JPH03257117A - Method for working dynamic pressure generating groove - Google Patents

Method for working dynamic pressure generating groove

Info

Publication number
JPH03257117A
JPH03257117A JP5440190A JP5440190A JPH03257117A JP H03257117 A JPH03257117 A JP H03257117A JP 5440190 A JP5440190 A JP 5440190A JP 5440190 A JP5440190 A JP 5440190A JP H03257117 A JPH03257117 A JP H03257117A
Authority
JP
Japan
Prior art keywords
dynamic pressure
pressure generating
bearing
groove
bearing surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5440190A
Other languages
Japanese (ja)
Inventor
Hiromi Sugi
杉 博美
Hideki Kokubu
秀樹 國分
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP5440190A priority Critical patent/JPH03257117A/en
Publication of JPH03257117A publication Critical patent/JPH03257117A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)

Abstract

PURPOSE:To work dynamic pressure generating grooves having an ideal rectangular shape with exact dimensional accuracy by irradiating the bearing surfaces of bearings constituting dynamic pressure bearings by facing each other with beams to harden the surfaces to prescribed groove patterns, then etching the surfaces. CONSTITUTION:The bearing surfaces 1 constituting the dynamic pressure bearing 25 of a shaft 20 by facing each other are irradiated with beams according to the dynamic pressure generating groove patterns previously provided on at least one of the bearing surfaces 1 to form the patterns of the wave shapes consisting of hardened parts 12 and non-hardened parts 13. After the surface roughened parts of this bearing surface 1 are removed, the surfaces are immersed for a prescribed period of time into an etching liquid to form the dynamic pressure generating grooves 10, 11 in the non-hardened parts 13. The dynamic pressure generating grooves 10, 11 having the sectional shape approximate to the rectangular shape and the exact dimensional accuracy with lessened shape collapse are easily obtd. in this way.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電子ビームやレーザビーム等のビームを用い
た動圧発生溝の加工方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of processing a dynamic pressure generating groove using a beam such as an electron beam or a laser beam.

〔従来の技術〕[Conventional technology]

この種の溝加工法として、例えば、−船釣に焼入れ可能
な鋼材からなる軸又は軸受に対し、電子ビームやレーザ
ビームにより所要の溝パターンに応じて部分的に焼入れ
を行い、その後、その焼入れ面を切削又は研削加工する
ことにより非焼入れ部分に溝を形成するようにした溝加
工法が特開昭64−27821号公報に示されている。
As this type of groove processing method, for example, - A shaft or bearing made of steel material that can be hardened for boat fishing is partially hardened using an electron beam or laser beam according to the desired groove pattern, and then the hardening process is performed. Japanese Patent Laid-Open No. 64-27821 discloses a groove processing method in which grooves are formed in non-hardened portions by cutting or grinding the surface.

〔発明が解決しようとする課題] しかしこの従来の溝加工法は、被加工面にビームを照射
した後に行う切削又は研削加工の加工条件により、溝の
深さを制御する。そのため、一定の加工条件で加工して
も、切削ハイドの磨耗や研削砥石の目詰まりにより溝深
さが変化してしまい、均一な製品品質が得にくい。特に
、軸の外径面や軸受の内径面に溝加工する場合は、直径
寸法が設計値どおりに仕上がると同時に、溝深さを所定
寸法にすることは困難である。また、加工された溝の断
面形状が理想的な矩形状にはならず、角が丸くなってし
まう。溝深さが深い程、この形崩れが顕著になる。
[Problems to be Solved by the Invention] However, in this conventional groove processing method, the depth of the groove is controlled by the processing conditions of cutting or grinding performed after irradiating the workpiece surface with a beam. Therefore, even when processed under constant processing conditions, the groove depth changes due to wear of the cutting hide and clogging of the grinding wheel, making it difficult to obtain uniform product quality. In particular, when grooving the outer diameter surface of a shaft or the inner diameter surface of a bearing, it is difficult to make the diameter dimension as designed and at the same time make the groove depth a predetermined dimension. Moreover, the cross-sectional shape of the processed groove does not have an ideal rectangular shape, and the corners are rounded. The deeper the groove depth, the more noticeable this deformation becomes.

そこで本発明は、上記従来の問題点に着目してなされた
ものであり、その目的とするところは、矩形状に近い断
面形状と正確な寸法精度を有する溝が形成できる動圧発
生溝の加工方法を提供することにある。
Therefore, the present invention has been made by focusing on the above-mentioned conventional problems, and its purpose is to process a dynamic pressure generating groove that can form a groove having a cross-sectional shape close to a rectangular shape and accurate dimensional accuracy. The purpose is to provide a method.

〔課題を解決するための手段〕[Means to solve the problem]

本出願の発明は、互いに対向して動圧軸受を構成する一
方の軸受面と他方の軸受面との少なくとも一方への動圧
発生溝の加工方法において、前記軸受面の一部にビーム
を照射して表面硬化し、前記軸受面をエツチングして動
圧発生溝を成形する。
The invention of the present application provides a method for forming a hydrodynamic groove in at least one of one bearing surface and the other bearing surface that face each other and constitute a hydrodynamic bearing, in which a beam is irradiated onto a part of the bearing surface. The surface of the bearing surface is hardened, and the bearing surface is etched to form dynamic pressure generating grooves.

また本出願の他の発明は、互いに対向して動圧軸受を構
成する一方の軸受面と他方の軸受面との少なくとも一方
への動圧発生溝の加工方法において、前記軸受面の焼入
れ硬化された個所に動圧発生溝パターン状にビームを照
射して軟化し、前記軸受面をエツチングして動圧発生溝
を成形する。
Another invention of the present application provides a method for forming a hydrodynamic groove in at least one of one bearing surface and the other bearing surface that face each other and constitute a hydrodynamic bearing, in which the bearing surface is quenched and hardened. The bearing surface is etched by irradiating the beam with a beam in a pattern of dynamic pressure generating grooves to form the dynamic pressure generating grooves.

(作用〕 被jJO工面に電子ビームやレーザビーム等のビームを
照射する。これにより、被加工面を所定の溝パターンに
応じて表面硬化させる。または予め熱処理して硬化され
た面を所定の溝パターンに応して軟化させる。
(Operation) A beam such as an electron beam or a laser beam is irradiated onto the surface to be machined by JO.This hardens the surface of the surface to be machined according to a predetermined groove pattern.Alternatively, the surface that has been heat-treated and hardened in advance is formed into a predetermined groove. Soften according to the pattern.

ビームが照射された被加工面を、エツチングすると、被
加工面の硬化部と非硬化部(又は軟化部)とではエツチ
ング速度が大きく異なり、硬度の低い部分が優先的に浸
食されて動圧発生溝が形成される。溝の形崩れが少なく
、矩形状に近い断面形状が容易に得られる。
When etching a workpiece surface that has been irradiated with a beam, the etching speed differs greatly between the hardened and unhardened (or softened) parts of the workpiece surface, and the less hard parts are preferentially eroded, generating dynamic pressure. A groove is formed. The groove does not lose its shape easily, and a cross-sectional shape close to a rectangle can be easily obtained.

〔実施例〕〔Example〕

以下、本発明の実施例を図面を参照して説明する。第1
図は、軸受面の動圧発生溝の加工に用いる電子ビーム加
工装置である。被加工物1は、例えば5UJ2 (軸受
!it)の如き表面硬化可能な金属板であり、X−Yテ
ーブル2の上に載置される。
Embodiments of the present invention will be described below with reference to the drawings. 1st
The figure shows an electron beam machining device used for machining dynamic pressure generating grooves on the bearing surface. The workpiece 1 is a surface hardening metal plate such as 5UJ2 (bearing!it), and is placed on an XY table 2.

X−Yテーブル2はコントローラ3に制御されて予め与
えられるプログラムに従い移動する。同コントローラ3
は、又このX−Yテーブル2の移動に同期して電子ビー
ム発生機4のビーム照射のオン−オフの制御も行う。こ
うして、被加工物1の平面状の加工面(軸受面)を予め
定めた動圧発生溝パターンに従いビーム5で走査する。
The X-Y table 2 is controlled by a controller 3 and moves according to a program given in advance. Same controller 3
Also, in synchronization with the movement of the X-Y table 2, the beam irradiation of the electron beam generator 4 is turned on and off. In this way, the planar processing surface (bearing surface) of the workpiece 1 is scanned by the beam 5 according to the predetermined dynamic pressure generating groove pattern.

第2図はその動圧発生溝パターンの一例を示したもので
、矢先方向が図で右向きの溝10と左向きの溝11とを
上下方向に波形状に接続し、その波形状の溝13を同一
の波形状の間隔12をおいて交互に多数配列しである。
FIG. 2 shows an example of the dynamic pressure generating groove pattern, in which the grooves 10 facing right and the grooves 11 facing left in the figure are connected vertically in a wave shape, and the wave-shaped grooves 13 are connected in the vertical direction. A large number of the same waveforms are arranged alternately at intervals of 12.

ビーム5は波形状の間隔12の個所にのみ照射され、波
形状の溝13となる個所には照射されない。
The beam 5 is irradiated only on the portions of the wave-shaped interval 12, and is not irradiated on the portions that will become the wave-shaped grooves 13.

この実施例にあっては、表1に示す加工条件で被加工物
1の表面(軸受面)に電子ビーム5を照射した。
In this example, the surface (bearing surface) of the workpiece 1 was irradiated with the electron beam 5 under the processing conditions shown in Table 1.

表−1 加工面のうちビーム5で照射された波形状の間隔12の
個所は、急速加熱されて高温となり、ついで非加熱部分
への熱の拡散により急速冷却されて表面硬化されるよう
に電子ビーム5のパワーを適宜に設定する(この場合は
パワーをある程度大きくする)。この表面硬化の際、被
加工物1の被照射面(波形状の間隔12の個所)は最表
面のみ溶融してから冷えて硬化した。そのため表面に深
さ2〜3μm程度で面荒れが生した。そこで10μm程
研削して面荒れ部分を除去した。しかしこの程度の面荒
れなので、面荒れを除く研削加工は必ずしもしなくても
よい。
Table 1: On the machined surface, the portions of the wavy space 12 that are irradiated with the beam 5 are rapidly heated to a high temperature, and are then quickly cooled by diffusion of heat to the non-heated portions to harden the surface using electron beams. The power of the beam 5 is set appropriately (in this case, the power is increased to some extent). During this surface hardening, only the outermost surface of the irradiated surface of the workpiece 1 (at the wavy intervals 12) was melted and then cooled and hardened. As a result, surface roughness occurred at a depth of about 2 to 3 μm. Therefore, the surface roughness was removed by grinding by about 10 μm. However, since the surface is rough to this extent, it is not necessary to perform a grinding process to remove the surface roughness.

第3図は、上記のビーム5の照射による表面硬化及び研
削による面荒れ部分の除去後の被加工物lの表面の硬さ
分布を測定した結果を表している。
FIG. 3 shows the results of measuring the hardness distribution of the surface of the workpiece 1 after surface hardening by irradiation with the beam 5 and removal of surface roughness by grinding.

非硬化部である波形状の溝13になる個所の硬さがHv
190であるのに対して硬化部である波形状の間隔12
の個所の硬さはHv800〜850に達している。しか
も、硬化部と非硬化部との境界が極めて明確である。
The hardness of the part that becomes the wave-shaped groove 13 which is the non-hardened part is Hv
190, whereas the wavy interval in the hardened part is 12
The hardness at this point reaches Hv800-850. Furthermore, the boundary between the cured portion and the non-cured portion is extremely clear.

次に、この表面硬化加工及び面荒れ部分の除去後の被加
工物1を洗浄してエツチング液に所定時間浸漬する。こ
の場合、エツチング液をシャワーしてもよい。エツチン
グ液としては、例えば20%硝酸水溶液を用いた。第4
図はこのときのエツチング速度を示したもので、硬化部
(波形状の間隔12の個所)と 非硬化部(波形状の溝
13になる個所)とではエツチング速度の比はおよそ1
 : 100になっている。すなわち、非硬化部のエツ
チング深さ20μmのとき硬化部のそれは0゜2μmに
すぎない。また、エツチング後の硬化部の顕微鏡による
外観観察では僅かに曇りが認められるのみであって、面
荒れは生じていなかった。
Next, the workpiece 1 after the surface hardening process and the removal of the surface roughness is cleaned and immersed in an etching solution for a predetermined time. In this case, the etching solution may be showered. As the etching solution, for example, a 20% nitric acid aqueous solution was used. Fourth
The figure shows the etching speed at this time, and the etching speed ratio of the hardened part (where the wavy intervals are 12) and the unhardened part (where the wavy grooves are 13) is approximately 1.
: It's 100. That is, when the etching depth of the non-hardened portion is 20 μm, the etching depth of the hardened portion is only 0.2 μm. Further, when the appearance of the hardened portion after etching was observed using a microscope, only slight clouding was observed, and no surface roughness was observed.

第5図は上記エツチングした被加工物1の表面の断面形
状測定結果を示すものであって、エツチングされた溝1
3の形状は動圧発生溝として理想的な矩形状に近い断面
であり、角部の丸みも極めて小さい。
FIG. 5 shows the results of measuring the cross-sectional shape of the surface of the etched workpiece 1, and shows the etched grooves 1.
The shape of No. 3 has a cross section close to the ideal rectangular shape as a dynamic pressure generating groove, and the roundness of the corners is also extremely small.

このようにしてエツチングされた被加工物1は、そのま
ま軸受部材として使用することもできるし、或いは使用
条件により更に軸受面をラッピングや研削で仕上げ加工
してもよい。
The workpiece 1 etched in this manner can be used as a bearing member as it is, or the bearing surface may be further finished by lapping or grinding depending on the usage conditions.

第6図(a)、 (b)に、こうして表面に動圧発生溝
パターンを形成した被加工物lの軸受部材としての使用
態様を示す。第6図(a)は直線案内軸受の正面図、同
(′b)は側面図であり、図中、20は軸、25は軸2
0の上に跨がった軸受である。軸20には軸方向に三角
形状の摺動部21が成形され、この摺動部21の両側傾
斜面にリニア軸受面22が形成されている。軸受25は
、軸20の摺動部21と同一角度に成形された内面を有
するケース23を備え、その内面に被加工物1が軸受部
材として2枚で一対をなして接着されている。この軸受
部材1の動圧発生溝13が形成されている面が、軸受面
IAとして軸部材20のリニア軸受面22と対向してお
り、軸部材20と軸受25とのいずれか一方が軸方向に
往復直線運動する。ここで、軸受部材lの動圧発生溝1
3の深さは、軸受25の仕様に応じて数μm〜数10μ
mの範囲で適宜に選定する。
FIGS. 6(a) and 6(b) show how a workpiece 1 having a hydrodynamic groove pattern formed on its surface is used as a bearing member. FIG. 6(a) is a front view of the linear guide bearing, and FIG. 6('b) is a side view. In the figure, 20 is the shaft, and 25 is the shaft 2.
This is a bearing that straddles the 0. A triangular sliding portion 21 is formed in the axial direction of the shaft 20, and linear bearing surfaces 22 are formed on both inclined surfaces of the sliding portion 21. The bearing 25 includes a case 23 having an inner surface formed at the same angle as the sliding portion 21 of the shaft 20, and the workpiece 1 is bonded to the inner surface of the case 23 as a pair of bearing members. The surface of the bearing member 1 on which the dynamic pressure generating groove 13 is formed faces the linear bearing surface 22 of the shaft member 20 as a bearing surface IA, and either the shaft member 20 or the bearing 25 is oriented in the axial direction. make a reciprocating linear motion. Here, the dynamic pressure generating groove 1 of the bearing member l
The depth of 3 is from several μm to several tens of μm depending on the specifications of the bearing 25.
Select as appropriate within the range of m.

第7図に、他の実施例を示す。FIG. 7 shows another embodiment.

これは、ラジアル軸受用の動圧発生溝を加工するのに用
いる電子ビーム加工装置であり、基本的には第1図のも
のと同様である。ただ、被加工物30は表面硬化可能な
金属からなる円柱状軸であって、この被加工物30を回
転させるためのステッピングモータ31が、X−Yテー
ブル2の上に載置されている点が第1図のものと異なる
This is an electron beam machining device used for machining dynamic pressure generating grooves for radial bearings, and is basically the same as the one in FIG. However, the workpiece 30 is a cylindrical shaft made of metal whose surface can be hardened, and a stepping motor 31 for rotating the workpiece 30 is placed on the X-Y table 2. is different from that in Figure 1.

被加工物30の円筒状の表面の所定個所に電子ビーム5
を照射し、電子ビーム5が照射された個所の間にヘリン
グボーン状の動圧発生溝32の溝パターンを形成する。
The electron beam 5 is applied to a predetermined location on the cylindrical surface of the workpiece 30.
is irradiated to form a groove pattern of herringbone-shaped dynamic pressure generating grooves 32 between the locations irradiated with the electron beam 5.

その電子ビーム5は被加工物30の一端から他端へ軸方
向に走査するが、硬化させる個所にのみパルス状に照射
され、非硬化個所には照射されないように、X−Yテー
ブル2゜電子ビーム発生機4.ステッピングモータ31
の作動が予め与えられるプログラムに従いコントローラ
3に制御される。
The electron beam 5 scans in the axial direction from one end of the workpiece 30 to the other, but the X-Y table 2 degree electron Beam generator 4. stepping motor 31
The operation of the controller 3 is controlled by the controller 3 according to a program given in advance.

電子ビーム5による表面硬化加工後の被加工物30は、
先記実施例の場合と同じくエツチングされる。非硬化部
を数μm〜数10μmの溝深さとなるようにエツチング
しても、硬化部のエツチング深さは0.5μm以下であ
り、被加工Th30の軸直径の減少量は1μm以下であ
る。したがって、エツチング加工以前に軸外径を最終軸
寸法に仕上げておくこともできる。
The workpiece 30 after surface hardening processing by the electron beam 5 is
It is etched in the same way as in the previous embodiment. Even if the non-hardened portion is etched to a groove depth of several μm to several tens of μm, the etching depth of the hardened portion is 0.5 μm or less, and the amount of decrease in the shaft diameter of the workpiece Th30 is 1 μm or less. Therefore, the outer diameter of the shaft can be finished to the final shaft dimension before etching.

また、非硬化部の全面がエツチング液で腐食されるが、
軸に回転部材又は静止部材が取り付けられる個所には、
レジスト等の耐食性の保護膜を予め塗布してもよい。
In addition, the entire surface of the unhardened area is corroded by the etching solution, but
Where rotating or stationary members are attached to the shaft,
A corrosion-resistant protective film such as resist may be applied in advance.

本発明の動圧発生溝の加工方法によれば、波形状の溝パ
ターンやラジアル軸受用のへリングボーン状の溝やスパ
イラル状の溝以外にも任意の溝バターンを加工すること
が可能である。
According to the hydrodynamic groove processing method of the present invention, it is possible to process any groove pattern other than wave-shaped groove patterns, herringbone grooves for radial bearings, and spiral grooves. .

第8図はスラスト軸受部材36の中央部が平面状のスラ
スト軸受面37であり、このスラスト軸受面37はスラ
スト受部材の外周部50より凸状になっている。そして
、スラスト軸受面37にスパイラル状のパターンを有す
る動圧発生溝35を設けており、またスラスト軸受面3
7の中心部は電子ビームが照射されて表面硬化している
In FIG. 8, the center portion of the thrust bearing member 36 is a flat thrust bearing surface 37, and this thrust bearing surface 37 is more convex than the outer peripheral portion 50 of the thrust bearing member. The thrust bearing surface 37 is provided with a dynamic pressure generating groove 35 having a spiral pattern.
The surface of the center part 7 is hardened by being irradiated with an electron beam.

また、第9図(a)、 (b)は、円筒状のラジアル軸
受面のへリングボーン状の動圧発生溝32と、平面状の
スラスト軸受面37のへリングポーン状動圧発生溝38
とを一つの軸39に形成したものである。この場合、ラ
ジアル軸受面とスラスト軸受面37との両方にそれぞれ
ビームを照射して表面硬化した軸39を一部エッチング
加工するだけで、両方の動圧発生溝32.38が同時に
加工できる。
FIGS. 9(a) and 9(b) show a herringbone-shaped dynamic pressure generating groove 32 on the cylindrical radial bearing surface and a herringbone-shaped dynamic pressure generating groove 38 on the planar thrust bearing surface 37.
are formed on one shaft 39. In this case, both the dynamic pressure generating grooves 32 and 38 can be simultaneously processed by simply etching a portion of the surface-hardened shaft 39 by irradiating the beam onto both the radial bearing surface and the thrust bearing surface 37, respectively.

また、そのエツチング加工に際して、軸39の軸表面4
0に保護膜41を塗布すると、保護膜41を塗布しない
非硬化部の全面がエツチングで腐食されるから、ラジア
ル軸受用動圧発生溝32とスラスト軸受用動圧発生溝3
8との間の個所42には油溜まりの周溝が形成される。
Also, during the etching process, the shaft surface 4 of the shaft 39 is
If the protective film 41 is applied to the radial bearing dynamic pressure generating groove 32 and the thrust bearing dynamic pressure generating groove 3, the entire surface of the non-hardened portion where the protective film 41 is not applied will be etched and corroded.
A circumferential groove for an oil reservoir is formed at a location 42 between the two.

43は軸39を支承する軸受部材である。43 is a bearing member that supports the shaft 39.

また、ラジアル軸受用動圧発生溝32とスラスト軸受用
動圧発生溝38との溝深さを異なる深さにしたい場合は
、エツチング後にラジアル軸受面又はスラスト軸受面3
7に研削加工を施して一方の溝を他方の溝より浅くする
ことが可能である。
In addition, if you want to make the groove depths of the radial bearing dynamic pressure generating groove 32 and the thrust bearing dynamic pressure generating groove 38 different depths, after etching the radial bearing surface or the thrust bearing surface 3.
7 can be ground to make one groove shallower than the other.

なお、軸20,30.39に動圧発生溝を形成しても良
く、軸に対向する軸受部材1,36.43の方に動圧発
生溝を形成してもよく、又は、軸と軸受部材との両方に
形成してもよい。
Note that the dynamic pressure generating groove may be formed on the shaft 20, 30.39, or the dynamic pressure generating groove may be formed on the bearing member 1, 36.43 facing the shaft, or the shaft and the bearing may be formed with a dynamic pressure generating groove. It may be formed on both the member and the member.

また、ビーム加工には電子ビームに限らず炭酸ガスレー
ザやYAGレーザなどのレーザビームを用いることもで
きる。
In addition, the beam processing is not limited to an electron beam, and a laser beam such as a carbon dioxide laser or a YAG laser can also be used.

なお、金属表面はビーム5照射による急速加熱によって
溶融し、その後急速冷却されて非晶質化(アモルファス
化)してアモルファス組織となっても良い。
Note that the metal surface may be melted by rapid heating by irradiation with the beam 5, and then rapidly cooled to become amorphous to form an amorphous structure.

また、金属表面はビーム5照射によって急速加熱され、
その後急速冷却されてマルテンサイト組織となっても良
い。ビーム5照射後の冷却後の金属表面の変形は金属表
面がマルテンサイト組織になると少なくなる。
In addition, the metal surface is rapidly heated by beam 5 irradiation,
After that, it may be rapidly cooled to become a martensitic structure. Deformation of the metal surface after cooling after irradiation with beam 5 is reduced when the metal surface becomes a martensitic structure.

なお、マルテンサイト組織は硬く、耐食性も優れていて
エツチングスピードが遅いが、アモルファス組織はマル
テンサイト組織より硬さ及び耐食性において優れている
Note that the martensitic structure is hard, has excellent corrosion resistance, and has a slow etching speed, but the amorphous structure is superior to the martensitic structure in terms of hardness and corrosion resistance.

また、上記各実施例では、ビーム加工で金属材の被加工
物の表面を硬化してエツチング速度を変化させる場合に
ついて述べたが、反対に、予め熱処理して表面又は全体
が焼入れ硬化された金属材にビームを照射して、所定の
動圧発生溝パターン状に加熱し「軟化」させることによ
り軟化された個所と軟化されない個所とのエツチング速
度を変化させてもよい。その場合は、焼入れ後の、又は
焼入れ焼戻し後の、もしくは焼入れ焼戻しして切削(研
削)加工後の硬度の高い軸受面のビームが照射された個
所は、加熱されて軟化するように電子ビームやレーザビ
ームのパワーを適宜に設定する(パワーをある程度小さ
くする)。
In addition, in each of the above embodiments, the etching rate is changed by hardening the surface of the metal workpiece in beam processing, but on the contrary, the surface or the entire surface of the metal is quenched and hardened by heat treatment. The material may be irradiated with a beam and heated in a predetermined dynamic pressure generating groove pattern to "soften" the material, thereby changing the etching rate between softened areas and unsoftened areas. In that case, the parts of the hard bearing surface after quenching, quenching and tempering, or after quenching and tempering and cutting (grinding) are irradiated with an electron beam so that they are heated and softened. Set the power of the laser beam appropriately (reduce the power to some extent).

本発明によれば、ビーム照射で硬化または軟化させるい
ずれの場合も、硬化部のエツチング速度が非硬化部のそ
れに比べて非常に遅いため、軸受面は凸部が硬い面とな
る。それゆえ、耐磨耗性が良好で傷もつきにくいという
利点がある。更に、電子ビームやレーザビームによる表
面硬化層の厚さは、数10μm〜0.1鵬程度でよい。
According to the present invention, in either case of hardening or softening by beam irradiation, the etching rate of the hardened portion is much slower than that of the unhardened portion, so that the bearing surface has a hard convex portion. Therefore, it has the advantage of good abrasion resistance and resistance to scratches. Furthermore, the thickness of the surface hardened layer formed by electron beam or laser beam may be about several tens of micrometers to about 0.1 micrometer.

また更に、被加工物の形状の大小やロントの大小も問わ
ず通用できる利点がある。
Furthermore, it has the advantage that it can be used regardless of the size of the shape of the workpiece or the size of the front.

なお、本発明の加工方法は、動圧発生溝の形成のみなら
ず、周溝やくぼみ溝等の油溜まり用溝の形成にも適用可
能である。
Note that the processing method of the present invention is applicable not only to the formation of dynamic pressure generating grooves but also to the formation of oil reservoir grooves such as circumferential grooves and depression grooves.

[発明の効果] 以上説明したように、本発明によれば、軸受面の一部に
ビームを照射して表面硬化するか、または軸受面の予め
焼入れ硬化された個所にビームを照射して軟化し、エツ
チングするものとした。そのため、理想的な矩形に近い
断面形状と正確な寸法精度を有する溝が形成できる効果
がある。
[Effects of the Invention] As explained above, according to the present invention, a portion of the bearing surface is irradiated with a beam to harden the surface, or a portion of the bearing surface that has been quenched and hardened in advance is irradiated with a beam to soften the surface. and then etched it. Therefore, it is possible to form a groove having a cross-sectional shape close to an ideal rectangle and accurate dimensional accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の加工方法に用いる加工装置の一例の模
式図、第2図は動圧発生溝パターンの平面図、第3図は
ビームによる表面硬化後の硬さ分布図、第4図はエツチ
ング速度線図、第5図はエツチング面の拡大断面図、第
6図(a)は本発明の方法で動圧発生溝が加工された被
加工物を軸受面に用いた軸受装置の正面図、同■)は側
面図、第7図は本発明の加工方法に用いる加工装置の他
の例の模式図、第8図は本発明の方法で加工された動圧
発生溝の他の例を示す平面図、第9図は本発明の方法で
加工された動圧発生溝の更に他の例を示し、同図(a)
は正面図、同図(b)は側面図である。 1は軸受部材、IAは軸受面、13.32,35.38
は動圧発生溝。 る揚上」 子 Hフ・トδト\甲栓セノ; 第 7 図 第 図 (b) 8
Fig. 1 is a schematic diagram of an example of processing equipment used in the processing method of the present invention, Fig. 2 is a plan view of a dynamic pressure generating groove pattern, Fig. 3 is a hardness distribution diagram after surface hardening with a beam, and Fig. 4 5 is an etching speed diagram, FIG. 5 is an enlarged cross-sectional view of the etched surface, and FIG. 6(a) is a front view of a bearing device using a workpiece on which dynamic pressure generating grooves have been machined by the method of the present invention as a bearing surface. Fig. 7 is a schematic diagram of another example of a processing device used in the processing method of the present invention, and Fig. 8 is another example of a dynamic pressure generating groove processed by the method of the present invention. FIG. 9 is a plan view showing still another example of the dynamic pressure generating groove processed by the method of the present invention, and FIG.
is a front view, and (b) is a side view. 1 is the bearing member, IA is the bearing surface, 13.32, 35.38
is a dynamic pressure generating groove. Figure 7 Figure (b) 8

Claims (2)

【特許請求の範囲】[Claims] (1)互いに対向して動圧軸受を構成する一方の軸受面
と他方の軸受面との少なくとも一方への動圧発生溝の加
工方法において、前記軸受面の一部にビームを照射して
表面硬化し、前記軸受面をエッチングして動圧発生溝を
成形する動圧発生溝の加工方法。
(1) In a method of machining a hydrodynamic groove in at least one of one bearing surface and the other bearing surface that face each other and constitute a hydrodynamic bearing, a part of the bearing surface is irradiated with a beam to form a groove on the surface of the bearing surface. A method of processing a dynamic pressure generating groove, which comprises hardening and etching the bearing surface to form a dynamic pressure generating groove.
(2)互いに対向して動圧軸受を構成する一方の軸受面
と他方の軸受面との少なくとも一方への動圧発生溝の加
工方法において、前記軸受面の焼入れ硬化された個所に
動圧発生溝パターン状にビームを照射して軟化し、前記
軸受面をエッチングして動圧発生溝を成形する動圧発生
溝の加工方法。
(2) In a method of forming a hydrodynamic groove in at least one of one bearing surface and the other bearing surface that face each other and constitute a hydrodynamic bearing, dynamic pressure is generated in a quench-hardened portion of the bearing surface. A method for processing a dynamic pressure generating groove, in which a beam is irradiated in a groove pattern to soften the bearing surface, and the bearing surface is etched to form a dynamic pressure generating groove.
JP5440190A 1990-03-06 1990-03-06 Method for working dynamic pressure generating groove Pending JPH03257117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5440190A JPH03257117A (en) 1990-03-06 1990-03-06 Method for working dynamic pressure generating groove

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5440190A JPH03257117A (en) 1990-03-06 1990-03-06 Method for working dynamic pressure generating groove

Publications (1)

Publication Number Publication Date
JPH03257117A true JPH03257117A (en) 1991-11-15

Family

ID=12969670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5440190A Pending JPH03257117A (en) 1990-03-06 1990-03-06 Method for working dynamic pressure generating groove

Country Status (1)

Country Link
JP (1) JPH03257117A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040078983A (en) * 2003-03-05 2004-09-14 주식회사 프로텍 Groove processing method and devices of FDB(Fluid-oil and air- dynamic bearing)
JP2009192029A (en) * 2008-02-18 2009-08-27 Nissan Motor Co Ltd Rotating shaft, sliding device using same, machining device of rotating shaft, machining method of rotating shaft, crank shaft, cam shaft, and engine
EP3211102A1 (en) * 2016-02-24 2017-08-30 General Electric Company Method of treatment, turbine component, and turbine system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040078983A (en) * 2003-03-05 2004-09-14 주식회사 프로텍 Groove processing method and devices of FDB(Fluid-oil and air- dynamic bearing)
JP2009192029A (en) * 2008-02-18 2009-08-27 Nissan Motor Co Ltd Rotating shaft, sliding device using same, machining device of rotating shaft, machining method of rotating shaft, crank shaft, cam shaft, and engine
EP3211102A1 (en) * 2016-02-24 2017-08-30 General Electric Company Method of treatment, turbine component, and turbine system

Similar Documents

Publication Publication Date Title
JP2683502B2 (en) Method for precision machining the surface of a workpiece
JP4043644B2 (en) Method for manufacturing hydrodynamic bearing device
KR20150052073A (en) Method for manufacturing composite molded body
DE69618017T2 (en) PUNCHING KNIFE AND MANUFACTURING METHOD
JPH03257117A (en) Method for working dynamic pressure generating groove
JPS62133016A (en) Hardening method for sliding surface
JP7236771B2 (en) Disorderly uniform roughening processing method of rolling roll surface by laser
JPH06304769A (en) Laser sculpturing method
JPH03253025A (en) Substrate to be worked and anisotropic etching of silicon
JP6549851B2 (en) Texturing method for sliding member
JPS5947524A (en) Roller bearing surface-hardened by laser beam machining
Hua et al. Influence of pulse duration on the surface morphology of ASSAB DF-2 (AISI-01) cold work steel treated by YAG laser
KR19980032848A (en) Surface treatment method of steel member
JP2006194220A (en) Manufacturing method of sliding member
JP3158470B2 (en) Parts with rolling or sliding
JPS6013045B2 (en) Hardening processing method for carbon steel parts
RU2385212C2 (en) Method of surface hardening
JPS62136320A (en) Fine recessed and projected pattern forming method
JPS60211013A (en) Slider
JPS63112086A (en) Manufacture of dull roll for steel plate rolling
RU2058401C1 (en) Method for laser treatment of parts of body of revolution type
Charee et al. Preliminary Study of Ultrasound-Assisted Laser Hardening of AISI H13 Tool Steel
Kienzler et al. Burr minimization and removal by micro milling strategies or micro peening processes
JPS6320193A (en) Surface roughening method for cold rolling roll
JP2508940B2 (en) Method of forming signal pattern using high density energy source