ガス成分を有効がっ安価
に処理して無害化ないし浄化し、かつガス量が中低度な
いし比較的少ない場合でも充分な経済性を有する様な、
新規のガス処理方法およびガス処理装置を提供するにあ
る[問題を解決するための手段] 本発明は上記の目的を、極めて小型かつ安価でありなが
ら強力なプラズマ化学作用を有する高周波沿面放電を利
用し、処理すべき対象ガス成分を含むガスをその放電域
の近傍に通過せしめて、該プラズマ化学作用で豊富に生
成せるラジカル。
[Prior Art] Conventionally, methods and devices of this type include those that use catalysts to decompose target gas components through a catalytic reaction, methods that absorb and remove target gas components using solid or liquid absorbents, and methods that use activated carbon. Methods that adsorb and remove the target gas components with adsorbents such as or molecular sieves, and methods that thermally decompose the target gas components with a combustor such as a burner5 have been used.However, the conventional gas treatment methods described above are Both have high equipment and operating costs, and are extremely uneconomical when the amount of gas is medium to low or relatively small (and therefore difficult to apply). [Problems to be solved by the present invention] The purpose of the present invention is to overcome the above-mentioned problems in conventional gas treatment techniques. However, it is possible to effectively and inexpensively process almost all target gas components to render them harmless or purify them, and to have sufficient economic efficiency even when the amount of gas is medium to low or relatively small.
To provide a novel gas treatment method and gas treatment device [Means for solving the problem] The present invention achieves the above object by utilizing a high frequency creeping discharge that is extremely small and inexpensive but has a powerful plasma chemical action. A gas containing the target gas component to be treated is passed near the discharge region, and radicals are generated in abundance by the plasma chemistry.

各種化学的活性種、03等を該対象ガス成分に反応せし
め。
Various chemically active species, such as 03, are reacted with the target gas component.

これによって殆どす八での種類の対象ガス成分を完全に
無害化ないし浄化する事によって達成する。
This is achieved by completely rendering harmless or purifying most of the target gas components.

すなわち本発明による。高周波沿面放電を用いたガス処
理方法は、ガスの入り口とガスの出口を有するガス処理
部に。
That is, according to the present invention. A gas treatment method using high-frequency creeping discharge involves a gas treatment section having a gas inlet and a gas outlet.

誘電体層を介してその一方の表面上にコロナ放電極を他
方の表面上に面状誘導電極を設けてなる所の少なくとも
1個の高周波沿面放電素子を、少なくともその該コロナ
放電極か設けられた高周波沿面放電発生面が該ガス処理
部内のガス通路に露出する如くに配設し、該コロナ放電
極と該面状誘導電極を高周波沿面放電発に接続して両電
極間り高周波高電圧を印加して該コロナ放電極よりその
周囲の該誘電体層表面に沿って高周波沿面放電を発生せ
しめ、該ガス入り口より該ガス処理部内に処理すべきガ
スを導入して、該高周波沿面放電発生面の近傍を通過せ
しめ、該高周波沿面放電発のプラズマ化学作用によって
該ガスを処理したうえ、処理後のガスを該ガス出口より
外部に排出する事を特徴とする。
At least one high-frequency creeping discharge element is provided with a corona discharge electrode on one surface thereof and a planar induction electrode on the other surface thereof via a dielectric layer, at least the corona discharge electrode is provided. The corona discharge electrode and the planar induction electrode are connected to the high frequency creeping discharge generating surface so that the high frequency creeping discharge generation surface is exposed to the gas passage in the gas processing section, and the high frequency high voltage is applied between the two electrodes. A high-frequency creeping discharge is generated from the corona discharge electrode along the surface of the dielectric layer around the corona discharge electrode, and a gas to be treated is introduced into the gas treatment section from the gas inlet to generate a high-frequency creeping discharge on the surface where the high-frequency creeping discharge occurs. The gas is processed by the plasma chemical action generated by the high-frequency creeping discharge, and the processed gas is discharged to the outside from the gas outlet.

この場合、処理後のガス中には、対象ガス成分がプラズ
マ化学作用を受けて生じたガス状、固体状または液体状
の2次的反応生成物(以下、これらを反応生成物と総称
する)が含まれており、これを更に除去する必要が生ず
ることもあるかかる場合には、該ガス処理部のガス出口
に接続して上記反応生成物を主ガス流から除去するため
の後処理部を設ける事が望ましく、このような後処理部
を設ける事が、本発明による高周波沿面放電を用いたガ
ス処理方法のの一部を構成する、また、かかるガス処理
方法を実現するための本発明による高周波沿面放電を用
いたガス処理装置は、ガスの入り口とガスの出口を有す
るガス処理部を有し、誘電体層を介してその一方の表面
上にコロナ放電極を他方の表面上に面状誘導電極を設け
てなる所の少なくとも1個の高周波沿面放電素子を、少
なくともその該コロナ放電極が設けられた高周波沿面放
電発生面が該ガス処理部内のガス通路に露出する如くに
配設し。
In this case, the gas after treatment contains gaseous, solid, or liquid secondary reaction products (hereinafter collectively referred to as reaction products) produced when the target gas component undergoes plasma chemical action. In such cases, an after-treatment section is connected to the gas outlet of the gas treatment section to remove the reaction products from the main gas stream. The provision of such a post-processing section constitutes a part of the gas treatment method using high-frequency creeping discharge according to the present invention, and the provision of such a post-treatment section constitutes a part of the gas treatment method according to the present invention for realizing such a gas treatment method. A gas treatment device using high-frequency creeping discharge has a gas treatment section having a gas inlet and a gas outlet, and a corona discharge electrode is placed on one surface of the gas treatment section via a dielectric layer, and a planar electrode is placed on the other surface of the gas treatment section. At least one high frequency creeping discharge element provided with an induction electrode is disposed such that at least a high frequency creeping discharge generating surface provided with the corona discharge electrode is exposed to a gas passage in the gas processing section.

該コロナ放電極と該面状誘導電極に接続して両電極間に
高周波高電圧を印加し、該コロナ放電極よりその周囲の
該誘電体層表面に沿って高周波沿面放電を発生せしめる
ための高周波沿面放電発を有し、該ガス入り口より該ガ
ス処理部内に処理す事も1本発明による高周波沿面放電
を用いたガス処理装置の発明の一部を構成する。
A high-frequency wave for connecting the corona discharge electrode and the planar induction electrode and applying a high-frequency high voltage between both electrodes to generate a high-frequency creeping discharge from the corona discharge electrode along the surface of the dielectric layer around the corona discharge electrode. It is also part of the invention of the gas treatment apparatus using high-frequency creeping discharge according to the present invention to have creeping discharge generation and to process the gas into the gas treatment section from the gas inlet.

本発明によるガス処理装置シこ使用する該高周波沿面放
電素子はその誘電体層が平板状であっても、円筒状もし
くは適当ないかなる形状であってもよい。そして該誘電
体層が円筒状であるときは、該コロナ放電極を該円筒状
誘電体層の外表面上桟、該面状誘導電極をその内表面上
桟設けても、あるいは該コロナ放電極を該円筒状誘電体
層の内表面上に、該面状誘導電極をその外表面上に設け
てもよい。
The dielectric layer of the high-frequency creeping discharge element used in the gas treatment apparatus according to the present invention may be flat, cylindrical, or any other suitable shape. When the dielectric layer is cylindrical, the corona discharge electrode may be provided on the outer surface of the cylindrical dielectric layer, and the planar induction electrode may be provided on the inner surface of the cylindrical dielectric layer. may be provided on the inner surface of the cylindrical dielectric layer, and the planar induction electrode may be provided on the outer surface thereof.

また本発明によるガス処理装置のガス処理部を、少な(
とも1個の円筒状誘電体層で構成し、その内表面上桟コ
ロナ放電極を、その外表面上に面状誘導電極を配設し、
これによって該ガス処理部に該高周波沿面放電素子を兼
ねしめてもよい事は言うまでもない。この場合、ガス処
理部を構成する円筒状誘電体層の内部に、これと同心的
にガスの通過を阻止する円筒状筒体を配設し、該円筒状
誘電体層と該円筒状筒体との反応生成物が含まれている
ときは、該ガス処理部のガス出口に接続して上記反応生
成物を主ガス流から除去するための後処理部を設ける事
が望ましく、このような後処理部を設ける成する円筒状
沿面放電素子の内部に、これと同心的6:、コロナ放電
極を外表面、面状誘導電極を内表面に配設し且つないぶ
のガス通過を許さない様な別個の円筒状高周波沿面放電
素子を設け、両日筒の間の間隙4ニガスを通過させる様
シニすると、ガスが内外両方の素子の放電域のごく近傍
のみを通過し、ガス処理効果がさらに一層向上する。
Furthermore, the gas treatment section of the gas treatment apparatus according to the present invention can be made smaller (
Both are composed of one cylindrical dielectric layer, with a crosspiece corona discharge electrode on the inner surface and a planar induction electrode on the outer surface,
As a result, it goes without saying that the gas processing section may also serve as the high frequency creeping discharge element. In this case, a cylindrical body that blocks the passage of gas is disposed concentrically inside the cylindrical dielectric layer constituting the gas treatment section, and the cylindrical dielectric layer and the cylindrical body When the main gas contains reaction products, it is desirable to provide a post-treatment section connected to the gas outlet of the gas treatment section to remove the reaction products from the main gas flow. A corona discharge electrode is disposed on the outer surface and a planar induction electrode is disposed on the inner surface concentrically with the cylindrical creeping discharge element constituting the cylindrical surface discharge element in which the processing section is provided, and the cylindrical creeping discharge element is disposed concentrically with the cylindrical creeping discharge element. By providing a separate cylindrical high-frequency creeping discharge element and allowing the gas to pass through the gap between the two cylinders, the gas passes only in the very vicinity of the discharge areas of both the inner and outer elements, further enhancing the gas treatment effect. improves.

本発明に用いる該高周波沿面放電素子は、そのコロナ放
電極を線状とし、その対向部位の全体を覆うごとく1面
状誘導電極を配設し、且つ該面状誘導電極をの外側を覆
って別の誘電体層を設け、これによって該面状誘導電極
が実質的に一つの誘電体層の内部ζ:埋設する様に構成
すると、たとえ所要印加電圧を下げるため両電極間の誘
電体層をO,l −1,0mm程度仁薄くしても、充分
な機械的強度を該高周波沿面放電素子に付与する事が出
来て好適である。
The high-frequency creeping discharge element used in the present invention has a linear corona discharge electrode, a one-plane induction electrode is arranged so as to cover the entire opposing part, and the outer side of the planar induction electrode is covered. If another dielectric layer is provided so that the planar induction electrode is substantially buried inside one dielectric layer, even if the dielectric layer between the two electrodes is removed in order to reduce the required applied voltage. Even if the thickness is made as thin as O,l -1.0 mm, sufficient mechanical strength can be imparted to the high frequency creeping discharge element, which is preferable.

本発明仁使用する該高周波沿面放電素子は放電に伴う損
失及び該誘電体層重発生する誘電体損のため、時として
過熱する事があるが、その時は、該誘電体層の面状誘導
電極を配設せる側の表面を水冷または空冷すると好適で
ある。
The high-frequency creeping discharge element used in the present invention sometimes overheats due to the loss accompanying discharge and the dielectric loss generated in the dielectric layer. It is preferable to water or air cool the surface on which it is disposed.

また該高周波沿面放電素子のコロナ放電極側の表面は、
と耐洗浄装置等々、適当な清掃機構を該ガス処理部に設
けて該コロナ放電極側の表面を常仁清浄に保つのが望ま
しい。
In addition, the surface of the high frequency creeping discharge element on the corona discharge electrode side is
It is desirable to provide an appropriate cleaning mechanism such as a cleaning resistant device in the gas processing section to keep the surface on the corona discharge electrode side always clean.

本発明によるガス処理装置において、固体又は液体状の
反応生成物が微細なエアロゾルとして生成する事かある
か、かかる場合仁はこれを除去する為の該後処理装置に
は、適当な集塵装置を用いる必要がある。かかる集塵装
置には、電気集塵装置、濾過集塵装置、あるいは湿式の
スクラッハー等、適当ないかなる種類のものを用いても
よい。
In the gas treatment apparatus according to the present invention, if solid or liquid reaction products are generated as fine aerosols, in such a case, the post-treatment apparatus for removing them should be equipped with an appropriate dust collector. It is necessary to use Such a dust collector may be of any suitable type, such as an electrostatic precipitator, a filter dust collector, or a wet scratcher.

また本発明によるガス処理装置において、気体状の反応
生成物が生成し、これを除去する必要が生ずる事かある
が、かかる場合には該後処理部に各個の気体状反応生成
物仁適合した気体除去装置を用いる事が望ましい。この
様な気体除去装置には、気体状反応生物の組成仁よって
、これを吸収除去するための固体吸収剤を充填した乾式
ガス吸収装置、これを吸着除去酸するための固活性炭や
モレキュラーシーブ等の適当な吸着剤を充填した乾式ガ
ス吸着収装置、これを接触反応により変成して分解した
り除去しやすい組成に変化するための触媒を充填した接
触反応装置、あるいは気体状反応生物を吸収するための
液体吸収剤を処理後のガスに接触せしめる湿式ガス吸収
装置等々、適当な任意の装置を用いる事が8来る。。
In addition, in the gas treatment apparatus according to the present invention, gaseous reaction products may be generated and it may be necessary to remove them, but in such a case, each gaseous reaction product is It is recommended to use a gas removal device. Depending on the composition of the gaseous reaction organisms, such gas removal devices include a dry gas absorption device filled with a solid absorbent to absorb and remove them, and solid activated carbon or molecular sieves to adsorb and remove them. A dry gas adsorption absorption device filled with a suitable adsorbent, a catalytic reaction device filled with a catalyst to change the composition through a catalytic reaction to change it into a composition that can be easily decomposed or removed, or a catalytic reaction device that absorbs gaseous reaction organisms. Any suitable device may be used, such as a wet gas absorption device that brings the liquid absorbent for the treatment into contact with the treated gas. .

また本発明のガス処理装置において、該ガス処理部の上
流に処理すムき対象ガス成分の種類に応して、その処理
を促進する作用を持った適当な添加ガス、例えば対象ガ
ス成分がNOX  SOx等の場合にはアンモニアガス
等を注入する事が出来る。かかる添加ガスには、高周波
沿面放電によってメタステーブルステート状態を形成し
、それを通してより効果的にラジカルを生成する作用を
持ったヘリウム、アルゴン、ネオン等のガスを用いても
よく、そのほか適当ないかなる添加ガスを用いてもよい
事は言うまでもない。
In addition, in the gas treatment apparatus of the present invention, depending on the type of the target gas component to be treated upstream of the gas treatment section, an appropriate additive gas having the effect of promoting the treatment, for example, the target gas component is NOx. In case of SOx etc., ammonia gas etc. can be injected. As such an additive gas, gases such as helium, argon, neon, etc., which have the effect of forming a metastable state state by high-frequency creeping discharge and generating radicals more effectively through the metastable state state, may be used, or any other suitable gas may be used. It goes without saying that an additive gas may also be used.

また本発明によるガス処理装置仁おいては、該ガス処理
部の上流、内部、下流の少な(ともいずれかに、処理す
べき対象ガス成分の処理を促進する光、例えば紫外線光
を照射すること仁よって、処理効果を大幅に向上できる
事があり、またこの光化学効果は上記添加ガスと併用す
る事によって一層高める事が可能なこともある、。
Furthermore, in the gas treatment apparatus according to the present invention, light, such as ultraviolet light, that promotes the treatment of target gas components to be treated may be irradiated to the upstream, inside, and downstream of the gas treatment section. In some cases, the treatment effect can be greatly improved, and this photochemical effect can be further enhanced by using it in combination with the above-mentioned additive gas.

[作 用] 高周波沿面放電の強力なプラズマ化学作用により、その
放電域に、O,Of(、NH4等の反応性に富んたラジ
カル、励起状態の02やN2 、あるいは02. N2
.1(20,CO2等のイオン。
[Effect] Due to the strong plasma chemical action of the high-frequency creeping discharge, highly reactive radicals such as O, Of(, NH4, etc., 02 and N2 in the excited state, or 02.N2) are generated in the discharge region.
.. 1 (20, ions such as CO2.

更には03等、多量の化学的活性種か生成され、これら
が処理すにき対象ガス成分であるNOX、 SOx、 
 フロン、ダイオキシン、水銀蒸気、溶媒その他のハイ
ドロカーボン蒸気と直ちに反応して、これらを分解した
り、或いは処理の容易な2次的反応生成物(固体・液体
のエアロツル状、気体状)に変成する事によって、これ
らをガス処理部または後処理部で除去するものである3
、この場合1例えば、Nol、 SOX等の対象ガス成
分に対してアンモニアガス等の添加ガスを注入すると。
Furthermore, a large amount of chemically active species such as 03 are generated, and these are the gas components to be treated such as NOx, SOx,
Immediately reacts with chlorofluorocarbons, dioxins, mercury vapor, solvents, and other hydrocarbon vapors to decompose them or transform them into easy-to-process secondary reaction products (solid/liquid aerosols, gaseous forms) Depending on the situation, these may be removed in the gas treatment section or post-treatment section3.
In this case 1, for example, if an additive gas such as ammonia gas is injected into the target gas component such as Nol or SOX.

エアロツル状の固体硫硝安複塩がガス中(ニ生成し、電
気集塵装置を後処理装置として用いる事により、これを
完全にガス中から除去出来る。
Solid ammonium sulfate double salt in the form of aerovines is generated in the gas, and can be completely removed from the gas by using an electrostatic precipitator as a post-treatment device.

[実施例] 第1図は本発明を燃焼排ガス中に含まれるSOXおよび
Nolの除去に適用した実施例の縦断面図、第2図はそ
の横断面図を示す、図において1はガス処理部で、ガス
入り[コ2とガス出口3を有し、その上流側ダクト4に
はアンモニアガスをガス流中に注入するための注入バイ
ブ5および注入口6を備えたアンモニアガス注入部7と
ガスの流速分布を均一化するためのスクリーン8がもう
けられている。9および10はガス処理部1の内部にガ
ス流方向1互いに平行に等間隔に垂直に配設された平板
状高周波沿面放電素子である それらの構造は第3図(
a)ないしくb)示す様に1例えば純度92%のアルミ
ナセラミックよりなる平板状誘電体層11の片側の表面
12.あるいは両側の表面13.14上にタングステン
の内部に厚み0.01−0、O5in程度の面状誘導電
極16か埋設されている。この場合該面状誘導電極16
は、該誘電体層の一部をなす厚み0.1−1、O程度の
薄いアルミナ誘電体層17.18を介して該線状コロナ
放電極群15に対向し、且つその対向部位の全体を覆う
広がりを有している。
[Example] Fig. 1 is a longitudinal cross-sectional view of an example in which the present invention is applied to the removal of SOX and Nol contained in combustion exhaust gas, and Fig. 2 is a cross-sectional view thereof. In the figure, 1 is a gas processing section. The duct 4 on the upstream side has an ammonia gas inlet 7 and an inlet 6 for injecting ammonia gas into the gas flow. A screen 8 is provided to make the flow velocity distribution uniform. Numerals 9 and 10 are plate-shaped high-frequency creeping discharge elements that are arranged vertically in the gas processing section 1 in parallel to each other in the gas flow direction 1 at regular intervals. Their structure is shown in Figure 3 (
a) or b) As shown, one surface 12 of a flat dielectric layer 11 made of, for example, alumina ceramic with a purity of 92%. Alternatively, on the surfaces 13 and 14 on both sides, planar induction electrodes 16 having a thickness of 0.01-0 and about 05 inches are buried inside the tungsten. In this case, the planar induction electrode 16
is opposed to the linear corona discharge electrode group 15 via a thin alumina dielectric layer 17, 18 with a thickness of about 0.1-1 O, which forms a part of the dielectric layer, and the entire opposing portion thereof. It has an expanse that covers the

該画電極15及び16はそれぞれ導線120を介して高
周波沿面放電発21に接続されて高周波高電圧が印加さ
れ。
The picture electrodes 15 and 16 are each connected to a high frequency creeping discharge generator 21 via a conducting wire 120, and a high frequency high voltage is applied thereto.

第4図(a)の22に示される様な高周波沿面放電22
が各コロナ放電極群5の両端縁15−a、15−bから
発生し、該誘電体11の表面12に沿って伸展する。こ
の場合、第3図(a)に示す平板状高周波沿面放電素子
9は、その誘電体層11の片側表面12のみ4ニコロナ
放電極群が配設されているので、第2図の9に示す様は
ダクトの内壁に付設するのに適しており、また第3図(
b)に示す平板状高周波沿面放電素子lOは、その誘電
体層11の両側表面13.14にそれぞれコロナ放電極
群が配設されているので、第2図の10に示す様にダク
トの内部に設けて、その両側にガスを通すのに適してい
る。
High frequency creeping discharge 22 as shown at 22 in Fig. 4(a)
is generated from both edges 15-a, 15-b of each corona discharge electrode group 5 and extends along the surface 12 of the dielectric 11. In this case, the flat high-frequency creeping discharge element 9 shown in FIG. 3(a) has a group of four nicoronal discharge electrodes disposed only on one surface 12 of the dielectric layer 11, so the flat high-frequency creeping discharge element 9 shown in FIG. This type is suitable for attaching to the inner wall of the duct, and the type shown in Figure 3 (
In the flat high-frequency creeping discharge element 10 shown in b), corona discharge electrode groups are arranged on both surfaces 13 and 14 of the dielectric layer 11, so that the inside of the duct as shown in 10 in FIG. It is suitable for installing on the wall and passing gas on both sides.

該コロナ放電極群15は、第4図(b)に示す様に放電
化学的に極度ζ二強い純度99%、厚み10−50 ミ
クロン程度の環部であり、本例では電気集塵装置からな
る7また25は吸引ファン、26は排出ダクトでスタッ
クへと浄化後のガスを導( いま502 およびNOを含む燃焼排ガスがボイラーか
ら上流側ダクト4を通り、アンモニアガス注入部7から
注入バイブ5、注入口6を介してアンモニアガスを注入
添加された後。
As shown in FIG. 4(b), the corona discharge electrode group 15 is an annular portion with a purity of 99% and a thickness of about 10-50 microns, which is extremely strong in terms of discharge chemistry. 7 and 25 are suction fans, and 26 is an exhaust duct that guides the purified gas to the stack (now 502 and combustion exhaust gas containing NO passes from the boiler through the upstream duct 4, and from the ammonia gas injection part 7 to the injection vibrator 5). , after injecting and adding ammonia gas through the injection port 6.

スクリーン8を通過し、均一なガス流速分布をもって該
ガス処理部1のガス入口2より、その内部27に導入さ
れる、そして該平板状高周波沿面放電素子群9,10、
−m−の間の間隙28.2−−一を流れる間型高周波沿
面放電のプラズマ化学作用で生成された豊富なラジカル
、化学的活性種、あるいは03等の作用で、 502は
503に、またNOはNO2に酸化され、更に両者がア
ンモニアガスと反応して硫硝安複塩の固体エアロゾル粒
子となり、ガス出口3をへて電気集塵装置24に至り、
ここで完全仁ガス流から除去される。清浄になったガス
は吸引ファン25、排出ダクト26を経てスタックよ突
によるスパッタリングや腐食性の強い硫酸、硝酸等の反
応生成物で犯かされるのを防ぐ。この様な薄い保護膜2
3を施しても、高周波沿面放電の発生及び伸展は殆ど妨
げられない。
The gas passes through the screen 8 and is introduced into the interior 27 from the gas inlet 2 of the gas processing section 1 with a uniform gas flow velocity distribution, and the flat high frequency creeping discharge element group 9, 10;
Due to the action of abundant radicals, chemically active species, or 03 etc. generated by the plasma chemical action of the high-frequency creeping discharge flowing through the gap 28.2--1 between -m-, 502 becomes 503, and NO is oxidized to NO2, and both react with ammonia gas to form solid aerosol particles of ammonium sulfate and nitrate double salt, which pass through the gas outlet 3 and reach the electrostatic precipitator 24.
It is now completely removed from the gas flow. The purified gas passes through a suction fan 25 and a discharge duct 26 to prevent it from being sputtered by bumps in the stack and from being contaminated by highly corrosive reaction products such as sulfuric acid and nitric acid. Such a thin protective film 2
Even if 3 is applied, the generation and extension of high-frequency creeping discharge is hardly prevented.

第1図の24はガス出口3の下流に設けられたガスの後
処断面図である。図において30はガス処理部を兼ねた
円筒状の高周波沿面放電素子で、例えば純度92%のア
ルミナセラミックよりなる円筒状誘電体31の内表面3
2に、環状電極33−a、33−bで両端を終端された
線状コロナ放電極群34か円筒軸に平行に、かつ相互に
平行で等間隔に配設され。
Reference numeral 24 in FIG. 1 is a cross-sectional view of the gas downstream of the gas outlet 3. In the figure, 30 is a cylindrical high-frequency creeping discharge element that also serves as a gas processing section, and the inner surface 3 of a cylindrical dielectric 31 made of, for example, 92% pure alumina ceramic.
2, a group of linear corona discharge electrodes 34 terminated at both ends by annular electrodes 33-a and 33-b are arranged parallel to the cylindrical axis and parallel to each other at equal intervals.

該線状コロナ放電極群34を含む内表面32の全体を純
度99%、厚み10− So ミクロンの高純度アルミ
ナ保護膜35で被覆しである1、また36は面状誘導電
極で、該円筒状誘電体31の肉厚内は、該環状電極33
−a、33−b及び該線状コロナ放電極群34仁対抗す
る部位全体を覆うごと(に埋設しである。そして該線状
コロナ放電極群341面状誘導電極36は夫々導線19
,20を介して高周波沿面放電発2Hニ接続されて両型
極間仁高周波高電圧が印加され、その結果該線状コロナ
放電極群34の夫々の両端縁上部のアルミナ保護膜35
部分から、該保護膜354:沿って高周波沿面放電が伸
展し、その強力なプラズマ化学作用によって大量のラジ
カル、化学的活性種、03等を生成し、ガス処理部を兼
ねた該円筒状高周波沿面放電素子30内を通過するガス
中に供給する。
The entire inner surface 32 including the linear corona discharge electrode group 34 is coated with a high-purity alumina protective film 35 with a purity of 99% and a thickness of 10-So microns, and 36 is a planar induction electrode; The annular electrode 33 is located within the thickness of the dielectric 31.
-a, 33-b and the linear corona discharge electrode group 34 are embedded in each other so as to cover the entire opposing portion.The linear corona discharge electrode group 341 and the planar induction electrode 36 are respectively
, 20 are connected to the high-frequency creeping discharge 2H, and a high-frequency high voltage is applied between the two types of electrodes.
A high-frequency creeping discharge extends along the protective film 354, and its strong plasma chemical action generates a large amount of radicals, chemically active species, etc., and the cylindrical high-frequency creeping discharge also serves as a gas processing section. The gas is supplied to the gas passing through the discharge element 30.

37は該円筒状高周波沿面放電素子30の外側面38を
水密仁囲繞する水冷ジャケットで、水入口39から供給
された42の方向に流動しつつ該円筒状高周波沿面放電
素子3oを冷却し、放電損失と誘電体損で該高周波沿面
放電素子30が過熱してそのプラズマ化学作用が低下す
るのを防止し、水出口43より放出される。
37 is a water cooling jacket that watertightly surrounds the outer surface 38 of the cylindrical high frequency surface discharge element 30, and water is supplied from the inlet 39 and flows in the direction 42 to cool the cylindrical high frequency surface discharge element 3o and discharge. The high frequency creeping discharge element 30 is prevented from overheating due to loss and dielectric loss and its plasma chemistry is reduced, and the water is discharged from the water outlet 43.

44は反応生成物を除去する為の後処理部、25は吸引
ファン、26は清浄ガスの排出ダクトである。
44 is a post-processing section for removing reaction products, 25 is a suction fan, and 26 is a clean gas discharge duct.

いま上流側ダクト4からスクリーン8.ガス入口2を経
てガス処理部を兼ねた円筒状高周波沿面放電素子3oの
内部に進入したガス中に含まれる処理対象ガス成分は、
該素子3゜の内面状に発生する高周波沿面放電域から供
給される大量の上記ラジカル、化学的活性種、03等の
作用を受けて分解ないし変成した後、ガス出口3より後
処理部44に至り、ここで反応生成物が除去された後、
吸引ファン25.ガス排出ダクトを経てスタックより大
気中に排出される。
Now from the upstream duct 4 to the screen 8. The target gas components contained in the gas that has entered the cylindrical high-frequency creeping discharge element 3o that also serves as a gas processing section through the gas inlet 2 are as follows:
After being decomposed or morphed by the action of a large amount of the radicals, chemically active species, 03, etc. supplied from the high-frequency creeping discharge region generated on the inner surface of the element 3, the gas is transferred from the gas outlet 3 to the after-treatment section 44. After the reaction products are removed,
Suction fan 25. The gas is discharged from the stack into the atmosphere through a gas exhaust duct.

この場合、第7図に示す様に該円筒状高周波沿面放電素
子30の内部にこれと同軸にガスの通過を阻止する筒体
45を挿入し、その外側面46と該素子30の内面との
間の狭い環状空隙47に沿ってガスを通過させる様仁す
ると、処理対象ガス成分と上記ラジカル、化学的活性種
、03等との接触がより促進され9分解・変成効果がよ
り向上する6なお場合により上記平板状ないし円筒状高
周波沿面放電素子の放電域にダスト、ミスト、放電生成
物等が付着して高周波沿面放電の発生を阻止し、これに
よってガス処理性能が妨げられるる事がある7この様な
場合には上記平板状ないし円筒状等の高周波沿面放電素
子の放電域に適当な清浄ガス、例えば清浄空気、乾燥空
気、酸素、その他適当な組成の清浄ガスを供給して所要
のラジカル類、化学的活性種、03等を生成し、これを
上記清浄ガスと共に処理すパきガスの流れに添加して、
対象ガス成分を分解・変成し、必要に応して更に適当な
後処理部を設けて反応生成物を除去すると言う方法をと
ってもよい第8図はその一例で、30は第5図に示され
た円筒型高周波沿面放電素子でその外側面38の周囲に
多数のアルミの空冷フィン48が設けられ、これを囲繞
する空冷ジャケット49内を通って冷却用空気を空気入
口50がら空気出口51へと流動させる事により、該素
子3oを強制空冷する。
In this case, as shown in FIG. 7, a cylindrical body 45 that blocks the passage of gas is inserted coaxially inside the cylindrical high-frequency creeping discharge element 30, and the outer surface 46 of the cylindrical body 45 is connected to the inner surface of the element 30. If the gas is allowed to pass along the narrow annular gap 47 between the two, the contact between the gas components to be treated and the above radicals, chemically active species, etc. will be further promoted, and the decomposition/transformation effect will be further improved. In some cases, dust, mist, discharge products, etc. may adhere to the discharge area of the flat or cylindrical high-frequency creeping discharge element and prevent the generation of high-frequency creeping discharge, thereby impeding gas processing performance7. In such a case, an appropriate clean gas such as clean air, dry air, oxygen, or other clean gas of an appropriate composition is supplied to the discharge area of the high-frequency creeping discharge element in the flat or cylindrical shape to generate the necessary radicals. chemically active species, such as 03, and adding it to the purging gas stream to be treated with the cleaning gas,
Figure 8 is an example of this, and 30 is shown in Figure 5. A large number of aluminum air cooling fins 48 are provided around the outer surface 38 of the cylindrical high frequency creeping discharge element, and cooling air is passed through the air cooling jacket 49 surrounding the fins 48 from the air inlet 50 to the air outlet 51. By causing the fluid to flow, the element 3o is forcedly air cooled.

52はオイルレス・コンプレッサーで外気人口53より
吸入した空気をエアフィルター54を通して浄化し、腹
式エアドライヤー55を通して露点−40′Cまで乾燥
したうえ上記円筒型高周波沿面放電素子30の内部27
に、その入口56より供給する。該素子の内面の高周波
沿面放電域で生成された大量のラジカル類、化学的活性
種、03等は空気に混入してを強力に混合撹拌し、これ
によって上記活性ガス及び添加ガスと処理対象ガス成分
の充分な混合を行なう。その結果該処理対象ガス成分は
迅速に上記ラジカル類、化学的活性種、03等と反応し
て分解・変成され、その反応生成物は更に上記添加ガス
成分と反応して処理の容易な物質、本例では固体エアロ
ツルになってガス出口3を経て電気集塵装置24で除去
され、さらに触媒層64を通って余分な活性成分を接触
反応で分解・除去した後、下流側ダクト65より外気に
放出する。
Reference numeral 52 denotes an oil-less compressor that purifies the air taken in from outside air 53 through an air filter 54, and dries it through an abdominal air dryer 55 to a dew point of -40'C.
is supplied from its inlet 56. A large amount of radicals, chemically active species, 03, etc. generated in the high-frequency creeping discharge area on the inner surface of the element are mixed into the air and are strongly mixed and stirred, thereby separating the active gas, additive gas, and gas to be treated. Ensure thorough mixing of ingredients. As a result, the gas component to be treated rapidly reacts with the radicals, chemically active species, 03, etc., and is decomposed and modified, and the reaction product further reacts with the additional gas component, resulting in easy-to-treat substances. In this example, it becomes solid aerovine and is removed by the electrostatic precipitator 24 through the gas outlet 3, and then passed through the catalyst layer 64 to decompose and remove excess active ingredients by catalytic reaction. discharge.

[効 果] 本発明によるガス処理装置は、殆どすべての種類の処理
対象ガス成分に対して極めて強力な分解・変成作用を有
する各種ラジカル、化学的活性種、03等を、高周波沿
面放電の強力なプラズマ化学作用で有効且つ大量ζ二生
成のうえ作用させて処理するので、その処理効果は極め
て高く、また処理対象ガスの種類を問わない、また装置
が極めて小型となって、中添加ガス注入部60より注入
管61、注入口62を介してアンモニア等、適当な添加
ガスを添加された後、スクリーン8゜ガス入口2を経て
該ガス処理部1内進入する6ガス処理部1内には多数の
多孔板63がガス流に垂直に設けられ流動ガスいて上記
各種ラジカル、化学的活性種、03等を生成、これらを
含む活性ガスを処理対象ガスに添加するときは高周波沿
面放電素子の汚れによる性能低下が防止でき常に最高の
ガス処理性能を維持でとる。
[Effects] The gas treatment device according to the present invention can remove various radicals, chemically active species, 03, etc. that have extremely strong decomposition and metamorphosis effects on almost all types of gas components to be treated using the powerful high-frequency creeping discharge. Since the treatment is performed by effectively generating a large amount of ζ2 using a plasma chemical action, the treatment effect is extremely high, and the type of gas to be treated is not affected. After a suitable additive gas such as ammonia is added from the part 60 through the injection pipe 61 and the injection port 62, the gas enters the gas processing part 1 through the screen 8° gas inlet 2. A large number of porous plates 63 are installed perpendicularly to the gas flow, and the flowing gas generates the various radicals, chemically active species, 03, etc., and when the active gas containing these is added to the gas to be treated, the high frequency creeping discharge element is contaminated. This prevents deterioration in performance caused by gas processing and maintains the highest gas processing performance at all times.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の縦断面図、第2図はその横
断面図、第3図および第4図はこの実施例に用いられる
平板状高周波沿面放電素子の構造を示す図である。第5
図は本発明の別の実施例の縦断面図、第6図はその横断
面図、第7図は本実施例に用いられる円筒状高周波沿面
放電素子の改良型の構造を示す横断面図である。また第
8図は本発明のいま一つ別の実施例の縦断面図である。 図において1−−−−−ガス処理部 2−−−−−ガス入口 3−−−−−ガス出口 4−−−−一上流側ダクト 7−−−−−アンモニア注入部 8−−−−−スクリーン 10−一平板状高周波沿面放電素子 1−−−−一円筒状誘電体層 5.34−一線状コロナ電極 6.36一−面状誘導電極 20−一導線 1−−−−一高周波沿面放電発 2−−−−一高周波沿面放電 23.35−一保護膜 24−−−−一電気集塵装置 25−−−−一吸引フアン 26−−−−−排出ダクト 30−−−m−円筒状高周波沿面放電素子31−−−−
一円筒状誘電体層 37−−−−−水冷ジャケット 39、−−−−一水入口 43−−−−一水出口 44−−−−一後処理部 45−−−−一筒体 46−−−−筒体外側面 47−−−−−環状空隙 48−−−−一空冷フイン 49−−−−一空冷ジャケット 50−一一一一空気入口 51−−−−一空気出口 52−−−−一オイルレス・コンプレッサ53−−−−
一外気入口 54−−−−一エアフィルタ 55−一−−−腹式エアドライヤ 56−−−−−ガス入口 57−−−−−ガス出口 58−−−−一活性ガス供給管 59−一一一一活性ガス供給口 60−一−−−添加ガス注入部 61−−−−一添加ガス注入管 62−−−−一添加ガス注入口 63−−−−一多孔板 64−−−−一触媒層 65−−−−一下流側ダクト 手続補正書 (自発) 平成2年9月23日差出 平成2年7月17日
FIG. 1 is a longitudinal cross-sectional view of one embodiment of the present invention, FIG. 2 is a cross-sectional view thereof, and FIGS. 3 and 4 are diagrams showing the structure of a flat high-frequency creeping discharge element used in this embodiment. be. Fifth
The figure is a longitudinal cross-sectional view of another embodiment of the present invention, FIG. 6 is a cross-sectional view thereof, and FIG. be. FIG. 8 is a longitudinal sectional view of yet another embodiment of the present invention. In the figure, 1------Gas treatment section 2------Gas inlet 3------Gas outlet 4---One upstream duct 7---Ammonia injection section 8------ - Screen 10 - One flat plate-like high frequency creeping discharge element 1 - One cylindrical dielectric layer 5.34 - One linear corona electrode 6.36 One planar induction electrode 20 - One conducting wire 1 - One high frequency Creeping discharge generation 2 - - - High frequency creeping discharge 23.35 - - Protective film 24 - - - Electrostatic precipitator 25 - - - Suction fan 26 - - - Discharge duct 30 - - m -Cylindrical high frequency creeping discharge element 31---
One cylindrical dielectric layer 37------Water cooling jacket 39---One water inlet 43---One water outlet 44---One post-processing section 45---One cylindrical body 46--- --- Cylinder outer surface 47 --- Annular gap 48 --- One air cooling fin 49 --- One air cooling jacket 50 -- One air inlet 51 --- One air outlet 52 --- -1 Oil-less compressor 53---
- Outside air inlet 54 - - Air filter 55 - - Abdominal air dryer 56 - Gas inlet 57 - Gas outlet 58 - - Active gas supply pipe 59 - -1 11 active gas supply port 60-1---additive gas injection part 61----1 additive gas injection pipe 62----1 additive gas injection port 63----1 porous plate 64---- 1. Catalyst layer 65 - 1. Downstream duct procedure amendment (voluntary) Sent on September 23, 1990 July 17, 1990

Claims (1)

【特許請求の範囲】 1、ガスの入り口とガスの出口を有するガス処理部に、
誘電体層を介してその一方の表面上にコロナ放電極を他
方の表面上に面状誘導電極を設けてなる所の少なくとも
1個の高周波沿面放電素子を、少なくともその該コロナ
放電極が設けられた高周波沿面放電発生面が該ガス処理
部内のガス通路に露出する如くに配設し、該コロナ放電
極と該面状誘導電極を高周波高圧電源に接続して両電極
間に高周波高電圧を印加し、該コロナ放電極よりその周
囲の該誘電体層表面に沿って高周波沿面放電を発生せし
め、該ガス入り口より該ガス処理部内に処理すべきガス
を導入して、該高周波沿面放電発生面の近傍を通過せし
め、該高周波沿面放電発のプラズマ化学作用によつて該
ガスを処理したうえ、処理後のガスを該ガス出口より外
部に排出する事を特徴とするガス処理方法。 2、請求項1記載のガス処理方法に於て、該ガス出口に
接続して処理後のガス中に含まれる反応生成物を除去す
るための後処理部を設け、該反応生成物を除去した後に
外部に排出する事を特徴とするガス処理方法。 3、ガスの入り口とガスの出口を有するガス処理部を有
し、誘電体層を介してその一方の表面上にコロナ放電極
を他方の表面上に面状誘導電極を設けてなる所の少なく
とも1個の高周波沿面放電素子を、少なくともその該コ
ロナ放電極が設けられた高周波沿面放電発生面が該ガス
処理部内のガス通路に露出する如くに配設し、該コロナ
放電極と該面状誘導電極に接続して両電極間に高周波高
電圧を印加し、該コロナ放電極よりその周囲の該誘電体
層表面に沿って高周波沿面放電を発生せしめるための高
周波高圧電源を有し、該ガス入り口より該ガス処理部内
に処理すべきガスを導入して、該高周波沿面放電発生面
の近傍を通過せしめた後、該ガス出口より外部に排出す
る事を特徴とするガス処理装置。 4、請求項3に記載のガス処理装置に於て、該ガス出口
に接続して処理後のガス中に含まれる反応生成物を除去
するための後処理部を設けた事を特徴とするガス処理装
置。 5、請求項3及び4に記載のガス処理装置において、該
高周波沿面放電素子の誘電体層が平板状でる事を特徴と
するガス処理装置。 6、請求項3及び4に記載のガス処理装置において、該
高波沿面放電素子の誘電体層が円筒状であり、該コロナ
放電極が該円筒状誘電体層の外表面上に設けられており
、該面状誘導電極が該円筒状誘電体層の内表面上に設け
られている事を特徴とするガス処理装置。 7、請求項3及び4に記載のガス処理装置において、該
高周波沿面放電素子の誘電体層が円筒状であり、該コロ
ナ放電極が該円筒状誘電体層の内表面上に設けられてお
り、該面状誘導電極が該円筒状誘電体層の外表面上に設
けられている事を特徴とする請求項3に記載のガス処理
装置。 8、請求項3及び4に記載のガス処理装置において、該
ガス処理部が少なくとも1個の円筒状誘電体層で構成さ
れ、その外表面上に面状誘導電極を配設、その内表面上
にコロナ放電極を配設してその内部をガス通路とし、こ
れによつて該ガス処理部が該高周波沿面放電素子を兼ね
ている事を特徴とするガス処理装置。 9、請求項8のガス処理装置において、該ガス処理部を
構成する円筒状誘電体層の内部に、これと同心的にガス
の通過を遮る円筒状筒体を配設し、該円筒状誘電体層と
該円筒状筒体との間の空隙にガス通路を形成した事を特
徴とするガス処理装置。 10、請求項8のガス処理装置において、該ガス処理部
を構成する円筒状高周波沿面放電素子の内部に同心的に
、外表面上にコロナ放電極、内表面上に面状誘導電極を
配設してなり且つその内部にガスを通過させない別個の
円筒状高周波沿面放電素子を設け、両素子間の空隙にガ
ス通路を形成したた事を特徴とするガス処理装置。 11、請求項3から10までいずれか1項に記載のガス
処理装置において、該コロナ放電極が線状であり、該面
状誘導電極の外側を覆って別の誘電体層を設け、これに
よって該面状誘導電極が実質的に一つの誘電体層の内部
に埋設されている事を特徴とするガス処理装置。 12、請求項3から11までいずれか1項に記載のガス
処理装置において、該高周波沿面放電素子の該面状誘導
電極側表面を水冷するための水冷部と冷却水供給部を設
けた事を特徴とするガス処理装置。 13、請求項3から11までいずれか1項に記載のガス
処理装置において、該高周波沿面放電素子の該面状誘導
電極側表面を空冷するための空冷部と冷却用空気供給部
を設けた事を特徴とするガス処理装置、 14、請求項3から13までいずれか1項に記載のガス
処理装置において、該高周波沿面放電素子の該コロナ放
電極側表面を清掃するための清機構を設けた事を特徴と
するガス処理装置。 15、請求項4に記載のガス処理装置において、該後処
理部が固体又は液体状反応生成物を除去するための電気
集塵装置である事を特徴とするガス処理装置。 16、請求項4に記載のガス処理装置において、該後処
理部が固体状反応生成物を除去するための濾過集塵装置
である事を特徴とするガス処理装置。 17、請求項4に記載のガス処理装置において、該後処
理部が固体又は液体状反応生成物を除去するためのスク
ラッバーである事を特徴とするガス処理装置 18、請求項4に記載のガス処理装置において、該後処
理部が気体または液体状反応生物を吸収除去するための
固体吸収剤を充填したガス吸収装置である事を特徴とす
るガス処理装置。 19、請求項4に記載のガス処理装置において、該後処
理部が気体状反応生物を吸着除去収するための吸着剤を
充填した乾式ガス吸着収装置である事を特徴とするガス
処理装置。 20、請求項4に記載のガス処理装置において、該後処
理部が気体状反応生物を更に接触反応により変成するた
めの触媒を充填した接触反応装置である事を特徴とする
ガス処理装置。 21、請求項4に記載のガス処理装置において、該後処
理部が気体または液体状反応生物を吸収するための液体
吸収剤を処理後のガスに接触せしめる湿式ガス吸収装置
である事を特徴とするガス処理装置。 22、請求項3または4のいずれか1項に記載のガス処
理装置において、該ガス処理部の上流に処理すべき対象
ガス成分の処理を促進する添加ガスを注入するための添
加ガス注入部を設けた事を特徴とするガス処理装置。 23、請求項3または4のいずれか1項に記載のガス処
理装置において、該ガス処理部の上流、内部、下流の少
なくともいずれかに、処理すべき対象ガス成分の処理を
促進する光を照射する為の光源を設けた事を特徴とする
ガス処理装置。
[Claims] 1. A gas processing section having a gas inlet and a gas outlet,
At least one high-frequency creeping discharge element comprising a corona discharge electrode on one surface and a planar induction electrode on the other surface through a dielectric layer, at least the corona discharge electrode is provided. The corona discharge electrode and the planar induction electrode are connected to a high frequency high voltage power source to apply a high frequency high voltage between the two electrodes. A high-frequency creeping discharge is generated from the corona discharge electrode along the surface of the dielectric layer around the corona discharge electrode, and a gas to be treated is introduced into the gas treatment section from the gas inlet to generate a high-frequency creeping discharge on the surface where the high-frequency creeping discharge occurs. A gas processing method characterized by allowing the gas to pass through the vicinity, treating the gas by a plasma chemical action generated by the high-frequency creeping discharge, and then discharging the treated gas to the outside from the gas outlet. 2. In the gas treatment method according to claim 1, a post-treatment section connected to the gas outlet for removing reaction products contained in the gas after treatment is provided to remove the reaction products. A gas processing method characterized by subsequent discharge to the outside. 3. At least a gas treatment section having a gas inlet and a gas outlet, and having a corona discharge electrode on one surface and a planar induction electrode on the other surface with a dielectric layer interposed therebetween. One high-frequency creeping discharge element is disposed such that at least a high-frequency creeping discharge generation surface on which the corona discharge electrode is provided is exposed to the gas passage in the gas processing section, and the corona discharge electrode and the planar guide a high-frequency, high-voltage power source connected to the electrode to apply a high-frequency, high-voltage between both electrodes to generate a high-frequency creeping discharge from the corona discharge electrode along the surface of the dielectric layer surrounding the corona discharge electrode; A gas treatment device characterized in that a gas to be treated is introduced into the gas treatment section, passed near the high frequency creeping discharge generation surface, and then discharged to the outside from the gas outlet. 4. The gas treatment apparatus according to claim 3, further comprising a post-treatment section connected to the gas outlet for removing reaction products contained in the gas after treatment. Processing equipment. 5. The gas treatment apparatus according to claims 3 and 4, wherein the dielectric layer of the high frequency creeping discharge element has a flat plate shape. 6. In the gas treatment apparatus according to claims 3 and 4, the dielectric layer of the high wave creeping discharge element is cylindrical, and the corona discharge electrode is provided on the outer surface of the cylindrical dielectric layer. , A gas processing device characterized in that the planar induction electrode is provided on the inner surface of the cylindrical dielectric layer. 7. In the gas treatment apparatus according to claims 3 and 4, the dielectric layer of the high frequency creeping discharge element is cylindrical, and the corona discharge electrode is provided on the inner surface of the cylindrical dielectric layer. 4. The gas treatment apparatus according to claim 3, wherein the planar induction electrode is provided on the outer surface of the cylindrical dielectric layer. 8. The gas treatment device according to claims 3 and 4, wherein the gas treatment section is composed of at least one cylindrical dielectric layer, a planar induction electrode is disposed on the outer surface of the dielectric layer, and a planar induction electrode is disposed on the inner surface of the gas treatment section. A gas treatment device characterized in that a corona discharge electrode is disposed in the gas passage, and the inside thereof is used as a gas passage, whereby the gas treatment section also serves as the high frequency creeping discharge element. 9. The gas treatment device according to claim 8, wherein a cylindrical body that blocks the passage of gas is arranged concentrically inside the cylindrical dielectric layer constituting the gas treatment section, and the cylindrical dielectric layer A gas treatment device characterized in that a gas passage is formed in a gap between a body layer and the cylindrical body. 10. In the gas treatment device according to claim 8, a corona discharge electrode is disposed on the outer surface and a planar induction electrode is disposed on the inner surface concentrically inside the cylindrical high frequency creeping discharge element constituting the gas treatment section. What is claimed is: 1. A gas processing device comprising: a separate cylindrical high-frequency creeping discharge element that does not allow gas to pass therethrough; and a gas passage formed in a gap between the two elements. 11. In the gas treatment device according to any one of claims 3 to 10, the corona discharge electrode is linear, and another dielectric layer is provided covering the outside of the planar induction electrode, thereby A gas processing device characterized in that the planar induction electrode is substantially buried inside one dielectric layer. 12. The gas treatment device according to any one of claims 3 to 11, further comprising a water cooling section and a cooling water supply section for water cooling the surface of the high frequency creeping discharge element on the side of the planar induction electrode. Characteristic gas processing equipment. 13. The gas treatment device according to any one of claims 3 to 11, further comprising an air cooling section and a cooling air supply section for air cooling the surface of the high frequency creeping discharge element on the side of the planar induction electrode. 14. The gas treatment device according to any one of claims 3 to 13, further comprising a cleaning mechanism for cleaning the surface of the high-frequency creeping discharge element on the corona discharge electrode side. A gas processing device characterized by: 15. The gas treatment device according to claim 4, wherein the post-treatment section is an electrostatic precipitator for removing solid or liquid reaction products. 16. The gas treatment device according to claim 4, wherein the post-treatment section is a filtering and dust collecting device for removing solid reaction products. 17. The gas treatment device according to claim 4, wherein the after-treatment section is a scrubber for removing solid or liquid reaction products. A gas processing device characterized in that the post-processing section is a gas absorption device filled with a solid absorbent for absorbing and removing gaseous or liquid reaction products. 19. The gas treatment apparatus according to claim 4, wherein the after-treatment section is a dry gas adsorption and absorption apparatus filled with an adsorbent for adsorbing and removing gaseous reaction organisms. 20. The gas treatment device according to claim 4, wherein the post-treatment section is a catalytic reaction device filled with a catalyst for further denaturing the gaseous reactant by catalytic reaction. 21. The gas treatment device according to claim 4, characterized in that the post-treatment section is a wet gas absorption device in which the treated gas is brought into contact with a liquid absorbent for absorbing gaseous or liquid reaction organisms. gas treatment equipment. 22. The gas treatment apparatus according to claim 3 or 4, further comprising an additive gas injection part for injecting an additive gas for promoting treatment of the target gas component to be treated upstream of the gas treatment part. A gas processing device characterized by the following: 23. The gas treatment apparatus according to claim 3 or 4, wherein at least one of the upstream, inside, and downstream of the gas treatment section is irradiated with light that promotes treatment of the target gas component to be treated. A gas processing device characterized by being equipped with a light source for the purpose of
JP2067769A 1990-03-17 1990-03-17 Method and device for treating gas by using high-frequency creeping discharge Pending JPH03267113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2067769A JPH03267113A (en) 1990-03-17 1990-03-17 Method and device for treating gas by using high-frequency creeping discharge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2067769A JPH03267113A (en) 1990-03-17 1990-03-17 Method and device for treating gas by using high-frequency creeping discharge

Publications (1)

Publication Number Publication Date
JPH03267113A true JPH03267113A (en) 1991-11-28

Family

ID=13354481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2067769A Pending JPH03267113A (en) 1990-03-17 1990-03-17 Method and device for treating gas by using high-frequency creeping discharge

Country Status (1)

Country Link
JP (1) JPH03267113A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001210448A (en) * 2000-01-24 2001-08-03 Masuda Kenkyusho:Kk Corona discharger and gas processor using the same and ozonizer
KR100347649B1 (en) * 1997-12-20 2002-11-07 주식회사 포스코 An improving method of dust collection efficiency in flue gas using plasma reaction
JP2006026614A (en) * 2004-07-21 2006-02-02 Akiji Nishiwaki Waste gas treating method and waste gas treating apparatus
JP2006192013A (en) * 2005-01-12 2006-07-27 National Institute Of Advanced Industrial & Technology Air cleaning device
JP2010240630A (en) * 2009-03-31 2010-10-28 Shinwa Corp Deodorization apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100347649B1 (en) * 1997-12-20 2002-11-07 주식회사 포스코 An improving method of dust collection efficiency in flue gas using plasma reaction
JP2001210448A (en) * 2000-01-24 2001-08-03 Masuda Kenkyusho:Kk Corona discharger and gas processor using the same and ozonizer
JP2006026614A (en) * 2004-07-21 2006-02-02 Akiji Nishiwaki Waste gas treating method and waste gas treating apparatus
JP2006192013A (en) * 2005-01-12 2006-07-27 National Institute Of Advanced Industrial & Technology Air cleaning device
JP2010240630A (en) * 2009-03-31 2010-10-28 Shinwa Corp Deodorization apparatus

Similar Documents

Publication Publication Date Title
EP1683565B1 (en) Method of treating exhaust gas and treating apparatus
Masuda et al. Novel plasma chemical technologies—PPCP and SPCP for control of gaseous pollutants and air toxics
KR101993636B1 (en) Air cleaning and deodorizing device
JPH0615143A (en) Plasma reaction vessel for nitrogen oxide decomposition device
JPH03267113A (en) Method and device for treating gas by using high-frequency creeping discharge
JP2007000733A (en) Treatment method and treatment apparatus of gas
CN1277888A (en) Method for purifying organic waste gas
JP2001187319A (en) Method and device for cleaning gas
JP4472638B2 (en) Exhaust gas treatment method and apparatus
JP3625499B2 (en) Exhaust gas treatment equipment
JP3217173B2 (en) Exhaust gas purification method and exhaust gas purification system
JPH07229418A (en) Exhaust emission control device
JPH0564721A (en) Method and apparatus for treating air containing nitrogen oxide in low concentration
JP2001162134A (en) Method and device for cleaning waste gas
KR100454427B1 (en) Harmful gas purifying apparatus and thereof method by using microwave
JP2018202377A (en) Vehicle atmosphere purifier and hybrid motor vehicle
KR100527209B1 (en) Concurrent reducing device of fine particles and hazardous gas
JP2001300257A (en) Treatment device and decomposing method of waste gas by plasma decomposition process
JPH09276647A (en) No oxidation device and exhaust gas denitrification system for automotive way tunnel
JPH06165909A (en) Method for decreasing green house effect gas and device for the same
Nomura et al. A study of NO removal by packed-beads discharge reactor
KR101547693B1 (en) Electron Beam Treatment Apparatus Having Fluorine Compound Decomposition Plate and System for Decomposing Fluorine Compound
JP2004330001A (en) Method and apparatus for treating nitrogen oxide-containing gas
JPH0699030A (en) Method for denitrifying low concentration nitrogen oxide containing gas
JPH0679137A (en) Method for treating air containing small amount of nitrogen oxide