JPH06151332A - Ceramic heater - Google Patents

Ceramic heater

Info

Publication number
JPH06151332A
JPH06151332A JP30235192A JP30235192A JPH06151332A JP H06151332 A JPH06151332 A JP H06151332A JP 30235192 A JP30235192 A JP 30235192A JP 30235192 A JP30235192 A JP 30235192A JP H06151332 A JPH06151332 A JP H06151332A
Authority
JP
Japan
Prior art keywords
plasma
wafer
heater
electrode
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30235192A
Other languages
Japanese (ja)
Inventor
Ryusuke Ushigoe
隆介 牛越
Yusuke Arai
裕介 新居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP30235192A priority Critical patent/JPH06151332A/en
Publication of JPH06151332A publication Critical patent/JPH06151332A/en
Priority to US08/491,999 priority patent/US5800618A/en
Priority to US09/094,674 priority patent/US6101969A/en
Priority to US09/517,312 priority patent/US6197246B1/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance the heating ability of a heater and to achieve that the generation position of a plasma is situated near a wafer. CONSTITUTION:In a ceramic heater 1, a resistance heating element 3 composed of a high-melting-point metal is buried and installed in a dense ceramic base material 2. The ceramic heater has a structure in which a plasma-generating electrode 6 is buried and installed in the ceramic base material 2 and in which the plasma-generating electrode 6 is provided with an insulating property with reference to the installation face of a wafer W.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、緻密なセラミックス基
材に高融点金属からなる抵抗発熱体を埋設したセラミッ
クスヒーターに関し、特に半導体製造装置のウェハー加
熱装置に好適に使用されるセラミックスヒーターに関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramics heater in which a resistance heating element made of a high melting point metal is embedded in a dense ceramics base material, and more particularly to a ceramics heater suitable for use in a wafer heating device of a semiconductor manufacturing apparatus. Is.

【0002】[0002]

【従来の技術】スーパークリーン状態を必要とする半導
体製造用装置では、デポジション用ガス、エッチング用
ガス、クリーニング用ガスとして塩素系ガス、弗素系ガ
ス等の腐食性ガスが使用されている。このため、ウェハ
ーをこれらの腐食性ガスに接触させた状態で加熱するた
めの加熱装置として、抵抗発熱体の表面をステンレスス
チール、インコネル等の金属により被覆した従来のヒー
ターを使用すると、これらのガスの曝露によって、塩化
物、酸化物、弗化物等の粒径数μm の、好ましくないパ
ティクルが発生する。
2. Description of the Related Art In semiconductor manufacturing equipment requiring a super clean state, a corrosive gas such as chlorine gas or fluorine gas is used as a deposition gas, an etching gas and a cleaning gas. Therefore, as a heating device for heating the wafer in contact with these corrosive gases, if a conventional heater in which the surface of the resistance heating element is coated with a metal such as stainless steel or Inconel is used, these gases can be used. Exposure to chloride, oxides, fluorides, etc., produces undesired particles with a particle size of several μm.

【0003】そのため、例えば低温で使用されるエッチ
ャやCVD装置では、図3にその一例を示すように、デ
ポジション用ガス等に曝露される容器21の外側に石英
窓22を介して赤外線ランプ23を設置し、容器21内
にアーム24を介して設けた例えばアルミニウムよりな
るサセプター25を設置し、赤外線ランプ23にてサセ
プター25を加熱し、さらにサセプター25上に載置し
たウェハーWを間接的に加熱する構造をとっていた。そ
して、金属製のサセプター25をプラズマ発生用の電極
として使用し、サセプター25に直接高周波を供給し、
プラズマの発生およびクリーニング等を行っていた。そ
の際、アルミニウム製のサセプター25では、表面をア
ルマイト処理によって絶縁層を設け、載置したウェハー
Wに直接電流が加わることを防止していた。
Therefore, in an etcher or a CVD apparatus used at a low temperature, for example, as shown in FIG. 3, an infrared lamp 23 is provided outside a container 21 exposed to a deposition gas or the like through a quartz window 22. And the susceptor 25 made of, for example, aluminum provided in the container 21 via the arm 24, the susceptor 25 is heated by the infrared lamp 23, and the wafer W placed on the susceptor 25 is indirectly It had a heating structure. Then, the metal susceptor 25 is used as an electrode for plasma generation, and a high frequency is directly supplied to the susceptor 25,
Plasma generation and cleaning were performed. At that time, in the susceptor 25 made of aluminum, an insulating layer was provided on the surface by alumite treatment to prevent a current from being directly applied to the mounted wafer W.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述し
た従来例ではサセプター25が金属製であるため、高温
プロセスでの金属よりの重金属汚染が生ずる問題があっ
た。特に、アルミニウム製のサセプター25では、Mg
のコンタミネーションが問題となっていた。このような
コンタミネーションの問題を解決するため、図4にその
一例を示すように、サセプター25を絶縁性のセラミッ
クスとして、裏面にプラズマ発生用の板状電極26を取
り付けた構造のものも提案されている。しかしながら、
高周波供給用の板状電極26が赤外線ランプ23よりの
赤外線を遮断するため、サセプター25の加熱能力が低
下する問題があった。また、プラズマの発生する位置が
ウェハーWより離れるため、クリーニング性が低下する
問題もあった。これは、サセプターの外周にリング状電
極を設置した場合も同様の問題が生じた。
However, in the above-mentioned conventional example, since the susceptor 25 is made of metal, there is a problem that heavy metal contamination than metal occurs in a high temperature process. Particularly, in the aluminum susceptor 25, Mg
Was a problem. In order to solve such a contamination problem, as shown in an example of FIG. 4, a structure in which a plate electrode 26 for plasma generation is attached to the back surface of the susceptor 25 is also proposed. ing. However,
Since the plate-shaped electrode 26 for supplying high frequency blocks the infrared rays from the infrared lamp 23, there is a problem that the heating capacity of the susceptor 25 is reduced. Further, since the position where the plasma is generated is far from the wafer W, there is a problem that the cleaning property is deteriorated. This also caused the same problem when a ring-shaped electrode was installed on the outer circumference of the susceptor.

【0005】一方、赤外線ランプ23を使用せずに加熱
する方法として、セラミックス製のサセプター25中に
発熱抵抗体を埋設したセラミックスヒーターの使用も考
えられるが、図4に示した例と同様、裏面にプラズマ発
生用の板状電極6を取り付けなければならないため、や
はり図4に示した例と同様の問題が生じていた。
On the other hand, as a method of heating without using the infrared lamp 23, it is conceivable to use a ceramic heater in which a heating resistor is embedded in a ceramic susceptor 25, but like the example shown in FIG. Since the plate-shaped electrode 6 for plasma generation must be attached to the above, the same problem as in the example shown in FIG. 4 occurred.

【0006】本発明の目的は上述した課題を解消して、
加熱能力が向上するとともに、プラズマの発生位置をウ
ェハーWの近傍にすることができるセラミックスヒータ
ーを提供しようとするものである。
The object of the present invention is to solve the above problems,
It is an object of the present invention to provide a ceramics heater capable of improving the heating ability and making the plasma generation position near the wafer W.

【0007】[0007]

【課題を解決するための手段】本発明のセラミックスヒ
ーターは、緻密なセラミックス基材に高融点金属からな
る抵抗発熱体を埋設したセラミックスヒーターにおい
て、プラズマ発生用電極を前記セラミックス基材に埋設
し、ウェハー設置面に対し前記プラズマ発生用電極が絶
縁性を有する構造としたことを特徴とするものである。
The ceramic heater of the present invention is a ceramic heater in which a resistance heating element made of a refractory metal is embedded in a dense ceramic substrate, and a plasma generating electrode is embedded in the ceramic substrate, It is characterized in that the plasma generating electrode has an insulating property with respect to the wafer mounting surface.

【0008】[0008]

【作用】上述した構成において、ヒーター部を緻密なセ
ラミックス基材に高融点金属からなる抵抗発熱体を埋設
した構造としたため、ウェハーを載置した状態で直接ウ
ェハーを加熱でき、均熱性および加熱時のレスポンスを
向上させることができる。また、プラズマ発生用の電極
がセラミックス基材内に埋設されているため、セラミッ
クスヒーター上に直接ウェハーをコンタミネーションの
危険なく載置でき、絶縁層を設ける等の手段が必要ない
とともに、プラズマの発生する位置がウェハーの近傍と
なるため、プラズマ発生状況およびプラズマによるクリ
ーニング性能を向上することもできる。
In the above structure, since the heater portion has a structure in which a resistance heating element made of a high melting point metal is embedded in a dense ceramic base material, the wafer can be directly heated in a state where the wafer is placed. Can improve the response. In addition, since the electrodes for plasma generation are embedded in the ceramic base material, the wafer can be placed directly on the ceramic heater without risk of contamination, and no means such as providing an insulating layer is required, and plasma generation is possible. Since the position to be turned is near the wafer, it is possible to improve the plasma generation state and the cleaning performance by the plasma.

【0009】[0009]

【実施例】図1は本発明のセラミックスヒーター1の構
造を説明するための図である。図1に示す例において、
例えば円盤状のセラミックス基材2の内部に、W、Mo
等の高融点金属からなる抵抗発熱体3が埋設されてい
る。この抵抗発熱体3は好ましくは螺旋状に巻回される
とともに、円盤状のセラミックス基体2を平面的にみる
と、抵抗発熱体3は渦巻形をなすように設置されてい
る。抵抗発熱体3の両端部には、電力供給用の端子4と
それに続く電力供給用ケーブル5を設けている。また、
セラミックス基材2の内部の抵抗発熱体3の上側に、セ
ラミックス基材2よりも若干小さい直径を有する円盤状
のプラズマ発生用電極6を設け、このプラズマ発生用電
極6には、高周波供給用の端子7とそれに続くケーブル
8を供給する高周波信号に応じた必要な本数(ここでは
1本)だけ設けている。
1 is a view for explaining the structure of a ceramic heater 1 of the present invention. In the example shown in FIG.
For example, inside the disk-shaped ceramic substrate 2, W, Mo
A resistance heating element 3 made of a high melting point metal such as is buried. The resistance heating element 3 is preferably spirally wound, and the resistance heating element 3 is arranged so as to form a spiral shape when the disk-shaped ceramic substrate 2 is viewed in plan. At both ends of the resistance heating element 3, a terminal 4 for power supply and a power supply cable 5 following it are provided. Also,
A disk-shaped plasma generating electrode 6 having a diameter slightly smaller than that of the ceramic base material 2 is provided above the resistance heating element 3 inside the ceramic base material 2. The plasma generating electrode 6 is used for high frequency supply. The necessary number (here, one) is provided according to the high frequency signal that supplies the terminal 7 and the cable 8 that follows it.

【0010】セラミックス基体2は、例えば熱CVD装
置においては最大600℃から1100℃程度まで加熱
されるので、耐熱性の点で、アルミナ、窒化珪素焼結
体、サイアロン、炭化珪素、窒化アルミニウム、アルミ
ナ−炭化珪素複合材料等から形成することが好ましい。
特に、セラミックス基体2は非酸化物系セラミックスで
形成することが好ましい。これは、アルミナ等の酸化物
系セラミックスに比べて、SiC、Si34 、A1N
等の非酸化物系共有結合セラミックスは、高真空中での
ガス放出量が少ないためである。このうち、特に窒化珪
素を使用すると、セラミックスヒーター1全体の強度が
高くなり、熱膨張係数がウェハーとして代表的なシリコ
ンとほぼ同等であり、さらに腐食性ガスにも耐久性が高
いため好ましい。
The ceramic substrate 2 is heated to a maximum of about 600 ° C. to 1100 ° C. in a thermal CVD apparatus, so that in view of heat resistance, alumina, silicon nitride sintered body, sialon, silicon carbide, aluminum nitride, alumina. -Preferably formed from a silicon carbide composite material or the like.
In particular, it is preferable that the ceramic substrate 2 is made of non-oxide ceramics. Compared with oxide-based ceramics such as alumina, SiC, Si 3 N 4 , A1N
This is because such non-oxide-based covalently bonded ceramics has a small gas release amount in a high vacuum. Of these, use of silicon nitride is particularly preferable because the strength of the entire ceramic heater 1 is increased, the coefficient of thermal expansion is almost the same as that of silicon that is typical for wafers, and the durability against corrosive gas is also high.

【0011】セラミックス基板2は、プラズマ電極を埋
設するため、膜状基材2aと板状基材2bとからなり、
共材質のみでなく異種材質によって構成することも可能
である。膜状基材2aは、ウェハーに電流が流れること
よる半導体デバイスへの影響をさけるため、体積抵抗率
が108 Ωcm以上で厚さ10μm 以上が好ましい。ま
た、膜状基材2aはプラズマシース内に置かれ、電極6
のバイアス印加によって活性化した分子によるイオンボ
ンバートメントによってたたかれる。このため、膜状基
材2aはイオンボンバートメントによる耐久性を要求さ
れ、厚さ100μm 以上が好ましい。しかしながら、膜
状基材2aが厚くなると高周波印加による誘電体損失に
よって高周波パワーロスになるため、厚さ1mm以下が好
ましい。また、膜状基材2aと板状基材2bは、1体成
形以外に、絶縁性を有する接合材のホウ珪酸ガラス、オ
キシナイトライドガラスによって接合することが可能で
ある。電極6は、充分に高周波を伝えるためにリアクタ
ンス成分を低減する必要があり、1Ω以下となるように
充分な肉厚が必要である。このため、タングステン、モ
リブデンから電極6を構成する場合、8μm 以上の厚さ
が必要となる。
The ceramic substrate 2 is composed of a film-shaped substrate 2a and a plate-shaped substrate 2b for embedding a plasma electrode,
It is possible to use not only the common material but also different materials. The film-shaped substrate 2a preferably has a volume resistivity of 10 8 Ωcm or more and a thickness of 10 μm or more in order to prevent the influence of the current flowing through the wafer on the semiconductor device. Further, the film-shaped substrate 2a is placed in the plasma sheath, and the electrode 6
Is bombarded by ion bombardment by molecules activated by the bias application. Therefore, the film-shaped substrate 2a is required to have durability due to ion bombardment, and the thickness is preferably 100 μm or more. However, if the film-shaped substrate 2a becomes thicker, high-frequency power loss occurs due to dielectric loss due to high-frequency application. Therefore, the thickness is preferably 1 mm or less. Further, the film-shaped base material 2a and the plate-shaped base material 2b can be bonded together by borosilicate glass or oxynitride glass, which is a bonding material having an insulating property, other than the one-body molding. The electrode 6 needs to reduce the reactance component in order to sufficiently transmit a high frequency, and needs to have a sufficient thickness so as to be 1Ω or less. Therefore, when the electrode 6 is made of tungsten or molybdenum, a thickness of 8 μm or more is required.

【0012】図2は本発明のセラミックスヒーター1を
組み込んだ加熱装置の一例の構造を説明するための図で
ある。図2に示す例において、デポジション用ガス等に
曝露される容器11内に、アーム12を介してセラミッ
クスヒーター1を設置する。この際、プラズマ発生用電
極6が上面となるようにセラミックスヒーター1を設置
し、このセラミックスヒーター1の上面にウェハーWを
載置する。また、一対の電力供給用のケーブル5および
高周波信号供給用のケーブル8は、それぞれ容器11の
外部へ導通するよう構成する。この状態で、一対のケー
ブル5を介して抵抗発熱体3を加熱するための電力を供
給するとともに、ケーブル8を介して電極6においてプ
ラズマを発生させるための高周波信号を供給することに
より、加熱とプラズマ発生を実施することができる。
FIG. 2 is a view for explaining the structure of an example of a heating device incorporating the ceramics heater 1 of the present invention. In the example shown in FIG. 2, the ceramic heater 1 is installed via the arm 12 in the container 11 exposed to the deposition gas or the like. At this time, the ceramics heater 1 is installed so that the plasma generating electrode 6 is on the upper surface, and the wafer W is placed on the upper surface of the ceramics heater 1. The pair of power supply cable 5 and high-frequency signal supply cable 8 are configured to be electrically connected to the outside of the container 11. In this state, electric power for heating the resistance heating element 3 is supplied via the pair of cables 5, and a high frequency signal for generating plasma at the electrode 6 is supplied via the cable 8 to heat the resistance heating element 3. Plasma generation can be performed.

【0013】本発明は上述した実施例にのみ限定される
ものでなく、幾多の変形、変更が可能である。例えば、
上述した実施例では、電極6をプラズマ発生用の電極と
してのみ使用したが、この電極6を同時にウェハーWを
静電容量によりチャックするための静電チャック電極と
して働かせることができる。例えば、電極6に静電容量
を発生させるための直流電圧を印加すると同時に絶縁ト
ランスを介して高周波信号を供給すれば、ウェハーWを
セラミックスヒーター1の上面に吸着すると同時にプラ
ズマを発生することが可能となる。なお、高周波信号を
供給する際は、ケーブルとして抵抗値が1Ω以下でタン
グステンの場合は少なくとも直径10mmのものが4本
必要となり、静電チャック電極のみとして使用する際の
抵抗値0〜数100Ωで直径0.1mm程度でも可能な
場合と比べて大きく異なっている。
The present invention is not limited to the above-mentioned embodiments, but various modifications and changes can be made. For example,
In the above-mentioned embodiment, the electrode 6 is used only as an electrode for plasma generation, but the electrode 6 can simultaneously act as an electrostatic chuck electrode for chucking the wafer W by electrostatic capacitance. For example, if a high-frequency signal is supplied through an insulating transformer at the same time as a DC voltage for generating electrostatic capacitance is applied to the electrode 6, the wafer W can be attracted to the upper surface of the ceramic heater 1 and plasma can be generated at the same time. Becomes When supplying a high frequency signal, at least four cables with a resistance value of 1Ω or less and a diameter of 10 mm are required in the case of tungsten, and a resistance value of 0 to several hundreds Ω when used only as an electrostatic chuck electrode. A diameter of about 0.1 mm is significantly different from the case where it is possible.

【0014】[0014]

【発明の効果】以上の説明から明らかなように、本発明
によれば、ヒーター部を緻密なセラミックス基材に高融
点金属からなる抵抗発熱体を埋設した構造であるため、
ウェハーを載置した状態で直接ウェハーを加熱でき、均
熱性および加熱時のレスポンスを向上させることができ
るとともに、プラズマ発生用の電極がセラミックス基材
内に埋設されているため、セラミックスヒーター上に直
接ウェハーをコンタミネーションの危険なく載置でき、
絶縁層を設ける等の手段が必要なく、さらにプラズマの
発生する位置がウェハーの近傍となるため、プラズマ発
生状況およびプラズマによるクリーニング性能を向上す
ることもできる。
As is apparent from the above description, according to the present invention, the heater portion has a structure in which a resistance heating element made of a refractory metal is embedded in a dense ceramic substrate.
The wafer can be heated directly while it is placed, improving the thermal uniformity and the response at the time of heating, and since the electrode for plasma generation is embedded in the ceramic substrate, it can be directly placed on the ceramic heater. Wafers can be placed without risk of contamination,
Since no means such as providing an insulating layer is required and the position where plasma is generated is near the wafer, it is possible to improve the plasma generation state and the cleaning performance by plasma.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のセラミックスヒーターの一例の構造を
説明するための図である。
FIG. 1 is a diagram for explaining the structure of an example of a ceramics heater of the present invention.

【図2】本発明のセラミックスヒーターを組み込んだ加
熱装置の一例の構造を説明するための図である。
FIG. 2 is a view for explaining the structure of an example of a heating device incorporating the ceramics heater of the present invention.

【図3】従来の加熱装置の一例の構造を説明するための
図である。
FIG. 3 is a diagram for explaining the structure of an example of a conventional heating device.

【図4】従来の加熱装置の他の例の構造を説明するため
の図である。
FIG. 4 is a view for explaining the structure of another example of the conventional heating device.

【符号の説明】[Explanation of symbols]

1 セラミックスヒーター 2 セラミックス基材 3 抵抗発熱体 4,7 端子 5,8 ケーブル 6 プラズマ発生用電極 1 ceramics heater 2 ceramics base material 3 resistance heating element 4, 7 terminal 5, 8 cable 6 electrode for plasma generation

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 緻密なセラミックス基材に高融点金属か
らなる抵抗発熱体を埋設したセラミックスヒーターにお
いて、プラズマ発生用電極を前記セラミックス基材に埋
設し、ウェハー設置面に対し前記プラズマ発生用電極が
絶縁性を有する構造としたことを特徴とするセラミック
スヒーター。
1. A ceramic heater in which a resistance heating element made of a high melting point metal is embedded in a dense ceramic base material, wherein a plasma generating electrode is embedded in the ceramic base material, and the plasma generating electrode is attached to a wafer mounting surface. A ceramic heater having an insulating structure.
JP30235192A 1992-11-12 1992-11-12 Ceramic heater Pending JPH06151332A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP30235192A JPH06151332A (en) 1992-11-12 1992-11-12 Ceramic heater
US08/491,999 US5800618A (en) 1992-11-12 1994-06-30 Plasma-generating electrode device, an electrode-embedded article, and a method of manufacturing thereof
US09/094,674 US6101969A (en) 1992-11-12 1998-06-15 Plasma-generating electrode device, an electrode-embedded article, and a method of manufacturing thereof
US09/517,312 US6197246B1 (en) 1992-11-12 2000-03-02 Plasma-generating electrode device, an electrode-embedded article, and a method of manufacturing thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30235192A JPH06151332A (en) 1992-11-12 1992-11-12 Ceramic heater

Publications (1)

Publication Number Publication Date
JPH06151332A true JPH06151332A (en) 1994-05-31

Family

ID=17907873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30235192A Pending JPH06151332A (en) 1992-11-12 1992-11-12 Ceramic heater

Country Status (1)

Country Link
JP (1) JPH06151332A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07153706A (en) * 1993-05-27 1995-06-16 Applied Materials Inc Suscepter device
US6444957B1 (en) 2000-04-26 2002-09-03 Sumitomo Osaka Cement Co., Ltd Heating apparatus
US6693789B2 (en) 2000-04-05 2004-02-17 Sumitomo Osaka Cement Co., Ltd. Susceptor and manufacturing method thereof
US6768079B2 (en) 2001-11-08 2004-07-27 Sumitomo Osaka Cement Co. Ltd. Susceptor with built-in plasma generation electrode and manufacturing method therefor
US6815646B2 (en) 2000-07-25 2004-11-09 Ibiden Co., Ltd. Ceramic substrate for semiconductor manufacture/inspection apparatus, ceramic heater, electrostatic clampless holder, and substrate for wafer prober
JP2005029458A (en) * 2003-06-19 2005-02-03 Ngk Insulators Ltd Aluminum nitride sintered compact, method of manufacturing aluminum nitride and method of evaluating aluminum nitride
US6900149B1 (en) 1999-09-06 2005-05-31 Ibiden Co., Ltd. Carbon-containing aluminum nitride sintered compact and ceramic substrate for use in equipment for manufacturing or inspecting semiconductor
US7078655B1 (en) 1999-08-12 2006-07-18 Ibiden Co., Ltd. Ceramic substrate, ceramic heater, electrostatic chuck and wafer prober for use in semiconductor producing and inspecting devices
JP2006339144A (en) * 2005-05-31 2006-12-14 Ngk Insulators Ltd Plasma treatment device
US7175714B2 (en) 2002-07-05 2007-02-13 Sumitomo Osaka Cement Co., Ltd. Electrode-built-in susceptor and a manufacturing method therefor
US7211154B2 (en) 2002-07-16 2007-05-01 Sumitomo Osaka Cement Co., Ltd. Electrode-built-in susceptor
US8394199B2 (en) 2005-03-16 2013-03-12 Ngk Insulators, Ltd. Processing device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0235438B2 (en) * 1981-11-30 1990-08-10 Tokyo Shibaura Electric Co
JPH04304941A (en) * 1991-03-29 1992-10-28 Ngk Insulators Ltd Manufacture of wafer holder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0235438B2 (en) * 1981-11-30 1990-08-10 Tokyo Shibaura Electric Co
JPH04304941A (en) * 1991-03-29 1992-10-28 Ngk Insulators Ltd Manufacture of wafer holder

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07153706A (en) * 1993-05-27 1995-06-16 Applied Materials Inc Suscepter device
US7078655B1 (en) 1999-08-12 2006-07-18 Ibiden Co., Ltd. Ceramic substrate, ceramic heater, electrostatic chuck and wafer prober for use in semiconductor producing and inspecting devices
US6900149B1 (en) 1999-09-06 2005-05-31 Ibiden Co., Ltd. Carbon-containing aluminum nitride sintered compact and ceramic substrate for use in equipment for manufacturing or inspecting semiconductor
US6964812B2 (en) 1999-09-06 2005-11-15 Ibiden Co., Ltd. Carbon-containing aluminum nitride sintered compact and ceramic substrate for use in equipment for manufacturing or inspecting semiconductor
US7015166B2 (en) 1999-09-06 2006-03-21 Ibiden Co., Ltd. Carbon-containing aluminum nitride sintered compact and ceramic substrate for use in equipment for manufacturing or inspecting semiconductor
US6693789B2 (en) 2000-04-05 2004-02-17 Sumitomo Osaka Cement Co., Ltd. Susceptor and manufacturing method thereof
US6444957B1 (en) 2000-04-26 2002-09-03 Sumitomo Osaka Cement Co., Ltd Heating apparatus
US6815646B2 (en) 2000-07-25 2004-11-09 Ibiden Co., Ltd. Ceramic substrate for semiconductor manufacture/inspection apparatus, ceramic heater, electrostatic clampless holder, and substrate for wafer prober
US6768079B2 (en) 2001-11-08 2004-07-27 Sumitomo Osaka Cement Co. Ltd. Susceptor with built-in plasma generation electrode and manufacturing method therefor
US7175714B2 (en) 2002-07-05 2007-02-13 Sumitomo Osaka Cement Co., Ltd. Electrode-built-in susceptor and a manufacturing method therefor
US7211154B2 (en) 2002-07-16 2007-05-01 Sumitomo Osaka Cement Co., Ltd. Electrode-built-in susceptor
JP2005029458A (en) * 2003-06-19 2005-02-03 Ngk Insulators Ltd Aluminum nitride sintered compact, method of manufacturing aluminum nitride and method of evaluating aluminum nitride
US8394199B2 (en) 2005-03-16 2013-03-12 Ngk Insulators, Ltd. Processing device
JP2006339144A (en) * 2005-05-31 2006-12-14 Ngk Insulators Ltd Plasma treatment device

Similar Documents

Publication Publication Date Title
US5280156A (en) Wafer heating apparatus and with ceramic substrate and dielectric layer having electrostatic chucking means
US5800618A (en) Plasma-generating electrode device, an electrode-embedded article, and a method of manufacturing thereof
JP3699349B2 (en) Wafer adsorption heating device
JP4811608B2 (en) Wafer heating apparatus having electrostatic adsorption function
US20080062609A1 (en) Electrostatic chuck device
JPH0779122B2 (en) Electrostatic chuck with diamond coating
JPH06151332A (en) Ceramic heater
US20030047283A1 (en) Apparatus for supporting a substrate and method of fabricating same
KR20150006405A (en) Corrosion-resistant laminated ceramics member
JPH08236602A (en) Electrostatic chuck
JP2525974B2 (en) Semiconductor wafer-heating device
EP0680075B1 (en) Electrode for generating plasma and method for manufacturing the electrode
JPH0513558A (en) Wafer heating device and its manufacture
JPH04304941A (en) Manufacture of wafer holder
JP2008042140A (en) Electrostatic chuck device
JP2004158492A (en) Heating device with electrostatic attracting function and its manufacturing method
JPH07263530A (en) Vacuum processing apparatus and placement table used therefor
JP2501504B2 (en) Electrostatic chuck
JPH08107071A (en) Mount stage and depressurizing treatment apparatus
JP2793499B2 (en) Holding structure for holding object
JPH0594865A (en) Ceramic heater
JP3662909B2 (en) Wafer adsorption heating device and wafer adsorption device
JP3914377B2 (en) Wafer heating device having electrostatic adsorption function
JP3370489B2 (en) Electrostatic chuck
JP3180998B2 (en) Electrostatic chuck

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19970422