JPH03257350A - Measuring method with ultraviolet microscope - Google Patents

Measuring method with ultraviolet microscope

Info

Publication number
JPH03257350A
JPH03257350A JP5585490A JP5585490A JPH03257350A JP H03257350 A JPH03257350 A JP H03257350A JP 5585490 A JP5585490 A JP 5585490A JP 5585490 A JP5585490 A JP 5585490A JP H03257350 A JPH03257350 A JP H03257350A
Authority
JP
Japan
Prior art keywords
ultraviolet
sample
transparent
ultraviolet rays
dispersed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5585490A
Other languages
Japanese (ja)
Inventor
Toshinori Saito
斉藤 利則
Masami Matsuoka
松岡 正己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP5585490A priority Critical patent/JPH03257350A/en
Publication of JPH03257350A publication Critical patent/JPH03257350A/en
Pending legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

PURPOSE:To measure the real shape of the transparent substance dispersed in a substance by irradiating a transparent substance having two or more kinds of non- compatible transparent substances dispersed therein with ultraviolet rays whose wavelengths have the most difference in the absorbancies of respective substances to take the images of the substances. CONSTITUTION:Ultraviolet rays having the most difference in the ultraviolet absorptions of respective transparent bodies constituting a sample are selected from the ultraviolet rays of a xenon lamp 11 and a grating 13 is adjusted to send the selected ultraviolet rays to an imaging camera 33 through a mirror 14', the sample 15, an objective lens 16 and a quartz lens to perform imaging. In order to perform photographing using an ultraviolet film loaded camera 37, the light of a halogen lamp 21 is formed into an image on a visible light finder 35 by mirrors 14', 31 and, after the sample 15 is focused, the ultraviolet rays having a specific wavelength having passed through the sample 15 are formed into an image on the camera 37. Even with respect to the sample 15 wherein non-compatible substances having parts 1 exposed to the surface thereof and parts 2 concealed therein are dispersed and voids 3 are present, the real shapes of the transparent substances dispersed in an inland state can be clearly measured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は選択された特定の波長の紫外線を用い、従来測
定が不可能であった映像を測定する紫外線顕微鏡による
測定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a measurement method using an ultraviolet microscope that uses ultraviolet rays of a selected specific wavelength to measure images that have conventionally been impossible to measure.

〔従来の技術〕[Conventional technology]

従来、透明な物質の海に、非相容性の透明な物質が島状
に分散している物体、例えばポリエチレン、ポリプロピ
レン、ポリアミド、ポリスチレン、ポリアクリロニトリ
ル等のうち二種またはそれ以上の樹脂が相互に非相容に
分散している物の分散形態を測定する場合には、それぞ
れの物質の染剤に対する親和性の差を利用した染色、或
は溶解性の差によるエツチング等によって、それぞれの
物質の差を明確にした後、可視光線、X線、蛍光等によ
って顕微鏡測定が行われている。
Conventionally, objects in which incompatible transparent substances are dispersed in islands in a sea of transparent substances, such as two or more resins among polyethylene, polypropylene, polyamide, polystyrene, polyacrylonitrile, etc. When measuring the dispersion form of substances that are dispersed incompatible with each other, each substance is After clarifying the difference, microscopic measurements are performed using visible light, X-rays, fluorescence, etc.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記従来の方法では、分散が微細になる
につれて、未溶解の染料の残存、染色された被染色体の
染色の不良が原因となったり、或はエツチングの穴と、
もともと存在するボイドとの判別が出来なかったりして
、測定に対する信頼性が低下する欠点がある。さらに測
定される分散系の粒径、長径、短径等の各サイズは、第
6図(a )、 (b )に示すようにサンプルの表面
に露出する部分1のサイズで、内部にかくれた部分2の
すイズを示すものではない等の問題があった。
However, in the above conventional method, as the dispersion becomes finer, undissolved dye remains, poor staining of the dyed chromosomes, or etching holes occur.
This method has the disadvantage that it may not be possible to distinguish it from existing voids, which reduces the reliability of measurement. Furthermore, the particle size, major axis, minor axis, etc. of the dispersed system to be measured are the size of part 1 exposed on the surface of the sample and the size of part 1 hidden inside, as shown in Figure 6 (a) and (b). There were problems such as it did not indicate the size of part 2.

本発明は上記の事情に鑑みてなされたもので、選択され
た波長の紫外線を照射して、透明な晦状に存在する物質
と、島状に分散する透明な物質とのそれぞれの紫外線吸
光度の差を利用し、紫外線フィルムを装填した写真機等
を用いて、島状に分散した物質の真の形態を測定するこ
とが出来る紫外線顕微鏡による測定方法を提供すること
を目的とする。
The present invention has been made in view of the above-mentioned circumstances, and is made by irradiating ultraviolet rays of selected wavelengths to reduce the respective ultraviolet absorbances of a substance existing in a transparent roe shape and a transparent substance dispersed in an island shape. It is an object of the present invention to provide a measurement method using an ultraviolet microscope that makes use of the difference and can measure the true form of a substance dispersed in an island shape using a camera or the like loaded with an ultraviolet film.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る紫外線顕微鏡による測定方法においては、
暗室或は暗箱内にセットされた紫外線顕微鏡を用い、透
明な、あるいは加熱等により透明化した物質中もしくは
、光が透過するように薄肉化等の処理をしたものに、こ
れと非相容の一種以上の透明な物質が島状に分散一体化
している物に、それぞれの物質の最も吸光度に差のある
波長の紫外線を照射し、紫外線撮像カメラ、或は紫外線
フィルムを装填した写真機によって撮像することを解決
手段とした。
In the measurement method using an ultraviolet microscope according to the present invention,
Using an ultraviolet microscope set in a dark room or dark box, we examine transparent substances, those that have been made transparent by heating, or those that have been thinned or otherwise treated to allow light to pass through. An object in which one or more transparent substances are dispersed and integrated into islands is irradiated with ultraviolet rays at wavelengths where the absorbance of each substance differs most, and the image is taken using an ultraviolet imaging camera or a camera loaded with ultraviolet film. The solution was to do so.

〔作 用〕[For production]

本発明は上記の構成となっているので、従来の、可視光
線、X線、蛍光を用いた顕微鏡では測定出来なかった、
透明な物質中に分散した透明物質の真の形態が、これら
物質の吸光度の差によって測定可能となる。
Since the present invention has the above-mentioned configuration, it is possible to perform measurements that could not be performed with conventional microscopes using visible light, X-rays, or fluorescence.
The true form of transparent substances dispersed in transparent substances can be determined by the difference in absorbance of these substances.

〔実施例〕〔Example〕

第1図は、本発明の測定方法に用いられる暗室または暗
箱中にセットされた紫外線顕微鏡の一実施例を示すもの
で、図中符号11は、光源となるキセノンランプである
FIG. 1 shows an embodiment of an ultraviolet microscope set in a dark room or dark box used in the measurement method of the present invention, and reference numeral 11 in the figure is a xenon lamp serving as a light source.

キセノンランプ11の紫外線はスリット12を通ってグ
レーティング13によって分光され、グレーティング1
3が回動されることによって特定波長の紫外線かスリッ
ト12′を通ってミラー14によって反射され、次いで
切換可能なミラー14“によって反射され、サンプル1
5および石英ガラス製対物レンズ16を通って撮像部1
7に送られる。
The ultraviolet light from the xenon lamp 11 passes through the slit 12 and is separated by the grating 13.
3 is rotated so that the ultraviolet light of a specific wavelength passes through the slit 12' and is reflected by the mirror 14, and then by the switchable mirror 14'', and the sample 1
5 and the imaging unit 1 through the quartz glass objective lens 16.
Sent to 7.

また、上記ミラー14゛に対してミラー14の一 反対側には、可視光線源となるハロゲンランプ21が設
けられ、このハロゲンランプ21の光は、レンズ22、
スリット23を通り、切換えられたミラー14′によっ
て反射され、サンプル15、対物レンズ16を通って撮
像部17に送られる。
Further, a halogen lamp 21 serving as a source of visible light is provided on the opposite side of the mirror 14 to the mirror 14', and the light of this halogen lamp 21 is transmitted through a lens 22,
It passes through the slit 23, is reflected by the switched mirror 14', passes through the sample 15 and the objective lens 16, and is sent to the imaging section 17.

すなわち、撮像部17に送られる光は、ミラー14′に
よって、可視光線、或は特定波長の紫外線のいずれかに
切換え可能となっている。またスリット12.12  
23のスリット幅は可変で、光量および選択される波長
の範囲が調整自在となっている。
That is, the light sent to the imaging unit 17 can be switched to either visible light or ultraviolet light of a specific wavelength by the mirror 14'. Also slit 12.12
The width of the slit 23 is variable, and the amount of light and the range of selected wavelengths can be adjusted.

上記撮像部17には、石英ガラス製対物レンズ16を通
った光を900回転して切換え左または右方向に反射さ
せ、或はこれをずらして直進させるミラー3Iか設けら
れている。このミラー3Iによって、一方に反射された
光は、石英製レンズ32によって紫外線撮像カメラ33
に結像される。
The image pickup unit 17 is provided with a mirror 3I that rotates the light that has passed through the quartz glass objective lens 16 by 900 degrees and reflects the light to the left or right, or shifts the light and causes it to travel straight. The light reflected in one direction by this mirror 3I is transmitted to an ultraviolet imaging camera 33 by a quartz lens 32.
is imaged.

また、ミラー31によって他方に反射された光は、レン
ズ34によって可視用ファインタ35に結像される。ま
た、ミラー31かすらされ、直進する光は、石英製レン
ズ36によって紫外線フィルムが装填された写真機37
に結像される。この場合、可視ファインダ35に結像す
る像は、ミラー3Iを除去すると、写真機37のフィル
ム上に結像するようになっている。
Further, the light reflected by the mirror 31 on the other side is imaged by the lens 34 on the visual finder 35 . Further, the light passing straight through the mirror 31 is transmitted through a quartz lens 36 to a camera 37 loaded with an ultraviolet film.
is imaged. In this case, the image formed on the visible finder 35 will be formed on the film of the camera 37 when the mirror 3I is removed.

この紫外線顕微鏡により撮像カメラ33を用いて測定を
行うには、先ず、サンプル15を石英製対物レンズ16
の下方にセットする。次いで、サンプルを構成する各透
明体の紫外線吸収に最も差のある波長の紫外線を選択し
、グレーティング13を調整して、その波長の紫外線を
ミラー14に送る。この際ミラー14′は、撮像部17
に光が反射されるように、またミラー31は、撮像カメ
ラ33に光が反射されるように変換させておく。
To perform measurement using the imaging camera 33 with this ultraviolet microscope, first, the sample 15 is placed through the quartz objective lens 16.
Set it below. Next, ultraviolet rays of wavelengths that have the greatest difference in the absorption of ultraviolet rays of the transparent bodies constituting the sample are selected, the grating 13 is adjusted, and the ultraviolet rays of that wavelength are sent to the mirror 14 . At this time, the mirror 14'
The mirror 31 is also converted so that the light is reflected to the imaging camera 33.

ミラー14によって反射された光は、ミラー14“によ
って反射され、サンプル15、対物レンズ16を通り、
石英製レンズ32によって撮像カメラ33に送られ結像
されるが、この際撮像カメラ33に接続されたCRT画
像によって焦点を合わせて測定する。
The light reflected by the mirror 14 is reflected by the mirror 14'', passes through the sample 15, the objective lens 16,
The quartz lens 32 sends the image to the imaging camera 33 to form an image, and at this time, the CRT image connected to the imaging camera 33 is used to focus and measure.

また写真機37で撮影するには、先ず、ハロゲンランプ
を点灯し、この光をミラー14“ 31によって可視用
ファイング35に結像させ、対物レンズを含む撮像部■
7を調整し、可視用ファインダにおけるサンプル15の
撮像の焦点を合わせる。次いでミラー14゛を回転し、
さらにミラー31をずらして、サンプル15を通った特
定波長の紫外線を石英製の対物レンズI6および石英製
レンズ36によって写真機37のフィルム上に結像させ
る。この場合、最初に焦点を合わせる可視光線と、特定
波長の紫外線との波長が異なり、屈折率に差があるため
、若干の補正が必要となる。
In order to take a picture with the camera 37, first, a halogen lamp is turned on, and this light is focused on the visible viewing 35 by the mirror 14" 31, and then the imaging section (1), which includes an objective lens,
7 to focus the imaging of the sample 15 in the visual finder. Then rotate the mirror 14゛,
Furthermore, the mirror 31 is shifted, and the ultraviolet rays of a specific wavelength that have passed through the sample 15 are imaged onto the film of the camera 37 by the quartz objective lens I6 and the quartz lens 36. In this case, the visible light that is initially focused and the specific wavelength of ultraviolet rays have different wavelengths and a difference in refractive index, so some correction is required.

次に実施例を示して本発明の詳細な説明する。Next, the present invention will be explained in detail with reference to Examples.

実施例1 第2図に示すように表面に露出する部分1、および内部
にかくれている部分2を有する非相容の樹脂が分散し、
かつボイド3が存在するサンプルを、本発明の紫外線顕
微鏡で測定すると、紫外線撮像カメラ、或は、紫外線フ
ィルムを装填した写真機のいずれを用いても、島状に分
散する透明樹脂の真の形態が第3図に示すように明瞭に
測定される。
Example 1 As shown in FIG. 2, an incompatible resin having a portion 1 exposed on the surface and a portion 2 hidden inside is dispersed,
When a sample in which voids 3 are present is measured using the ultraviolet microscope of the present invention, the true form of the transparent resin dispersed in islands can be seen using either an ultraviolet imaging camera or a camera loaded with ultraviolet film. can be clearly measured as shown in FIG.

比較例1 第2図のサンプルを染色して可視光線の顕微鏡で測定す
ると、第4図に示すように表面露出部分lのみが測定さ
れ、染色むらにより、輪郭がぼけたり、染料の未溶解物
4等が現れる。
Comparative Example 1 When the sample shown in Figure 2 is dyed and measured using a visible light microscope, only the surface exposed portion l is measured as shown in Figure 4, and due to uneven staining, the outline is blurred and there are undissolved dye particles. 4th prize appears.

比較例2 第2図のサンプルをエツチングし、これを蛍光顕微鏡で
測定したところ、第5図に示すようにボイド3は、島状
分散物質として測定され、また分散物質も表面露出部分
lしか測定出来なかった。
Comparative Example 2 When the sample shown in Figure 2 was etched and measured using a fluorescence microscope, the voids 3 were measured as island-like dispersed material as shown in Figure 5, and the dispersed material was measured only on the surface exposed portion 1. I could not do it.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の紫外線顕微鏡による測定
方法は、非相容の二種以上が分散する物質の、吸光度が
最も差のある波長を用いて透明なサンプルを透過せしめ
て測定を行うので、表面のみならず、隠閉された部分を
含めた真の形態が把握出来、分散系の各寸法が明瞭にわ
かり、染色、エツチング等を必要としない優れた方法で
ある。
As explained above, the measurement method using an ultraviolet microscope of the present invention uses the wavelength at which the absorbance of a substance in which two or more incompatible species is dispersed is the most different, and is transmitted through a transparent sample for measurement. This is an excellent method that allows the true shape of not only the surface but also hidden parts to be grasped, and each dimension of the dispersed system to be clearly seen, and does not require dyeing, etching, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法に使用する紫外線顕微鏡の一例を
示す概略説明図、第2図は実施例に使用したサンプルの
斜視図、第3図は第2図のサンプルを紫外線顕微鏡で測
定した図、第4図は染色法によって測定した図、第5図
はエツチング法で測定した図、第6図(a)、(b)は
非相容で分散している透明樹脂の状態を示す図で、第6
図(a)は平面図、第6図(b)は第6図(a)のVl
−Vl線矢視図である。 1・・・・・・サンプルの表面に露出する部分、2・・
・・・・サンプルの内部にかくれた部分、3・・・・・
・ボイド、 4・・・・・・染料の未溶解物、 l・・・・・・キセノンランプ、 2.12’・・・・・・スリット、 3・・・・・・グレーティング、 4.14′・・・・・・ミラー 5・・・・・・サンプル、 6・・・・・・石英ガラス製対物レンズ、7・・・・・
・撮像部、 l・・・・・・ハロゲンランプ、 2・・・ レンズ、 3・・・・・・スリット、 l・・・・・・ミラー 2・・・・・・石英製レンズ、 3・・・・・撮像カメラ、 4・・・・・レンズ、 5・・・・・・可視用ファインダ、 6・・・・石英製レンズ、 7・・・・・・紫外線フィルム装填写真機。
Fig. 1 is a schematic explanatory diagram showing an example of an ultraviolet microscope used in the method of the present invention, Fig. 2 is a perspective view of a sample used in the example, and Fig. 3 is a measurement of the sample in Fig. 2 using an ultraviolet microscope. Figure 4 is a diagram measured by the staining method, Figure 5 is a diagram measured by the etching method, and Figures 6 (a) and (b) are diagrams showing the state of incompatible and dispersed transparent resin. So, the 6th
Figure (a) is a plan view, and Figure 6 (b) is the Vl of Figure 6 (a).
-Vl line arrow view. 1... part exposed on the surface of the sample, 2...
... Part hidden inside the sample, 3...
・Void, 4...Undissolved dye, l...Xenon lamp, 2.12'...Slit, 3...Grating, 4.14 ′... Mirror 5... Sample, 6... Quartz glass objective lens, 7...
・Imaging unit, l...Halogen lamp, 2...Lens, 3...Slit, l...Mirror 2...Quartz lens, 3. ...Imaging camera, 4...Lens, 5...Visible finder, 6...Quartz lens, 7...Photographer loaded with ultraviolet film.

Claims (1)

【特許請求の範囲】[Claims] 暗室或は暗箱内にセットされた紫外線顕微鏡を用い、透
明な、あるいは加熱等により透明化した物質中もしくは
、光が透過する様に薄肉化等の処理をしたものに、これ
と非相容の一種以上の透明な物質が島状に分散一体化し
ている物に、それぞれの物質の最も吸光度に差のある波
長の紫外線を選択的に照射し、紫外線撮像カメラ、或は
紫外線フィルムを装填した写真機によって撮像すること
を特徴とする紫外線顕微鏡による測定方法。
Using an ultraviolet microscope set in a dark room or dark box, we examine transparent substances, those that have been made transparent by heating, etc., or those that have been thinned or otherwise treated to allow light to pass through. A photograph taken by selectively irradiating ultraviolet rays at the wavelengths at which the absorbance of each substance differs the most onto an object made up of one or more transparent substances dispersed and integrated into an island shape, and then using an ultraviolet imaging camera or an ultraviolet film loaded with the ultraviolet rays. A measurement method using an ultraviolet microscope, which is characterized by taking an image using an ultraviolet microscope.
JP5585490A 1990-03-07 1990-03-07 Measuring method with ultraviolet microscope Pending JPH03257350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5585490A JPH03257350A (en) 1990-03-07 1990-03-07 Measuring method with ultraviolet microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5585490A JPH03257350A (en) 1990-03-07 1990-03-07 Measuring method with ultraviolet microscope

Publications (1)

Publication Number Publication Date
JPH03257350A true JPH03257350A (en) 1991-11-15

Family

ID=13010642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5585490A Pending JPH03257350A (en) 1990-03-07 1990-03-07 Measuring method with ultraviolet microscope

Country Status (1)

Country Link
JP (1) JPH03257350A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5517032A (en) * 1994-07-01 1996-05-14 Transoptics, Inc. Thin film thickness measuring system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5517032A (en) * 1994-07-01 1996-05-14 Transoptics, Inc. Thin film thickness measuring system

Similar Documents

Publication Publication Date Title
US5046834A (en) Microscope having image brightness equalization
Lee Review of image-blur models in a photographic system using the principles of optics
JPH04326316A (en) Photographing device for microscope
Otaki Artifact halo reduction in phase contrast microscopy using apodization
CN107000334A (en) To composite construction in X -ray inspection X
Samson et al. Dynamic contrast enhancement in widefield microscopy using projector-generated illumination patterns
JPH03257350A (en) Measuring method with ultraviolet microscope
JPH03257351A (en) Measuring method by infrared microscope
JP4054424B2 (en) Method and apparatus for Fourier manipulation in an optical lens or mirror train
Perkins The application of infrared photography in bloodstain pattern documentation of clothing
Capstaff et al. The Kodacolor process for amateur color cinematography
JPS58154666A (en) Method for measuring flow trace and camera for photographing flow trace
JP2001264638A (en) Optical microscopic device and microscopic observation method
Grabau Polarized light enters the world of everyday life
Williams et al. Ultraviolet, infrared & fluorescence photography
King et al. VIII.—OPTICAL CONDITIONS FOR QUANTITATIVE ULTRA‐VIOLET MICROSPECTROSCOPY
JP2002221665A (en) Convergent light polarizing microscopic apparatus and method of observation with convergent light polarizing microscopic
US3272105A (en) Exposure meter system
Baldwin et al. A manual and techniques for photo-documentation through the ocular of a Nikon biomicroscope
EP1030214A2 (en) Method of optimising the intensity distribution in a photographic copiyng machine
JPH04151614A (en) Focusing detecting method and microscope specimen for the same
Rayner A method of improving contrast in illustrations of coalified fossils
Foster et al. Close-up photography of archaeological objects
JP2024037127A (en) Optical imaging apparatus, processing device, optical imaging method, and optical imaging program
KR100189647B1 (en) Color filter adapter with changeable colour for optical pickup and projecting apparatus responsible method for its production