JPH0325880A - Infrared heater - Google Patents

Infrared heater

Info

Publication number
JPH0325880A
JPH0325880A JP16108789A JP16108789A JPH0325880A JP H0325880 A JPH0325880 A JP H0325880A JP 16108789 A JP16108789 A JP 16108789A JP 16108789 A JP16108789 A JP 16108789A JP H0325880 A JPH0325880 A JP H0325880A
Authority
JP
Japan
Prior art keywords
heating element
thin film
infrared heater
layer
resistance heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16108789A
Other languages
Japanese (ja)
Other versions
JP2778598B2 (en
Inventor
Hidekazu Shirakawa
英一 白川
Kimiharu Matsumura
松村 公治
Akinobu Eto
衛藤 昭信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Kyushu Ltd
Original Assignee
Tokyo Electron Kyushu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Kyushu Ltd filed Critical Tokyo Electron Kyushu Ltd
Priority to JP1161087A priority Critical patent/JP2778598B2/en
Publication of JPH0325880A publication Critical patent/JPH0325880A/en
Application granted granted Critical
Publication of JP2778598B2 publication Critical patent/JP2778598B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a miniature infrared heater having a long durable life and capable of high temperature heating work by providing an insulator layer generating infrared rays by the heat of a thin film resistance heating element layer. CONSTITUTION:An infrared heater 14 for heating a semiconductor wafer W through a window 13 made of quartz glass is provided above the setting table 4 of the semiconductor wafer W. The infrared heater 14 has an insulator layer 16 adhered on a base 15 and a thin film resistant heating element layer 17 laminated thereon. The insulator layer 16 has excellent electric insulating property, and as the insulator layer, materials easy to radiate infrared rays or far infrared rays, for example, ceramics such as alumina, zirconium, silicon carbide and diamond, arc preferably used. As the thin film resistance heating element layer 17, any material which can form the resistance heating element by energization such as chromium, nickel, platinum, tantalum, and tungsten can be preferably used.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は赤外線ヒータに係り、特に薄膜の赤外線ヒータ
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an infrared heater, and particularly to a thin film infrared heater.

[従来の技術及び発明が解決すべき課題]従来から使用
される赤外線ランプは被加熱体のごく表面を加熱したい
場合に赤外線ランプの光を被加熱体に照射し、輻射熱で
加熱を行っている。
[Conventional technology and problems to be solved by the invention] Infrared lamps that have been used conventionally irradiate the object with the light of the infrared lamp when it is desired to heat the very surface of the object to be heated, and heat the object using radiant heat. .

しかし,赤外線ランプに使用されるフィラメントとして
はタングステンや炭素等が用いられている。
However, tungsten, carbon, etc. are used as filaments for infrared lamps.

このフィラメントのが寿命が短く、1000時間位で消
耗してしまい、その交換または修理等のためのメンテナ
ンスが必要となる。また、構造が複雑で大型であり、気
密装置内に設置される場合には赤外線ランプの設置容積
分が装置全体にしめる割合が大きく、特に照射面積が小
さい場合にはその傾向が強く、効率も悪く、経済的にも
非常に高額になってしまうという欠点があった.さらに
、現在使用されている赤外線ランプは加熱温度が600
〜700℃程度であって、800〜1000℃程度の加
熱に適したものは得られなかった。
This filament has a short lifespan and wears out after about 1000 hours, requiring maintenance to replace or repair it. In addition, the structure is complex and large, and when installed in an airtight device, the installation volume of the infrared lamp takes up a large proportion of the entire device, and this tendency is particularly strong when the irradiation area is small, resulting in poor efficiency. However, the disadvantage was that it was economically very expensive. Furthermore, the infrared lamps currently in use have a heating temperature of 600°C.
to about 700°C, and no material suitable for heating at about 800 to 1000°C was obtained.

本発明は上記のような欠点を解消し、小型でしかも耐久
年数が長く,高温加熱処理ができる赤外線ヒータを提供
することを目的とする.[課題を解決するための手段] 上記の目的を達成するため、本発明の赤外線ヒータは、
薄膜抵抗発熱体層と、該薄膜抵抗発熱体層の加熱により
赤外線を発生するMe体層とを積層して或る. [作用コ 本発明の赤外線ヒータは、金属等から或る導電性でしか
も通電により発熱する抵抗発熱体を薄膜に戊形し、さら
に赤外線もしくは遠赤外線を放出するセラミック等の絶
縁体層を積層して得られるものであり、非常に薄い積層
体から或る.そのため、設置に必要な容積もごく小さく
,シかも高温を発することができる。
The object of the present invention is to eliminate the above-mentioned drawbacks, and to provide an infrared heater that is small, has a long service life, and is capable of high-temperature heat treatment. [Means for Solving the Problems] In order to achieve the above object, the infrared heater of the present invention has the following features:
A thin film resistance heating element layer and a Me body layer which generates infrared rays by heating the thin film resistance heating element layer are laminated. [Function] The infrared heater of the present invention is made by forming a resistive heating element made of metal or the like into a thin film that is conductive and generates heat when energized, and further laminated with an insulating layer such as ceramic that emits infrared or far infrared rays. It is obtained from a very thin laminate. Therefore, the volume required for installation is extremely small, and it can generate high temperatures.

[実施例] 本発明の赤外線ヒータを半導体製造のCVD装置に適用
したー実施例を図面を参照して説明する.第1図におい
て、CVD装置の処理室1は円筒状で内部を気密に保持
されている.処理室1には半導体ウェハWを処理面が下
方になるようエアシリンダ等で駆動する昇降機構2に接
続された支持体3と共に半導体ウェハWの周縁部を係止
して固定する設置台4が設けられる.処理室1の下部に
は酸化系のガスである膜或長用ガス及び還元性のガスで
ある膜成長用ガスを処理室1にそれぞれ供給する導入機
構5及び6が被処理体である半導体ウェハWに対位する
よう設けられる.さらに反応ガスの導入機構5及び6は
流量制御機構7を介してそれぞれガス供給系に接続され
、導入機構5及び6と被処理体間には円筒状のガスダク
ト8が設けられ、このガスダクト8には垂直邸動機構9
により反応ガスが半導体ウェハW上に均一に接するよう
に最適な位置に移動されるガス流制御板10が備えられ
る.処理室lの上方には排気配管11が複数本設けられ
,真空排気機構l2により処理室1内を減圧にし、さら
に反応ガスの排気を行うようになっている. ここで、半導体ウェハWの設置台4の上方には石英ガラ
ス製の窓13を通して半導体ウェハWを加熱する赤外線
ヒータ14が設けられる.赤外線ヒータl4は基台l5
に絶縁体16が被着され、その上に薄膜抵抗発熱体層1
7が積層されている.ここで、赤外線ヒータ14の各層
について説明する. 基台15は断熱材であって薄膜抵抗発熱体層17からの
発熱を被処理体への加熱に利用できるようにしている.
また基台l5の材料としては,断熱材になるものなら何
れも使用可能であるが、アルミナ、石英,ジルコニア、
炭化ケイ素、窒化ケイ素、ダイアモンド等に代表される
セラミックス,アルミナ煉瓦、カーボン煉瓦等の煉瓦等
のほか、これらの断熱材が被着されていればAI2,S
US等の導熱性の材料等も好適に用いられる。
[Example] An example in which the infrared heater of the present invention is applied to a CVD apparatus for semiconductor manufacturing will be described with reference to the drawings. In FIG. 1, a processing chamber 1 of the CVD apparatus has a cylindrical shape and is kept airtight inside. The processing chamber 1 includes a support 3 connected to an elevating mechanism 2 driven by an air cylinder or the like so that the processing surface of the semiconductor wafer W faces downward, and an installation table 4 that locks and fixes the peripheral edge of the semiconductor wafer W. It will be established. In the lower part of the processing chamber 1, introduction mechanisms 5 and 6 for supplying a film lengthening gas, which is an oxidizing gas, and a film growth gas, which is a reducing gas, to the processing chamber 1, respectively, are installed to supply a semiconductor wafer, which is an object to be processed, to the processing chamber 1. It is set up opposite the W. Further, the reaction gas introduction mechanisms 5 and 6 are respectively connected to a gas supply system via a flow rate control mechanism 7, and a cylindrical gas duct 8 is provided between the introduction mechanisms 5 and 6 and the object to be treated. is vertical motion mechanism 9
A gas flow control plate 10 is provided which is moved to an optimal position so that the reaction gas comes into uniform contact with the semiconductor wafer W. A plurality of exhaust pipes 11 are provided above the processing chamber 1, and a vacuum exhaust mechanism 12 reduces the pressure inside the processing chamber 1 and further exhausts the reaction gas. Here, an infrared heater 14 is provided above the mounting table 4 for the semiconductor wafer W to heat the semiconductor wafer W through a window 13 made of quartz glass. Infrared heater l4 is attached to base l5
An insulator 16 is deposited on the thin film resistance heating element layer 1.
7 are stacked. Here, each layer of the infrared heater 14 will be explained. The base 15 is made of a heat insulating material so that the heat generated from the thin film resistance heating layer 17 can be used to heat the object to be processed.
Furthermore, as the material for the base l5, any material that can serve as a heat insulator can be used, but alumina, quartz, zirconia,
In addition to ceramics such as silicon carbide, silicon nitride, and diamond, bricks such as alumina bricks, and carbon bricks, if these insulation materials are attached, AI2, S
A heat conductive material such as US may also be suitably used.

基台15上に被着される絶縁体層16は電気的絶縁性に
優れ、赤外線もしくは遠赤外線を放射し易い材質であれ
ば何れも使用可能であって,アルミナ、ジルコニア,炭
化ケイ素、ダイヤモンド等のセラミック等が好適に用い
られる.これらの材質を溶射、***等で基台15上に積
層して形成し、膜厚は使用電力により異なるが、100
〜200Vの商用電源を使用する場合は1〜1000μ
mのものが最適である。
The insulating layer 16 deposited on the base 15 can be made of any material as long as it has excellent electrical insulation and easily emits infrared rays or far infrared rays, such as alumina, zirconia, silicon carbide, diamond, etc. Ceramics and the like are preferably used. These materials are laminated and formed on the base 15 by thermal spraying, explosion spraying, etc., and the film thickness varies depending on the power used, but is approximately 100%
~1~1000μ when using a ~200V commercial power supply
m is optimal.

絶縁体層16に被着される薄膜抵抗発熱体層17はクロ
ム、ニッケル,白金、タンタル、タングステン、スズ,
鉄,鉛、アルメル、ベリリウム、アンチモン、インジウ
ム,クロメル、コバルト、ストロンチウム、モリブデン
,リチウム,ルビシウム等金属単体及びカーボンブラッ
ク、グラファイト等の炭素系単体の他,ニクロム、ステ
ンレスSUS、青銅、黄銅等の合金、ポリマーグラフト
カーボン等のポリマー系複合材料、ケイ化モリブデン等
の複合セラミック材料を含め導電性を有し,通電により
抵抗発熱体となりうるものならば何れも好適に使用でき
る.薄膜抵抗発熱体層17はこれらの材質のものを蒸着
、溶射,CVD.スパッター、イオンプレーティング等
の或膜手段を適宜採用することにより絶縁体層全面に均
一に成膜し,膜厚は0.1−1000μm、好ましくは
1〜10μmである。
The thin film resistance heating element layer 17 deposited on the insulator layer 16 is made of chromium, nickel, platinum, tantalum, tungsten, tin,
In addition to metals such as iron, lead, alumel, beryllium, antimony, indium, chromel, cobalt, strontium, molybdenum, lithium, and rubicium, and carbon-based substances such as carbon black and graphite, alloys such as nichrome, stainless steel SUS, bronze, and brass. , polymer-based composite materials such as polymer-grafted carbon, and composite ceramic materials such as molybdenum silicide, any material can be suitably used as long as it has conductivity and can become a resistance heating element when energized. The thin film resistance heating element layer 17 is made of these materials by vapor deposition, thermal spraying, CVD. A film is formed uniformly over the entire surface of the insulating layer by appropriately employing a film forming method such as sputtering or ion plating, and the film thickness is 0.1 to 1000 μm, preferably 1 to 10 μm.

以上説明の各層から或る赤外線ヒータは、薄膜抵抗発熱
体層に通電することにより300〜1000℃の熱を発
生し、所望の加熱温度になるよう適宜材質及び供給電流
を選択すればよい。
An infrared heater made of each of the layers described above generates heat of 300 to 1000° C. by applying electricity to the thin film resistance heating layer, and the material and supply current may be appropriately selected to achieve a desired heating temperature.

そして面積も適宜加熱面積に相当する大きさに形成でき
、しかも第2図,第3図に示すように曲面の基台15a
及び15b上に絶縁体層16a及び16bさらに薄膜抵
抗発熱体層17a及び17bを被着させ曲面状にも簡単
に形或できる。
The area can also be appropriately formed to a size corresponding to the heating area, and as shown in FIGS. 2 and 3, the base 15a has a curved surface.
Insulator layers 16a and 16b and thin film resistance heating element layers 17a and 17b are deposited on 15b and 15b to easily form a curved surface.

ここでは基台15に絶縁体R16を被着させ、薄膜抵抗
発熱体層17を設ける場合を説明したが,基台15が電
気的に絶縁体であれば基台に薄膜抵抗発熱体層を介して
絶縁体層を設けてもよい。
Here, a case has been described in which the insulator R16 is applied to the base 15 and the thin film resistance heating layer 17 is provided. An insulator layer may also be provided.

以上のような構成のCVD装置を用いて半導体ウェハW
にタングステンシリサイド膜を形成する方法を説明する
. まず、予め赤外線ヒータ14に通電し,600〜700
℃に加熱し、処理室1の搬入出用開閉機構(図示せず)
を介して半導体ウェハWを設置台4に配置し,支持体3
で支持する.半導体ウェハWを上記温度に加熱した状態
で酸化系ガス導入機構5及び還元系ガス導入機構6から
処理室l内にそれぞれWF,及びSiH,CQ.を導入
するとともに真空排気機構12により処理室1内が工O
OミリT orr以下になるよう真空排気を行う.する
と半導体ウェハW表面にWSixが均一に積層される.
以上説明は赤外線ヒータをCVD装霞に適用した一実施
例を示したもので、本発明の赤外線ヒータはこれに限定
されるものではなく、スパッタリング装置、アニール装
置、アッシング装置等にも好適に用いることができ、半
導体装置に限定されず赤外線ランプが使用されている装
置ならば何れも使用することができる。
Semiconductor wafer W is manufactured using the CVD apparatus configured as described above.
We will explain how to form a tungsten silicide film. First, the infrared heater 14 is energized in advance, and 600 to 700
℃, and an opening/closing mechanism for loading and unloading the processing chamber 1 (not shown)
Place the semiconductor wafer W on the installation stand 4 via the support body 3.
I support it. With the semiconductor wafer W heated to the above temperature, WF, SiH, CQ. At the same time, the inside of the processing chamber 1 is evacuated by the vacuum exhaust mechanism 12.
Evacuate to below 0 mm Torr. Then, WSix is uniformly stacked on the surface of the semiconductor wafer W.
The above description shows one embodiment in which an infrared heater is applied to CVD equipment, and the infrared heater of the present invention is not limited to this, but can also be suitably used in sputtering equipment, annealing equipment, ashing equipment, etc. It is not limited to semiconductor devices, and any device that uses an infrared lamp can be used.

[発明の効果] 以上の説明からも明らかなように、本発明の赤外線ヒー
タによれば、小型でコンパクトであるため、種々の装置
に設置可能であって、しかも曲面形成も簡単に行うこと
ができる。さらに、ON、OFF特性のよい赤外線ヒー
タが得られる.
[Effects of the Invention] As is clear from the above description, the infrared heater of the present invention is small and compact, so it can be installed in various devices, and curved surfaces can be easily formed. can. Furthermore, an infrared heater with good ON/OFF characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

Claims (1)

【特許請求の範囲】[Claims] 薄膜抵抗発熱体層と、該薄膜抵抗発熱体層の加熱により
赤外線を発生する絶縁体層とを積層して成ることを特徴
とする赤外線ヒータ。
An infrared heater comprising a laminated layer of a thin film resistance heating element layer and an insulating layer that generates infrared rays by heating the thin film resistance heating element layer.
JP1161087A 1989-06-23 1989-06-23 Heating method and heating device Expired - Lifetime JP2778598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1161087A JP2778598B2 (en) 1989-06-23 1989-06-23 Heating method and heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1161087A JP2778598B2 (en) 1989-06-23 1989-06-23 Heating method and heating device

Publications (2)

Publication Number Publication Date
JPH0325880A true JPH0325880A (en) 1991-02-04
JP2778598B2 JP2778598B2 (en) 1998-07-23

Family

ID=15728367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1161087A Expired - Lifetime JP2778598B2 (en) 1989-06-23 1989-06-23 Heating method and heating device

Country Status (1)

Country Link
JP (1) JP2778598B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0658066A2 (en) * 1993-12-09 1995-06-14 Sumitomo Electric Industries, Limited Diamond heater
WO1996009738A1 (en) * 1994-09-20 1996-03-28 Negawatt Gmbh Electric heating element
EP0862352A2 (en) * 1997-02-28 1998-09-02 Applied Komatsu Technology, Inc. A heating element with a diamond sealing material
WO2005076666A1 (en) * 2004-02-04 2005-08-18 The Doshisha Heat porducing material in thin film form and method for manufacture thereof
JP2005339908A (en) * 2004-05-25 2005-12-08 Matsushita Electric Works Ltd Infrared radiation element
WO2006095709A1 (en) * 2005-03-08 2006-09-14 The Doshisha Thin-film heating element, and process for producing thin-film heating element
EP2562519A2 (en) 2011-08-25 2013-02-27 Innovative Sensor Technology IST AG Radiation source

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62185329A (en) * 1986-02-10 1987-08-13 Toshiba Corp Oxidizing device for silicon
JPS63105486A (en) * 1986-10-20 1988-05-10 システム工業株式会社 Ceramic composite system far-infrared radiation unit and manufacture of the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62185329A (en) * 1986-02-10 1987-08-13 Toshiba Corp Oxidizing device for silicon
JPS63105486A (en) * 1986-10-20 1988-05-10 システム工業株式会社 Ceramic composite system far-infrared radiation unit and manufacture of the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0658066A2 (en) * 1993-12-09 1995-06-14 Sumitomo Electric Industries, Limited Diamond heater
EP0658066A3 (en) * 1993-12-09 1996-02-07 Sumitomo Electric Industries Diamond heater.
US5695670A (en) * 1993-12-09 1997-12-09 Sumitomo Electric Industries, Ltd. Diamond heater
WO1996009738A1 (en) * 1994-09-20 1996-03-28 Negawatt Gmbh Electric heating element
US5977519A (en) * 1997-02-28 1999-11-02 Applied Komatsu Technology, Inc. Heating element with a diamond sealing material
EP0862352A3 (en) * 1997-02-28 1998-10-21 Applied Komatsu Technology, Inc. A heating element with a diamond sealing material
EP0862352A2 (en) * 1997-02-28 1998-09-02 Applied Komatsu Technology, Inc. A heating element with a diamond sealing material
US6191390B1 (en) 1997-02-28 2001-02-20 Applied Komatsu Technology, Inc. Heating element with a diamond sealing material
WO2005076666A1 (en) * 2004-02-04 2005-08-18 The Doshisha Heat porducing material in thin film form and method for manufacture thereof
JP2005339908A (en) * 2004-05-25 2005-12-08 Matsushita Electric Works Ltd Infrared radiation element
JP4534597B2 (en) * 2004-05-25 2010-09-01 パナソニック電工株式会社 Infrared radiation element
WO2006095709A1 (en) * 2005-03-08 2006-09-14 The Doshisha Thin-film heating element, and process for producing thin-film heating element
EP2562519A2 (en) 2011-08-25 2013-02-27 Innovative Sensor Technology IST AG Radiation source
DE102011081570A1 (en) 2011-08-25 2013-02-28 Innovative Sensor Technology Ist Ag radiation source
DE102011081570B4 (en) 2011-08-25 2023-08-17 Innovative Sensor Technology Ist Ag radiation source

Also Published As

Publication number Publication date
JP2778598B2 (en) 1998-07-23

Similar Documents

Publication Publication Date Title
JP3892609B2 (en) Hot plate and method for manufacturing semiconductor device
US6094334A (en) Polymer chuck with heater and method of manufacture
KR101360970B1 (en) Heat treatment apparatus
EP0049032A1 (en) Coating insulating materials by glow discharge
US20040060917A1 (en) Advanced rapid thermal processing (RTP) using a linearly-moving heating assembly with an axisymmetric and radially-tunable thermal radiation profile
JPH11354260A (en) Multiple-layered ceramic heater
JP2007251126A (en) Semiconductor batch heating assembly
JP2007214540A (en) Etch-resistant heater and assembly thereof
US20060098379A1 (en) Electrostatic chuck including a heater mechanism
JPH0325880A (en) Infrared heater
KR20130098663A (en) Apparatus for manumacturing film and the method thereof
US3458341A (en) Metal boride-metal carbide-graphite deposition
US20090078202A1 (en) Substrate heater for material deposition
JPH06151332A (en) Ceramic heater
JP2002343693A (en) Substrate heater and semiconductor manufacturing apparatus
US9892942B2 (en) Substrate processing apparatus
US20030019858A1 (en) Ceramic heater with thermal pipe for improving temperature uniformity, efficiency and robustness and manufacturing method
JP2003213421A (en) Substrate treatment apparatus
JPH11345776A (en) Plate heater
JP4038409B2 (en) Heating device
JP4088823B2 (en) Vacuum processing equipment for generating negatively charged oxygen ions
CN111386599A (en) Vacuum processing apparatus
JP2002184790A (en) Plate material for heating substrate, and method of manufacturing cadmium telluride film
JPH02158123A (en) Heater
JPS6159180B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100508

Year of fee payment: 12