JPH03259131A - Liquid crystal projecting device - Google Patents

Liquid crystal projecting device

Info

Publication number
JPH03259131A
JPH03259131A JP2056507A JP5650790A JPH03259131A JP H03259131 A JPH03259131 A JP H03259131A JP 2056507 A JP2056507 A JP 2056507A JP 5650790 A JP5650790 A JP 5650790A JP H03259131 A JPH03259131 A JP H03259131A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal panel
optical system
projection
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2056507A
Other languages
Japanese (ja)
Inventor
Koji Nakanishi
中西 孝次
Shinichiro Shinoda
篠田 真一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kowa Co Ltd
Original Assignee
Kowa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kowa Co Ltd filed Critical Kowa Co Ltd
Priority to JP2056507A priority Critical patent/JPH03259131A/en
Publication of JPH03259131A publication Critical patent/JPH03259131A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Projection Apparatus (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Abstract

PURPOSE:To improve optical efficiency by making the optical axis of illuminating light for a liquid crystal panel coincide with the optical axis of a projection optical system through a declination prism. CONSTITUTION:The optical axis of the condenser lens LSC of the illuminating light for the liquid crystal panel 11 is made to coincide with the optical axis of the projecting lens L1 of the projection optical system through the declination prism 12. Namely, when the panel 11 is illuminated at an incident angle delta, an image having the most excellent contrast is obtained. Then, an illumination system constituted of a light source LS such as a halogen lamp, and the condenser lens LSC is arranged so that the incident direction of the illuminating light may satisfy the incident angle delta with respect to the normal of the panel 11. Therefore, the same state as the case that the illuminating light for the liquid crystal panel is made incident from a position which faces to the projection optical system is obtained. Thus, the performance of the projection optical system is effectively utilized and the bright and vivid image is projected.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は液晶投影装置、特に液晶パネルの透過光を所定
の投影光学系に入射させ、前記液晶パネルに表示された
光学像を所定のスクリーン上に投影する液晶投影装置に
関するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention is a liquid crystal projection device, in particular, allows transmitted light from a liquid crystal panel to enter a predetermined projection optical system, and displays an optical image displayed on the liquid crystal panel on a predetermined screen. This invention relates to a liquid crystal projection device that projects images onto a liquid crystal display.

[従来の技術1 従来より液晶は、低電圧、低消費電力で駆動でき、また
LSIとの整合性が極めてよく、軽量、薄型化が可能な
表示素子として知られており、また表示面サイズの設計
の自由度が高い。
[Conventional technology 1] Liquid crystals have traditionally been known as display elements that can be driven with low voltage and low power consumption, have extremely good compatibility with LSIs, can be made lightweight and thin, and are capable of reducing display surface size. High degree of freedom in design.

さらに、液晶を用いた表示パネル(以下液晶パネルとい
う)は、透過光でも反射光でも表示が可能であるという
特徴を有する。
Furthermore, a display panel using liquid crystal (hereinafter referred to as a liquid crystal panel) has the characteristic that display can be performed using either transmitted light or reflected light.

このような利点から、各種電子機器の表示装置など、種
々のデイスプレィシステムに実施されている。
Because of these advantages, it has been implemented in various display systems such as display devices for various electronic devices.

[発明が解決しようとする課題] 液晶パネルは、液晶を2枚の透明電極の間で電界を与え
ることにより、所定の方向に配向させることにより、光
学的な透過率を変化させ、表示を行なうものであるが、
原理上ないし構造上の理由から、液晶パネルの法線方向
に対しである角度においで最もコントラストのよい光像
が得られるように設計、製造されている。
[Problems to be Solved by the Invention] A liquid crystal panel displays images by applying an electric field between two transparent electrodes to orient liquid crystal in a predetermined direction, thereby changing its optical transmittance. Although it is a thing,
For principle or structural reasons, they are designed and manufactured so that an optical image with the highest contrast can be obtained at a certain angle with respect to the normal direction of the liquid crystal panel.

この最もコントラストのよい光像を得られる角度は、一
般に視野角と呼ばれる。
The angle at which an optical image with the best contrast can be obtained is generally called the viewing angle.

一般に、電卓などの機器の液晶パネルでは、士数度〜数
十度程度の範囲でほぼ良好な光像が得られるように設計
されている。
In general, liquid crystal panels for devices such as calculators are designed to provide a generally good optical image in the range of a few degrees to several tens of degrees.

ところが、市場に供給されている透過型/反射型の液晶
パネルでは、ある程度の表示コントラストを得るために
は、最低限の角度(数度程度)が要求されていることが
多い。第4図は、−射的なしCDパネルの視野角δと、
コントラスとCoのある。
However, in transmissive/reflective liquid crystal panels supplied on the market, a minimum angle (on the order of several degrees) is often required in order to obtain a certain degree of display contrast. Figure 4 shows - viewing angle δ of the non-optical CD panel;
Contrast and Co.

反射型のアプリケーションでは、ユーザが直接光像を視
認し、その視認角度がパネルの法線方向であることはむ
しろまれなので、それほど大きな問題は生じないが、透
過型のアプリケーションでは不都合がある。
In reflective applications, this is not a major problem because it is rather rare for the user to directly view the light image and the viewing angle is in the normal direction of the panel, but in transmissive applications this is a disadvantage.

透過光を用いるアプリケーションには、たとえば液晶プ
ロジェクタがあるが、液晶パネルの透過光を用いて表示
光像を最もコントラストよく表示するためには、液晶パ
ネルに対する照明光の入射角度は、その液晶パネルで決
められた最低の視野角度以上としなければならない。
An example of an application that uses transmitted light is a liquid crystal projector, but in order to display a display light image with the highest contrast using the transmitted light of the liquid crystal panel, the angle of incidence of the illumination light on the liquid crystal panel must be determined by the angle of incidence of the illumination light on the liquid crystal panel. The viewing angle must be at least the specified minimum viewing angle.

このため、液晶パネルに表示された光像を投影する光学
系に大きな負担を与えることになる。
This places a heavy burden on the optical system that projects the optical image displayed on the liquid crystal panel.

液晶パネルに対してOoを越える照明光入射角度をもっ
て投影を行なう光学系の配置としては、まず、投影レン
ズの光軸と液晶パネルからの照明(透過)光の主光線方
向を一致(平行に)させた場合には、もっとも効率はよ
いが、レンズ光軸に対してパネルを傾けた配置となり、
チルト(ア才り)投影となる。したがって、スクリーン
上の投影像に非対称な歪みが生じる。
In order to arrange the optical system that projects the illumination light onto the liquid crystal panel with an incident angle exceeding Oo, first, the optical axis of the projection lens and the principal ray direction of the illumination (transmission) light from the liquid crystal panel should be aligned (parallel). Although it is most efficient if the panel is tilted relative to the optical axis of the lens,
This is a tilted projection. Therefore, an asymmetrical distortion occurs in the projected image on the screen.

一方、第5図に示すように、投影光学系のレンズLLの
光軸に対して液晶パネル21を垂直に配置することも考
えられる。この場合には、液晶パネルの像がシフト投影
され、チルト投影の場合のような歪みは発生しない。な
お、第5図において、符号LSは光源、LSCはコンデ
ンサレンズである。
On the other hand, as shown in FIG. 5, it is also conceivable to arrange the liquid crystal panel 21 perpendicularly to the optical axis of the lens LL of the projection optical system. In this case, the image on the liquid crystal panel is projected with a shift, and no distortion occurs as in the case of tilt projection. In addition, in FIG. 5, the symbol LS is a light source, and LSC is a condenser lens.

ビデオプロジェクタなどの場合、像の歪みは商品価値を
左右するので、現在では、上記後者の光学系配置が用い
られている。
In the case of video projectors and the like, since image distortion affects the commercial value, the latter optical system arrangement is currently used.

ところが、シフト投影の場合には、第5図のように、レ
ンズの周辺部分しか使用していないので、明るさに関し
て効率のよい光学系とはいえない。従ってこのような構
成では、明るい投影像を得るためには1画角が大きく、
また、fナンバーの小さい投影レンズLが必要となり、
装置の大型化は避けられず、また設計の難易度も増す、
したがって、製造コストも増大することになる。
However, in the case of shift projection, as shown in FIG. 5, only the peripheral portion of the lens is used, so it cannot be said that the optical system is efficient in terms of brightness. Therefore, in such a configuration, in order to obtain a bright projected image, one angle of view must be large;
In addition, a projection lens L with a small f number is required,
Increasing the size of the equipment is unavoidable, and the difficulty of designing it also increases.
Therefore, manufacturing costs will also increase.

本発明の課題は、以上の問題を解決し、簡単安価で、光
学的な効率の高い液晶投影装置を提供することにある。
An object of the present invention is to solve the above problems and provide a liquid crystal projection device that is simple, inexpensive, and has high optical efficiency.

[課題を解決するための手段1 以上の課題を解決するために、本発明においては、液晶
パネルの透過ないし反射光を所定の投影光学系に入射さ
せ、前記液晶パネルに表示された光字像を所定のスクリ
ーン−1−に投影する液晶投影装置番こおいて、前記液
晶パネルが画成する下面に対し、て所定の入射角度をも
つ照明光を入射する手段と、前記液晶パネルが画成する
平面に対しで、ほぼ垂直に光軸を配置させた投影光学系
と、前記液晶パネルと投影光字系の間の所定位置に配置
された偏角プリズムを有し、前記偏角プリズムを介して
前記投影光学系側からみた前記液晶パネルの照明光の光
軸を前記投影光字系の光軸と一致させLH構成を採用し
た。
[Means for Solving the Problems 1] In order to solve the above problems, in the present invention, transmitted or reflected light from a liquid crystal panel is made incident on a predetermined projection optical system, and an optical character image displayed on the liquid crystal panel is a liquid crystal projection device for projecting images onto a predetermined screen -1; means for making illumination light incident at a predetermined angle of incidence onto a lower surface defined by the liquid crystal panel; a projection optical system having an optical axis arranged substantially perpendicular to a plane to be projected; and a deflection prism disposed at a predetermined position between the liquid crystal panel and the projection optical system; An LH configuration was adopted in which the optical axis of the illumination light of the liquid crystal panel as viewed from the projection optical system side was made to coincide with the optical axis of the projection optical system.

1作用1 以上の構成によれば、前記偏角プリズムにより、前記液
晶パネルの照明光が投影光学系に正対した位置から入射
させた場合と同じ状態を作り出すことができる。
1 Effect 1 According to the above configuration, the deflection prism can create the same state as when the illumination light of the liquid crystal panel is made to enter the projection optical system from a position directly facing the projection optical system.

一方、液晶パネルに対する照明光は光像のコントラスト
が最も良好な角度に保たれる。
On the other hand, the illumination light for the liquid crystal panel is maintained at an angle that provides the best contrast of the optical image.

[実施例1 以下、図面に示す実施例に基づき1本発明な詳細1.二
説明する1、 第1図(A)は、本発明を採用し7だ液晶投影装置の要
部の構成を示している。
[Example 1] Hereinafter, details of the present invention will be explained based on the embodiment shown in the drawings. 2. Explanation 1. FIG. 1(A) shows the configuration of the main parts of a liquid crystal projection device employing the present invention.

図においで符号11は液晶パネルで、投影光学系のレン
ズI、の光軸に対し2゛c直角にバマル面が配置されて
いる。
In the figure, reference numeral 11 denotes a liquid crystal panel, and a Bamaru surface is arranged at a right angle of 2°c to the optical axis of lens I of the projection optical system.

液晶パネル11は、δなる入側角度で昭明し、たとき、
最もコントラストの良好な画像が得られるものであり、
第1図に右いて照明光の入射方向は液晶パネル11の法
線に対しでこの入射角度りをているものとJる。
The liquid crystal panel 11 is illuminated at an entrance angle of δ, and when
This provides the image with the best contrast,
As shown on the right in FIG. 1, the direction of incidence of the illumination light is assumed to be at this angle of incidence with respect to the normal line of the liquid crystal panel 11.

一方、投影レンズ1.に対して、第5図のように液晶パ
ネル】1を配置し、シフト投影を行った場合、光学系の
効率が低下するので、本実施例では、液晶パネル11と
投影系のフィールドレンズL2の間に偏角プリズム12
を配置し、投影レンズl、1.フィールドレンズ1.2
の光軸と、これら投影レンズ側から偏角プリズム12を
介しでみた液晶パネル11の照明(透過)光の主光線の
到来方向を一致させる。
On the other hand, projection lens 1. On the other hand, if the liquid crystal panel 11 is arranged as shown in FIG. 5 and shift projection is performed, the efficiency of the optical system will decrease, so in this embodiment, the liquid crystal panel 11 and the field lens L2 of the projection system are An angle prism 12 between
and projecting lenses l, 1. field lens 1.2
and the arrival direction of the chief ray of the illumination (transmission) light of the liquid crystal panel 11 viewed from the projection lens side through the deflection prism 12 are made to coincide.

このような構成によれば、投影レンズ1−1の側からみ
れば、液晶パネル11は投影レンズ1.の有効なイメー
ジサークルの中心に位置しているのと同じことになり、
従来例のように、光量低t゛の問題も生じることがない
According to such a configuration, when viewed from the projection lens 1-1 side, the liquid crystal panel 11 is the same as the projection lens 1-1. It is the same as being located at the center of the effective image circle of
Unlike the conventional example, the problem of low light amount t' does not occur.

従来例以上の明るさでスクリーンS十に液晶パネル11
の表示光像を鮮明に投影できる。また、従来と同等の明
るさが確保できればよいのなら、従来よりfナンバーの
小さいレンズ、あるいは、光量の少ない照明系を用いる
ことができ、コストダウン、装置の小型軽量化、低消費
電力化が図れる。
LCD panel 11 on screen S10 with brightness higher than conventional example
A display light image can be projected clearly. In addition, if you only need to ensure the same brightness as before, you can use a lens with a smaller f-number or a lighting system with less light intensity than before, which will reduce costs, make the device smaller and lighter, and lower power consumption. I can figure it out.

なお、偏角プリズム12の頂角θと、液晶パネル11に
対する好ましい照明光入射角度δ、および偏角プリズム
12の屈折率nの関係は、次のように示される(頂角θ
が小さい場合)。
The relationship between the apex angle θ of the deflection prism 12, the preferable illumination light incident angle δ with respect to the liquid crystal panel 11, and the refractive index n of the deflection prism 12 is shown as follows (vertex angle θ
is small).

δ=(n−1)θ たとえば、最適な照明光入射角度がδ=3°、偏角プリ
ズム12(ガラス)の屈折率n = 1.52とすると
、偏角ブリズh l 2のm角e L:jt、 97°
となる。
δ=(n-1)θ For example, if the optimal illumination light incident angle is δ=3° and the refractive index of the polarization prism 12 (glass) n = 1.52, then m angle e of the polarization prism h l 2 L:jt, 97°
becomes.

なお、第1図(A)では、フィールドレンズL。In addition, in FIG. 1(A), the field lens L is shown.

2と偏角プリズム12を別体と[7かが、これらを第1
図(B)に示すように一体化しても良い。この場合、偏
角プリズム部分Xとフィールドlノン1部分Yは、貼り
合せ、あるいは一体素材からの研磨などにより一体化さ
れる。この構成では、組立時に位置決めすべき部品の点
数が減少し、実装上有利である。
2 and the declination prism 12 are separate parts [7], but these are the first
They may be integrated as shown in Figure (B). In this case, the deflection prism portion X and the field non-1 portion Y are integrated by bonding or polishing from an integral material. This configuration reduces the number of parts that must be positioned during assembly, which is advantageous in terms of mounting.

なお、以上では、液晶パネル1.1と投影レンズLの量
器4:偏角プリズム12を配置する構成を例示したが、
第2図に示すように、液晶パネル11の表面あるいは裏
面のガラスへ−ス1.8(19)にスラント角を与えて
、これを偏角プリズムとして機能させるようにしでもよ
い。このような構成によって、照明、表示、光学系全体
の構成をより簡略化することができる。なお、第2図に
おいて、符号I5は液晶を保持するガラス板、16.1
7は互いに偏光方向が直角な偏光板である。
In addition, although the configuration in which the liquid crystal panel 1.1 and the meter 4 of the projection lens L and the deflection prism 12 are arranged is illustrated above,
As shown in FIG. 2, a slant angle may be given to the glass base 1.8 (19) on the front or back surface of the liquid crystal panel 11, so that it functions as a deflection prism. With such a configuration, the configuration of the illumination, display, and optical system as a whole can be further simplified. In addition, in FIG. 2, the reference numeral I5 indicates a glass plate holding the liquid crystal, 16.1
7 are polarizing plates whose polarization directions are perpendicular to each other.

第2図のような、LCDパネル一体型の偏角ブJズムを
用いた場合、第3図のような構成が考えられる。ここで
は、LCD素子の表裏のガラス板を偏角プリズム18a
、18bとし、偏角プリズム18aで一旦LCDパネル
11に対する照明光入射角度にコントラスト確保に必要
な角度(前記のδ)を得た後、偏角プリズム18bによ
り、再度投影系光軸に対して平行な光線に戻している。
When using an LCD panel-integrated deflection beam as shown in FIG. 2, a configuration as shown in FIG. 3 can be considered. Here, the front and back glass plates of the LCD element are connected to the deflection prism 18a.
, 18b, and once the incident angle of the illumination light to the LCD panel 11 is set to the angle (above δ) necessary for ensuring contrast, the angle of incidence of the illumination light to the LCD panel 11 is once obtained by the deflection prism 18b, and then the angle is set parallel to the optical axis of the projection system again by the deflection prism 18b. It is returning to the rays of light.

このような構成によれば、照明系の光軸と、投影系の光
軸を、LCDパネル11の前後でほぼ平行(−直線上)
に配置することができる。
According to such a configuration, the optical axis of the illumination system and the optical axis of the projection system are approximately parallel (on a - straight line) before and after the LCD panel 11.
can be placed in

従って、第3図の構成によれば、投影系の効率のみなら
ず、照明系の効率を向上させることができ、@記実施例
よりも有利な条件で投影が可能である。当然、第1図(
A)と同じ投影系であればより明るい投影像が得られ、
あるいはレンズ口径を小さくするなどの節約が可能とな
る。又、各光学素子配設のための空間も節約できる。
Therefore, according to the configuration shown in FIG. 3, not only the efficiency of the projection system but also the efficiency of the illumination system can be improved, and projection can be performed under more advantageous conditions than the embodiment described in @. Naturally, Figure 1 (
If the projection system is the same as in A), a brighter projected image can be obtained.
Alternatively, savings can be made by reducing the lens aperture. Moreover, the space for arranging each optical element can also be saved.

以上では、LCDパネル1枚を用いる投影装置を考えた
が、例えば、カラー投影装置では、3原色の画像をそれ
ぞれ別の(3枚の)LCDパネルを用いて表示し、その
透過光像を所定の光学系を介して合成する。このような
装置でも、個々のLCDパネルに前述の各実施例の構成
を何ら変更することな〈実施できるのはいうまでもない
In the above, we considered a projection device that uses one LCD panel, but for example, in a color projection device, images of three primary colors are displayed using separate (three) LCD panels, and the transmitted light image is displayed at a predetermined level. are synthesized through an optical system. It goes without saying that even in such a device, the configuration of each of the above-described embodiments can be implemented without making any changes to the individual LCD panels.

また、ビームスプリッタを用いて照明光をLCDパネル
に入射し、LCDパネル裏面の反射板での反射光(LC
Dパネルの透過光)を偏光ビームスプリッタ22、投影
レンズを介して投影する構成(日経メカニカル1989
年12月25日号)があるが、このような投影系におい
ても、第3図に示すような偏角プリズムをLCDパネル
の前後に配置することで、照明系、投影系の効率を損な
わずにLCDパネルのコントラストが良好となる照明光
入射角度を確保できる。
In addition, illumination light is incident on the LCD panel using a beam splitter, and the reflected light (LC
A configuration in which the transmitted light of panel D) is projected through a polarizing beam splitter 22 and a projection lens (Nikkei Mechanical 1989
(December 25, 2013 issue), but even in such a projection system, by placing deflection prisms in front and behind the LCD panel as shown in Figure 3, the efficiency of the illumination system and projection system can be maintained. It is possible to secure an angle of incidence of illumination light at which the contrast of the LCD panel is good.

[発明の効果] 以上から明らかなように1本発明によれば、液晶パネル
の透過ないし反射光を所定の投影光学系に入射させ、前
記液晶パネルに表示された光学像を所定のスクリーン上
に投影する液晶投影装置において、前記液晶パネルが画
成する平面に対して所定の入射角度をもつ照明光を入射
する手段と、前記液晶パネルが画成する平面に対して、
ほぼ垂直に光軸を配置させた投影光学系と、前記液晶パ
ネルと投影光学系の間の所定位置に配置された偏角プリ
ズムを有し、前記偏角プリズムを介して前記投影光学系
側からみた前記液晶パネルの照明光の光軸を前記投影光
学系の光軸と一致させた構成を採用しているので、前記
偏角プリズムにより、前記液晶パネルの照明光が投影光
学系に正対した位置から入射させた場合と同じ状態を作
り出すことができるとともに、一方、液晶パネルに対す
る照明光は光像のコントラストが最も良好な角度に保た
れるので、投影光学系の性能を有効に利用でき、小型軽
量かつ簡単安価、また低消費電力の照明系により、明る
(かつ鮮明な画像を投影できるという優れた効果がある
[Effects of the Invention] As is clear from the above, according to the present invention, transmitted or reflected light from a liquid crystal panel is made incident on a predetermined projection optical system, and an optical image displayed on the liquid crystal panel is projected onto a predetermined screen. In a liquid crystal projection device for projecting, means for making illumination light incident at a predetermined angle of incidence with respect to a plane defined by the liquid crystal panel;
It has a projection optical system with an optical axis arranged almost vertically, and a deflection prism arranged at a predetermined position between the liquid crystal panel and the projection optical system, and from the projection optical system side through the deflection prism. Since the optical axis of the illumination light of the liquid crystal panel is aligned with the optical axis of the projection optical system, the polarization prism allows the illumination light of the liquid crystal panel to directly face the projection optical system. It is possible to create the same condition as when the light is incident from a certain position, and on the other hand, the illumination light to the liquid crystal panel is maintained at an angle that provides the best contrast of the light image, so the performance of the projection optical system can be effectively utilized. It is small, lightweight, simple and inexpensive, and has the excellent effect of projecting bright (and clear) images thanks to its low power consumption lighting system.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)は本発明を採用した液晶投影装置の要部を
示した説明図、第1図(B)は本発明の異なる実施例を
示した説明図、第2図は本発明の異なる実施例における
液晶パネルを示した説明図、第3図は本発明の異なる実
施例における液晶投影装置を示した説明図、第4図は液
晶パネルの視野角とコントラストの関係を示す線図、第
5図は従来の液晶投影装置の構成を示した説明図である
。 S−・スクリーン     L・・・投影レンズ11.
21・・・液晶パネル 12・・−偏角プリズム15−
・ガラス板     16.17・・−偏光板18.1
9−・ベース
FIG. 1(A) is an explanatory diagram showing the main parts of a liquid crystal projection device adopting the present invention, FIG. 1(B) is an explanatory diagram showing a different embodiment of the present invention, and FIG. An explanatory diagram showing a liquid crystal panel in different embodiments, FIG. 3 is an explanatory diagram showing a liquid crystal projection device in a different embodiment of the present invention, and FIG. 4 is a diagram showing the relationship between viewing angle and contrast of a liquid crystal panel. FIG. 5 is an explanatory diagram showing the configuration of a conventional liquid crystal projection device. S- Screen L... Projection lens 11.
21...Liquid crystal panel 12...-deflection prism 15-
・Glass plate 16.17...-Polarizing plate 18.1
9-Base

Claims (1)

【特許請求の範囲】 1)液晶パネルの透過光を所定の投影光学系に入射させ
、前記液晶パネルに表示された光学像を所定のスクリー
ン上に投影する液晶投影装置において、 前記液晶パネルが画成する平面に対して所定の入射角度
をもつ所定の照明手段の照明光を入射する手段と、 前記液晶パネルが画成する平面に対して、ほぼ垂直に光
軸を配置させた投影光学系と、 前記液晶パネルと投影光学系の間の所定位置に配置され
た偏角プリズムを有し、 前記偏角プリズムを介して前記投影光学系側からみた前
記液晶パネルの照明光の光軸を前記投影光学系の光軸と
一致させたことを特徴とする液晶投影装置。 2)前記投影光学系の光軸と、前記照明手段の光軸がほ
ぼ平行に配置され、しかも前記液晶パネルに対する所定
の入射角度を保つよう、前記偏角プリズムが前記液晶パ
ネルの前後に配置されることを特徴とする請求項第1項
に記載の液晶投影装置。 3)前記偏角プリズムが、投影光学系内の所定素子と一
体化されることを特徴とする請求項第1項または第2項
に記載の液晶投影装置。 4)前記偏角プリズムが、前記液晶パネルを構成する単
数または複数の所定素子と一体化されることを特徴とす
る請求項第1項または第2項に記載の液晶投影装置。 5)前記液晶パネル、偏角プリズムおよび照明手段が複
数設けられ、各液晶パネルの表示像の合成像をスクリー
ンに投影する投影光学系を有することを特徴とする請求
項第1項から第3項までのいずれか1項に記載の液晶投
影装置。
[Scope of Claims] 1) A liquid crystal projection device that causes transmitted light of a liquid crystal panel to enter a predetermined projection optical system and projects an optical image displayed on the liquid crystal panel onto a predetermined screen, wherein the liquid crystal panel a projection optical system having an optical axis arranged substantially perpendicular to the plane defined by the liquid crystal panel; , a deflection prism disposed at a predetermined position between the liquid crystal panel and the projection optical system, and the optical axis of the illumination light of the liquid crystal panel viewed from the projection optical system side through the deflection prism is projected. A liquid crystal projection device characterized by aligning the optical axis of an optical system. 2) The deflection prisms are arranged in front of and behind the liquid crystal panel so that the optical axis of the projection optical system and the optical axis of the illumination means are arranged substantially parallel to each other and maintain a predetermined angle of incidence with respect to the liquid crystal panel. The liquid crystal projection device according to claim 1, characterized in that: 3) The liquid crystal projection device according to claim 1 or 2, wherein the deflection prism is integrated with a predetermined element within a projection optical system. 4) The liquid crystal projection device according to claim 1 or 2, wherein the deflection prism is integrated with one or more predetermined elements constituting the liquid crystal panel. 5) Claims 1 to 3 are characterized in that a plurality of the liquid crystal panels, deflection prisms, and illumination means are provided, and a projection optical system is provided for projecting a composite image of the display images of the respective liquid crystal panels onto a screen. The liquid crystal projection device according to any one of the preceding items.
JP2056507A 1990-03-09 1990-03-09 Liquid crystal projecting device Pending JPH03259131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2056507A JPH03259131A (en) 1990-03-09 1990-03-09 Liquid crystal projecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2056507A JPH03259131A (en) 1990-03-09 1990-03-09 Liquid crystal projecting device

Publications (1)

Publication Number Publication Date
JPH03259131A true JPH03259131A (en) 1991-11-19

Family

ID=13029041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2056507A Pending JPH03259131A (en) 1990-03-09 1990-03-09 Liquid crystal projecting device

Country Status (1)

Country Link
JP (1) JPH03259131A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05257114A (en) * 1992-03-13 1993-10-08 Hitachi Ltd Liquid crystal projection type display
JPH0579530U (en) * 1992-03-24 1993-10-29 日本ビクター株式会社 Display system optics
US5371559A (en) * 1991-11-15 1994-12-06 Matsushita Electric Industrial Co., Ltd. Light valve image projection apparatus
US5612797A (en) * 1994-05-14 1997-03-18 U.S. Philips Corporation Liquid crystal projection display systems
US20140078429A1 (en) * 2007-05-10 2014-03-20 Stanley Electric Co., Ltd. Vertical alignment type liquid crystal display apparatus having improved display uniformity

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5371559A (en) * 1991-11-15 1994-12-06 Matsushita Electric Industrial Co., Ltd. Light valve image projection apparatus
JPH05257114A (en) * 1992-03-13 1993-10-08 Hitachi Ltd Liquid crystal projection type display
JPH0579530U (en) * 1992-03-24 1993-10-29 日本ビクター株式会社 Display system optics
US5612797A (en) * 1994-05-14 1997-03-18 U.S. Philips Corporation Liquid crystal projection display systems
US20140078429A1 (en) * 2007-05-10 2014-03-20 Stanley Electric Co., Ltd. Vertical alignment type liquid crystal display apparatus having improved display uniformity
US9207471B2 (en) * 2007-05-10 2015-12-08 Stanley Electric Co., Ltd. Vertical alignment type liquid crystal display apparatus having improved display uniformity

Similar Documents

Publication Publication Date Title
US6992822B2 (en) Projection display system using a diffuse reflecting polarizer
EP0871054B1 (en) Miniature displays
US6864861B2 (en) Image generator having a miniature display device
CN110646968B (en) Display module
JPH08254678A (en) Projection type liquid crystal display device
JP2008525841A (en) Liquid crystal display device and mobile communication terminal having the same
JPH03216638A (en) Projection type display device
US5430562A (en) Liquid crystal light valve including between light and light valve microlenses and two reflecting layers with a matrix of openings
JP3518237B2 (en) Liquid crystal display
JP2000075259A (en) Liquid crystal device and projection type display device using the same
JPH03259131A (en) Liquid crystal projecting device
JP3337022B2 (en) projector
CN212031897U (en) Display panel and display device
JPH01209480A (en) Liquid crystal panel and image projecting device using it
JPH09258207A (en) Color liquid crystal display device
JPH0812343B2 (en) Image projection device
JP3133055B2 (en) Projection type liquid crystal display
JPH09179113A (en) Liquid crystal display device
JPH0457011A (en) Miniature display device
JPH02150886A (en) Liquid crystal projector device, polarizer used for same, and polarizing microscope using polarizer
JPH06242411A (en) Light valve device and display device using it
JPH01201693A (en) Projection type liquid crystal display device
JP2001264685A (en) Device and system for displaying image
JPH0531623Y2 (en)
JP2000131507A (en) Lens array plate, light valve device, projection type display device, and viewfinder device