JPH03257351A - Measuring method by infrared microscope - Google Patents

Measuring method by infrared microscope

Info

Publication number
JPH03257351A
JPH03257351A JP2055856A JP5585690A JPH03257351A JP H03257351 A JPH03257351 A JP H03257351A JP 2055856 A JP2055856 A JP 2055856A JP 5585690 A JP5585690 A JP 5585690A JP H03257351 A JPH03257351 A JP H03257351A
Authority
JP
Japan
Prior art keywords
sample
infrared
dispersed
infrared rays
substances
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2055856A
Other languages
Japanese (ja)
Inventor
Toshinori Saito
斉藤 利則
Masami Matsuoka
松岡 正己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2055856A priority Critical patent/JPH03257351A/en
Publication of JPH03257351A publication Critical patent/JPH03257351A/en
Pending legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

PURPOSE:To measure the real shape of a dispersed substance by irradiating a transparent substance having two or more kinds of non-compatible substances dispersed therein with infrared rays whose wavelengths have the most difference in the absorbancies of respective substances selected from a specific wavelength range to perform imaging. CONSTITUTION:A grating 13 is adjusted to select infrared rays whose wavelengths have the most difference in infrared absorbancies within the wavelength range of 1400 - 2400 cm<-1> of respective transparent substances constituting a sample 15 and the selected infrared rays are sent to an imaging camera through a mirror 14', the sample 15, an objective lens 16 and a quartz lens 32 to perform imaging. When photographing is carried out by an infrared film loaded camera 37, the light of a halogen lamp 21 is formed into an image on a visible light finder 35 by mirrors 14', 31 and, after the imaging focus of the sample 15 is matched, the infrared rays having a specific wavelength passed through the sample 15 are formed into an image on the camera 37 to perform imaging. By this method, even with respect to the sample 15 wherein non-compatible substances having parts 1 exposed to the surface thereof and parts 2 concealed therein are dispersed and voids 3 are present, the real shapes of substances dispersed in an island state can be clearly measured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はガラスを透過する1400〜2400cI11
1の波長の範囲から選択された特定の波長の赤外線を用
い、従来測定が不可能であった映像を測定する赤外線顕
微鏡による測定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention provides a method for transmitting 1400 to 2400 cI11 through glass.
The present invention relates to a measurement method using an infrared microscope that uses infrared rays of a specific wavelength selected from a wavelength range of 1 to measure images that have conventionally been impossible to measure.

〔従来の技術〕[Conventional technology]

従来、透明な物質の海に、非相容性の透明な物質が島状
に分散している物体、例えばポリエチレン、ポリプロピ
レン、ポリアミド、ポリスチレン、ポリアクリロニトリ
ル等のうち二種またはそれ以上の樹脂が相互に非相容に
分散している物の分散形態を測定する場合には、それぞ
れの物質の染剤に対する親和性の差を利用した染色、或
は溶解性の差によるエツチング等によって、それぞれの
物質の差を明確にした後、可視光線、X線、蛍光等によ
って顕微鏡測定が行われている。
Conventionally, objects in which incompatible transparent substances are dispersed in islands in a sea of transparent substances, such as two or more resins among polyethylene, polypropylene, polyamide, polystyrene, polyacrylonitrile, etc. When measuring the dispersion form of substances that are dispersed incompatible with each other, each substance is After clarifying the difference, microscopic measurements are performed using visible light, X-rays, fluorescence, etc.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記従来の方法では、分散が微細になる
につれて、未溶解の染料の残存、染色された被染色体の
染色の不良が原因となったり、或はエツチングの穴と、
もともと存在するボイドとの判別が出来なかったりして
、測定に対する信頼性が低下する欠点がある。さらに測
定される分散系の粒径、長径、短径等の各サイズは、第
6図(a)、(b)に示すようにサンプルの表面に露出
する部分1のサイズで、内部にかくれた部分2のサイズ
を示すものではない等の問題があった。
However, in the above conventional method, as the dispersion becomes finer, undissolved dye remains, poor staining of the dyed chromosomes, or etching holes occur.
This method has the disadvantage that it may not be possible to distinguish it from existing voids, which reduces the reliability of measurement. Furthermore, the particle size, major axis, minor axis, etc. of the dispersed system to be measured are the size of the part 1 exposed on the surface of the sample and the size of the part 1 hidden inside, as shown in Figure 6 (a) and (b). There were problems such as it did not indicate the size of part 2.

本発明は上記の事情に鑑みてなされたもので、選択され
た波長の赤外線を照射して、透明な島状に存在する物質
と、島状に分散する透明な物質とのそれぞれの赤外線吸
光度の差を利用し、赤外線フィルムを装填した写真機等
を用いて、島状に分散した物質の真の形態を測定するこ
とが出来る赤外線顕微鏡による測定方法を提供すること
を目的とする。
The present invention has been made in view of the above-mentioned circumstances, and it irradiates infrared rays of a selected wavelength to reduce the respective infrared absorbances of a substance existing in the form of transparent islands and a transparent substance dispersed in the form of islands. It is an object of the present invention to provide a measurement method using an infrared microscope that makes use of the difference and can measure the true form of a substance dispersed in an island shape using a camera or the like loaded with an infrared film.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る赤外線顕微鏡による測定方法においては、
暗室或は暗箱内にセットされた赤外線顕微鏡を用い、透
明な、或は薄肉化等により光を透過てきるようにした物
質中に、これと非相容の一種以上の透明な物質が島状に
分散一体化している物に、1400〜2400cm−’
の波長の範囲からそれぞれの物質の最も吸光度に差のあ
る波長の赤外線を選択的照射し、赤外線撮像カメラ、或
は赤外線フィルムを装填した写真機によって撮像するこ
とを解決手段とした。
In the measurement method using an infrared microscope according to the present invention,
Using an infrared microscope set in a dark room or dark box, one or more transparent substances that are incompatible with the transparent substance or made thin enough to allow light to pass through the substance can be detected in the form of islands. 1400 to 2400 cm-'
The solution was to selectively irradiate each substance with infrared rays at wavelengths that have the greatest difference in absorbance from the wavelength range of , and take images using an infrared imaging camera or a camera loaded with infrared film.

〔作 用〕[For production]

本発明は」二記の構成となっているので、従来の、可視
光線、X線、蛍光を用いた顕微鏡では測定出来なかった
、透明な物質中に分散した透明物質の真の形態が、これ
ら物質の吸光度の差によって測定可能となる。
Since the present invention has the following configuration, the true form of transparent substances dispersed in transparent substances, which could not be measured with conventional microscopes using visible light, X-rays, and fluorescence, can be measured by these methods. It can be measured by the difference in absorbance of substances.

〔実施例〕〔Example〕

第1図は、本発明の測定方法に用いられる暗室または暗
箱中にセットされた赤外線顕微鏡の一実施例を示すもの
で、レンズとして安価なガラスレンズが使用出来るよう
にガラスに対する吸光度の小さい1400〜2400c
m−’の範囲の波長が用いられる。この波長より大きく
とも小さくともガラスに対する吸光度は大きくなり使用
出来ない。
Figure 1 shows an example of an infrared microscope set in a dark room or dark box used in the measurement method of the present invention. 2400c
Wavelengths in the range m-' are used. If the wavelength is larger or smaller than this wavelength, the absorbance against glass becomes too large and cannot be used.

図中符号11は、光源となる特殊ニクロム線発熱体で発
熱体11の赤外線はスリット12を通ってグレーティン
グ13によって分光され、グレーティング13が回動さ
れることによって特定波長の赤外線がスリット12゛を
通ってミラー14によって反射され、次いで切換可能な
ミラー14によって反射され、サンプル15およびガラ
ス製対物レンズ16を通って撮像部17に送られる。
In the figure, reference numeral 11 denotes a special nichrome wire heating element that serves as a light source. Infrared rays from the heating element 11 pass through a slit 12 and are separated by a grating 13. When the grating 13 is rotated, infrared rays of a specific wavelength pass through the slit 12. is reflected by mirror 14 , then reflected by switchable mirror 14 and passed through sample 15 and glass objective lens 16 to imaging section 17 .

また、上記ミラー14”に対してミラー14の反対側に
は、可視光線源となるノ・ロゲンランプ21が設けられ
、このハロゲンランプ21の光は、レンズ22、スリッ
ト23を通り、切換えられたミラー14”によって反射
され、サンプル15、対物レンズ16を通って撮像部1
7に送られる。
Further, on the opposite side of the mirror 14 to the mirror 14'', a halogen lamp 21 serving as a source of visible light is provided, and the light from this halogen lamp 21 passes through a lens 22 and a slit 23, and passes through a switched mirror. 14'', passes through the sample 15 and the objective lens 16, and then passes through the imaging unit 1.
Sent to 7.

すなわち、撮像部17に送られる光は、ミラー14“に
よって、可視光線、或は特定波長の赤外線のいずれかに
切換え可能となっている。またスリット12.12’ 
 23のスリット幅は可変で、光量および選択される波
長の範囲が調整自在となっている。
That is, the light sent to the imaging unit 17 can be switched to either visible light or infrared light of a specific wavelength by the mirror 14''.
The width of the slit 23 is variable, and the amount of light and the range of selected wavelengths can be adjusted.

上記撮像部17には、ガラス製対物レンズ16を通った
光を900回転して切換え左または右方向に反射させ、
或はこれをずらして直進させるミラー31が設itられ
でいる。このミラー31によって、一方に反射された光
は、レンズ32によって赤外線撮像カメラ33に結像さ
れる。また、ミラー31によって他方に反射された光は
、レンズ34によって可視用ファインダ35に結像され
る。
The imaging unit 17 rotates the light that has passed through the glass objective lens 16 by 900 degrees and reflects it in the left or right direction.
Alternatively, a mirror 31 is provided to shift this and move it straight. The light reflected in one direction by this mirror 31 is imaged by a lens 32 onto an infrared imaging camera 33 . Further, the light reflected by the mirror 31 on the other side is imaged by the lens 34 on the visible finder 35 .

また、ミラー31がずらされ、直進する光は、レンズ3
6によって赤外線フィルムが装填された写真機37に結
像される。この場合、可視ファインダ35に結像する像
は、ミラー31を除去すると、写真機37のフィルム上
に結像するようになっている。
Also, the mirror 31 is shifted and the light traveling straight is directed to the lens 3
6, the image is formed on a camera 37 loaded with an infrared film. In this case, the image formed on the visible finder 35 will be formed on the film of the camera 37 when the mirror 31 is removed.

この赤外線顕微鏡により撮像カメラ33を用いて測定を
行うには、先ず、サンプル15を対物レンズ16の下方
にセットする。次いで、サンプルを構成する各透明体の
波長1400〜2400am−’の範囲で赤外線吸収に
最も差のある波長の赤外線を選択し、グレーティング1
3を調整して、その波長の赤外線をミラー14に送る。
To perform measurement using the imaging camera 33 with this infrared microscope, first, the sample 15 is set below the objective lens 16. Next, in the wavelength range of 1400 to 2400 am-' for each transparent body constituting the sample, the infrared rays having the greatest difference in infrared absorption are selected, and grating 1
3 and sends infrared rays of that wavelength to the mirror 14.

この際ミラー14’は、撮像部17に光が反射されるよ
うに、またミラー31は、撮像カメラ33に光が反射さ
れるように変換させておく。ミラー14によって反射さ
れた光は、ミラー14′によって反射され、サンプル1
5、対物レンズ16を通り、石英製レンズ32によって
撮像カメラ33に送られ結像されるが、この際撮像カメ
ラ33に接続されたCRT画像によって焦点を合わせて
測定する。
At this time, the mirror 14' is converted so that the light is reflected to the imaging section 17, and the mirror 31 is converted so that the light is reflected to the imaging camera 33. The light reflected by the mirror 14 is reflected by the mirror 14', and the light is reflected by the sample 1.
5. The light passes through the objective lens 16 and is sent to the imaging camera 33 by the quartz lens 32 to be imaged, but at this time, it is focused and measured using a CRT image connected to the imaging camera 33.

また写真機37で撮影するには、先ず、ハロゲンランプ
を点灯し、この光をミラー14’、31によって可視用
ファインダ35に結像させ、対物レンズを含む撮像部1
7を調整し、可視用ファインダにおけるサンプル15の
撮像の焦点を合わせる。次いでミラー14°を回転し、
さらにミラー31をずらして、サンプル15を通った特
定波長の赤外線を対物レンズ16およびレンズ36によ
って写真機37のフィルム上に結像させる。この場合、
最初に焦点を合わせる可視光線と、特定波長の赤外線と
の波長が異なり、屈折率に差があるため、若干の補正が
必要となる。
To take a picture with the camera 37, first, a halogen lamp is turned on, and this light is focused on the visible finder 35 by the mirrors 14' and 31.
7 to focus the imaging of the sample 15 in the visual finder. Then rotate the mirror 14°,
Furthermore, by shifting the mirror 31, the infrared rays of a specific wavelength that have passed through the sample 15 are imaged onto the film of the camera 37 by the objective lens 16 and the lens 36. in this case,
The visible light that is focused first and the specific wavelength of infrared rays have different wavelengths and differ in refractive index, so some correction is required.

次に実施例を示して本発明の詳細な説明する。Next, the present invention will be explained in detail with reference to Examples.

実施例I 第2図に示すように表面に露出する部分l、および内部
にかくれている部分2を有する非相容の樹脂が分散し、
かつボイド3が存在するサンプルを、本発明の赤外線顕
微鏡で測定すると、赤外線撮像カメラ、或は、赤外線フ
ィルムを装填した写真機のいずれを用いても、島状に分
散する透明樹脂の真の形態が第3図に示すように明瞭に
測定される。
Example I As shown in FIG. 2, an incompatible resin having a portion 1 exposed on the surface and a portion 2 hidden inside is dispersed,
When a sample in which voids 3 are present is measured using the infrared microscope of the present invention, the true form of the transparent resin dispersed in islands can be seen using either an infrared imaging camera or a camera loaded with infrared film. can be clearly measured as shown in FIG.

比較例1 第2図のサンプルを染色して可視光線の顕微鏡で測定す
ると、第4図に示すように表面露出部分1のみが測定さ
れ、染色むらにより、輪郭がぼけたり、染料の未溶解物
4等が現れる。
Comparative Example 1 When the sample in Figure 2 is dyed and measured using a visible light microscope, only the surface exposed portion 1 is measured as shown in Figure 4, and due to uneven staining, the outline is blurred and there are undissolved dye particles. 4th prize appears.

比較例2 第2図のサンプルをエツチングし、これを蛍光顕微鏡で
測定したところ、第5図に示すようにボイド3は、島状
分散物質として測定され、また分散物質も表面露出部分
1しか測定出来なかった。
Comparative Example 2 When the sample shown in Figure 2 was etched and measured using a fluorescence microscope, the voids 3 were measured as island-shaped dispersed material as shown in Figure 5, and the dispersed material was measured only in the surface exposed portion 1. I could not do it.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の赤外線顕微鏡による測定
方法は、ガラスに対する吸光度の小さい1400〜24
00cm−’の範囲の赤外線を用イテ=7 いるので、ガラス製レンズが使用出来る。非相容の二種
以上が分散する物質の、吸光度が最も差のある波長を用
いて透明なサンプルを透過せしめて測定を行うので、表
面のみならず、隠閉された部分を含めた真の形態が把握
出来、分散系の各寸法が明瞭にわかり、しかも染色、エ
ツチング等を必要としない優れた方法である。
As explained above, the measurement method using an infrared microscope of the present invention uses
Since infrared rays in the range of 00 cm-' are used, a glass lens can be used. Measurements are made by transmitting a transparent sample using the wavelength at which the absorbance of a substance in which two or more incompatible species differs the most, so it is possible to measure the true state of a substance, including not only the surface but also hidden parts. This is an excellent method in which the morphology can be grasped, each dimension of the dispersed system can be clearly seen, and it does not require dyeing, etching, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法に使用する赤外線顕微鏡の一例を
示す概略説明図、第2図は実施例に使用したサンプルの
斜視図、第3図は第2図のサンプルを赤外線顕微鏡で測
定した図、第4図は染色法によって測定した図、第5図
はエツチング法で測定した図、第6図(a)、(b)は
非相容で分散している透明樹脂の状態を示す図で、第6
図(a)は平面図、第6図(b)は第6図(a)のVl
−VI線矢視図である。 8 3・・ ・ボイド、 4・・・・・・染料の未溶解物、
1・・・・・発熱体、12,12°・・・・・スリット
、3・・・・・・グレーティング、 4.14“・・・・・・ミラー 15・・・・サンプル
、6・・・・対物レンズ、17・・・・撮像部、1・・
・・・・ハロゲンランプ、22・・・・・レンズ、3・
・・・・スリット、31・・・・・・ミラー2・・・・
・・レンズ、33・・・・・・撮像カメラ、4・・・・
・・レンズ、35・・・・・・可視用ファインダ、6・
・・・レンズ、 7・・・・・・赤外線フィルム装填写真機。
Figure 1 is a schematic explanatory diagram showing an example of an infrared microscope used in the method of the present invention, Figure 2 is a perspective view of a sample used in the example, and Figure 3 is a measurement of the sample in Figure 2 using an infrared microscope. Figure 4 is a diagram measured by the staining method, Figure 5 is a diagram measured by the etching method, and Figures 6 (a) and (b) are diagrams showing the state of incompatible and dispersed transparent resin. So, the 6th
Figure (a) is a plan view, and Figure 6 (b) is the Vl of Figure 6 (a).
-VI line arrow view. 8 3... Void, 4... Undissolved dye,
1...Heating element, 12,12°...Slit, 3...Grating, 4.14"...Mirror 15...Sample, 6... ...Objective lens, 17...Imaging section, 1...
...Halogen lamp, 22...Lens, 3.
...Slit, 31...Mirror 2...
...Lens, 33...Image camera, 4...
・・Lens, 35・・Visible finder, 6・
...lens, 7...infrared film loading camera.

Claims (1)

【特許請求の範囲】[Claims] 暗室或は暗箱内にセットされた赤外線顕微鏡を用い、透
明な、或は薄肉化等により光を透過できるようにした物
質中に、これと非相容の一種以上の透明な物質が島状に
分散一体化している物に、1400〜2400cm^−
^1の波長の範囲からそれぞれの物質の最も吸光度に差
のある波長の赤外線を選択的に照射し、赤外線撮像カメ
ラ、或は赤外線フィルムを装填した写真機によって撮像
することを特徴とする赤外線顕微鏡による測定方法。
Using an infrared microscope set in a dark room or dark box, one or more transparent substances that are incompatible with the transparent substance or made thin enough to allow light to pass through the substance are found in the form of islands. 1400-2400cm^- for distributed and integrated objects
An infrared microscope characterized by selectively irradiating each substance with infrared rays at wavelengths that have the greatest difference in absorbance from the wavelength range of measurement method.
JP2055856A 1990-03-07 1990-03-07 Measuring method by infrared microscope Pending JPH03257351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2055856A JPH03257351A (en) 1990-03-07 1990-03-07 Measuring method by infrared microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2055856A JPH03257351A (en) 1990-03-07 1990-03-07 Measuring method by infrared microscope

Publications (1)

Publication Number Publication Date
JPH03257351A true JPH03257351A (en) 1991-11-15

Family

ID=13010700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2055856A Pending JPH03257351A (en) 1990-03-07 1990-03-07 Measuring method by infrared microscope

Country Status (1)

Country Link
JP (1) JPH03257351A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5506725A (en) * 1994-12-28 1996-04-09 Koike Seiki Co., Ltd. Transmission type confocal laser microscope
JPH11352067A (en) * 1998-05-19 1999-12-24 Agrovision Ab Component concentration determining apparatus and component uniformity determining apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5506725A (en) * 1994-12-28 1996-04-09 Koike Seiki Co., Ltd. Transmission type confocal laser microscope
JPH11352067A (en) * 1998-05-19 1999-12-24 Agrovision Ab Component concentration determining apparatus and component uniformity determining apparatus
JP4647046B2 (en) * 1998-05-19 2011-03-09 マルバーン インストゥルメンツ リミテッド Component concentration determination apparatus, component concentration determination method, and pharmaceutical preparation method

Similar Documents

Publication Publication Date Title
Hoffman The modulation contrast microscope: principles and performance
US3169459A (en) Method of determining surface contours of an eye
KR960012329B1 (en) Surface inspection method and device with irradiation
CN107000334A (en) To composite construction in X -ray inspection X
JP3653591B2 (en) Schlieren analysis method and apparatus
JPS62286433A (en) Fine gap lamp microscope
JPH03257351A (en) Measuring method by infrared microscope
JPH03257350A (en) Measuring method with ultraviolet microscope
JP4054424B2 (en) Method and apparatus for Fourier manipulation in an optical lens or mirror train
US5629143A (en) Photosensitive element comprising a photosensitive layer and a reflecting layer comprising indium or gallium
Perkins The application of infrared photography in bloodstain pattern documentation of clothing
JPH0464053B2 (en)
DE3838954A1 (en) OPTICAL ARRANGEMENT FOR THREE-DIMENSIONAL SHAPE DETECTION
JP2001264638A (en) Optical microscopic device and microscopic observation method
JPS58154666A (en) Method for measuring flow trace and camera for photographing flow trace
Yasokawa et al. A method for measuring the three-dimensional refractive-index distribution of single cells using proximal two-beam optical tweezers and a phase-shifting Mach—Zehnder interferometer
JP4842441B2 (en) Convergent light polarization microscope apparatus and convergent light polarization microscope observation method
JPS6077734A (en) Eyeball shape measuring apparatus
JPH0551290B2 (en)
US3272105A (en) Exposure meter system
EP1030214A2 (en) Method of optimising the intensity distribution in a photographic copiyng machine
JPH04151614A (en) Focusing detecting method and microscope specimen for the same
CN1042777A (en) The quality testing of lens surface
Foster et al. Close-up photography of archaeological objects
SU744288A1 (en) Apparatus for monitoring structural changes in transparent materials