JPH03247702A - Silver-containing alloy powder and electric conductive paste using this powder - Google Patents

Silver-containing alloy powder and electric conductive paste using this powder

Info

Publication number
JPH03247702A
JPH03247702A JP2041093A JP4109390A JPH03247702A JP H03247702 A JPH03247702 A JP H03247702A JP 2041093 A JP2041093 A JP 2041093A JP 4109390 A JP4109390 A JP 4109390A JP H03247702 A JPH03247702 A JP H03247702A
Authority
JP
Japan
Prior art keywords
conductive paste
powder
silver
alloy powder
containing alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2041093A
Other languages
Japanese (ja)
Other versions
JP2643520B2 (en
Inventor
Akinori Yokoyama
明典 横山
Tsutomu Katsumata
勉 勝又
Hitoshi Nakajima
斉 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP2041093A priority Critical patent/JP2643520B2/en
Publication of JPH03247702A publication Critical patent/JPH03247702A/en
Application granted granted Critical
Publication of JP2643520B2 publication Critical patent/JP2643520B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector

Abstract

PURPOSE:To manufacture Ag alloy powder having excellent electric conductivity, oxidizing resistance and suitable for raw material for electric conductive paste by super-rapidly cooling the specific composition of molten Ag alloy with high pressure atomizing method, solidifying and pulverizing it. CONSTITUTION:The molten alloy having composition shown with general formula AgXM1-X (wherein, M shown one or more kinds among Cu, Ni, Co and Fe and 0.0005<X<0.01 atomic ratio) is rapidly cooled and solidified with the high pressure water atomizing method or the high pressure gas atomizing method and pulverized into the fine powder-state having 0.1-100mum average particle diameter. The Ag alloy powder having excellent electric conductivity and oxidizing resistance and developing no Ag migration, is obtd. By mixing 5-100wt parts of organic binder of thermoplastic resin or thermosetting resin, etc., to 100wt parts of the Ag alloy fine powder, the conducive paste suitable for use for screen printing, printed circuit forming, electromagnetic shield, capacitor, etc., is manufactured.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、導電性に優れ、かつ耐酸化性が良く、銀の耐
マイグレーション性に優れた特性を有する、安価な導電
性ペースト及び該ペーストを用いた導電体に関するもの
であり、電磁シールド。 ICダイボンディングペースト、 コンデンサー電極、
導電付接着剤、接点材料、導電回路用ペースト 低抵抗
体ペーストとして応用できる7(従来技術) 従来、導電性を有する月料として、 カーボン銅、アル
ミニウムや、 ユJ(、パラジウム等の1’[金1j+
、銀メツキ複合粉が用いられており、 これら導電r1
の粉末を有機バインダー、必要に応じて溶剤、 添加剤
を加え分散させたペーストが公知である。 (発明が解決しようとする課2fI) 公知導電性ペーストとして用いられているカボン、銅、
 ニッケル、鎖及び貴金属粉、鉗メツキ複合粉は、以下
の欠、占がある。銅、 ニッケルは安価であるが、酸化
により塗膜の導電性が低ドしやすい、 また、銀は高価
であり、?Il場中、特に高湿度下で銀がマイグレーシ
ョンを起こし、絶縁不良を起こし易い、銀メツキ粉末は
、剥がれが生し易く、また飯のマイグレーションの問題
がある。 カーボン粉末を用いたペーストは、導電性が
悪いという欠点を有している6 まだ、銀と銅、ニッケ
ルを機械的強制結合により合金粉を作製する方法が開示
されているが(例えば、特開昭56−155259、 
57 98 、’372号)、機械的強制結r7のため
、銀のマイグレーシヨンの防IL効果に乏しい欠点を有
する。 (課題を解決するための手段) 本発明は、導電性に優れ、かつ長期にわたり耐酸化性に
優れ、銀マイグレーションを起こさない安価な銀含有合
金粉末ならび該粉末を用いた導電性ペーストに関するも
のである、 本発明に用いる銀含有合金粉末は、高11゛ア)・マイ
ズ法により作製されるが、 高圧水アトマイズ法、高圧
ガスアトマイズ法が好ましい。特に、先に同一出願人に
より出願した特願平1−20F+569号において詳細
に説明されており、高圧ガスアトマイズ法を用いるのが
好ましい、m+示内容によれば、該組成の銀とM(但し
 MはCu  F (ICo、Niより選ばれた1種以
上)を混合し、不活性ガス雰囲気中、 るつぼ中で高周
波誘導加熱を用いて融解する。さらに、るつぼ先端より
融液を不活性ガス雰囲気中へ噴出する。噴出と同時に、
高圧の不活性ガスを断熱膨張させて発生した高速気流を
融液に向がって噴出、 アトマイズ化し、急冷凝固する
方法である。融液を急冷凝固する冷却速度は102℃/
 s e c以」、が&fましく、 】03χ;/ s
 e c以上がさらに好ましく、 io’T:/sac
以上が最も好ましい。 ここで用いられる不?J +l
ガスとは、 かかる組成の融液と全くか、 あるいは極
めてゆるやかにしか反応しないガスを澄味する。 例えば、窒素、 ヘリウム、アルゴン、それらの混合物
などが¥げられる。 また1本発明で用いる銀含有合金
粉末の特性に影響をIjえない程度であれば、若干の不
純物ガスが混じっていても構わない。 カスノ圧力(膨張前)は、 70 k K / Cm2
(i以上が好ましく、 100kg/Cm2G以」二が
さらに好ましい、高速気流の速度は、融液との衝突位置
で100m/秒以上が好ましく、 さらに、 3゜Om
 7秒以上が好ましく、 600m/秒以上が最も好ま
しい、ガスと融液との質爪比は2以−1−が好ましく、
 さらに4以上が好ましい。 高圧水アトマイズ法としては、該組成の融液をるつぼ先
端より噴出する。噴出と同時に、 ノズル先端より噴出
された融故に向がって、加圧された水をノズルより噴出
し、詠組成の融液と衝突させ、微粒子化、急冷凝固する
。 この時、水の質に速度/融液質量速度比がlO以−
1,であるのがOfましく、 40以」二であるのがさ
らに好ましい、 また。 水と融液との衝突位置における水の速度は80 +n/
秒以コニが好ましく、 さらに、 l OOtn /秒
μストが好ましい、加圧水をノズル先端より噴出する1
1シの圧力は、  50 k g/ cm’G以上が好
ましく、00kg/cm2G以上がさらに好ましい。 水アトマイズ法により作製された急冷凝固粉末は、不規
則形状のものが多く含まれるが、本発明では1球状粒子
の範喀に入る。この場合には、各粒子の長径を各粒子の
粒径とする。 本発明のAg XMI−y (但し1Mは、Cu、 N
i、 Fe、  GOより選ばれた1種以」二)合金粉
末は、 0. 0005<x<0. 01  (原子比
)であるが、 Xが0.0005未満では、 充分な耐
酸化性が得られず、高価な釦を用いることなどから0゜
0005(x<0. 0OFiがりIましい。 本開明で用いるCu、  Ni、  Fe、  Goは
、1’=’cい導電性を有するのみならず、特に、N1
、 lXeC0は磁気的特性に優れ、電磁波シールド何
がさらに向−にできる利、−1・がある。 本発明で用いられる銀含有合金粉末の中均粒子径は、 
0.1〜100μmであるが、球状の場合は、 I −
30It、mが好ましく、 l −10μmが最も好ま
しい。鱗片状の場合には、 乎均仔(長径と短径がある
場合は両者のip均471 )が1ないし1゜0μmが
りTましく、 1ないし30μInがさらにりfましい
、 100μmを越λる場合には、印刷J flチキソ
トロピー、粘性が悪く、かえって導電セ1が悪く、また
、 O,1μm未満では接触抵抗が増加し、かえって導
電性が劣る。粒径の小さいものを特に収率よく作製する
ためには、ガス圧は高い方が良く、 100kg70m
20以上が好ましく、 また、ガス質量速度/)IL貿
余量速度比大きい方がよく、 4以上が好ましく、 6
以」二がさらに好ましい。 形状は、球状、樹枝状、鱗片状及びそれらの混合物が用
いられるが、球状、鱗片状及びそれらの混合物がより好
ましい。鱗片状粒子の形状は、径/厚みが3以上である
のが好ましい6 形状と粒径の測定には走査型電子顕微
鏡を用い、視野中の100の粉末の測定値の平均イ1a
を用いた。 鱗片状粉を得るには、本開明の銀合金オフ)木を公知な
方法で機械的に変形させるのがよい。例えば、スタンプ
ミル、ボールミル、振動式ボールミル等の方法が好まし
い。中でも振動式ボールミルを用いるのが好ましい、振
動式ボールミルを用いる場合には、不活性あるいは還元
性雰囲気中で実施するのが好ましく、 がっ、4話性液
体中で実施するのがさらに好ましい。 不活性液体とし
ては、ミネラルスピリット、 ソルベントナフサ等の4
1機溶媒があげられる。不活性液体の量は、 エないし
10100O/g粉末が好ましい、 この際、 公知の
分散助剤を加えても艮い8 本発明の銀含有合金粉末は、−数式AgyM−8(但 
し、  M は Cu、Ni、  Fe、Co  よ 
リ 選 ばれた1種以」二、 0. 0005<x<O
,O1,Ii、’F子比)であるが、必要に応じて、 
 AI、Zn、sn、Pb、Si、Mn、  Bi、 
 Mo、  or、  Ir、Nb、  Sb、  I
l、  P、  Mg、  Li、 C,Na、 13
a、Ti、In、Au、l’d、PL、Rh、Ru。 Zr、  Hf、  Y、などの金ノに、 ゛1−金属
、及びそれらの化合物を添加しても構わない。 本発明の銀含有合金粉末をペーストとして使用する場合
には、有機バインダーを用いるのがHf適である。 (
このようなものは1通常導電刊ペストと呼ばれるが、 
(・kい道により導゛−uヂI塗料、 樽電性接着剤と
呼ばれることもあり、 いずれの場合も本発明の範噌に
入る)、イブ機バインダーを用いる場合は、銀含有合金
粉末は主として鱗片状からなることが導電性の面から好
ましい。 本開明に用いる有機バインダーとしては、熱可塑性樹脂
、光硬化性樹脂、電子線硬化性IaIII肌熱硬化性樹
脂より選ばれた1種以上であるが、熱可塑性樹脂として
は、例えば、熱可塑nアクリル樹脂、 アルキッド樹脂
、 塩化ビニル樹脂、 ウレタン樹脂、ポリエステル樹
1jn、 塩化ビニル−酢Mビニル典型合体、酊Nビニ
ル樹脂、エチレン−西1酸ビニル共重合体、ポリカーボ
ネートM IIL  スチレン系樹脂などが挙げられる
。 中でも、熱可−IJl′IアクリルN4rraがり
fましい7 また、 熱硬化着樹11uとしては、 エ
ポキシ樹脂、 フェノール樹脂、 メラミン樹脂、 ア
ルキッド樹脂、 ポリウレタン樹脂、 ポリエステル樹
脂、熱硬化性アクリル樹n=、 ポリイミド樹脂、 メ
ラミンアルキッド樹脂及びそれらの変性樹脂の1種以上
の組合せがあげられる、中でも、エポキシ樹脂、 フェ
ノール樹脂の1種、或は2種以上の組合せが好ましい7
 エポキシ樹脂としては分子、f1380〜8000の
ビスフェノールΔノ(リエボキシ樹脂、 ノボラック型
エポキシ樹脂、 ブロム化ビスフェノールΔ型エポキシ
樹脂、脂環式エポキシ樹脂あるいはそれらの変性樹脂、
脂肪酸変性樹脂などがあげられる。 フェノール樹脂と
しては。 ノボラック型、 レゾール型のフェノール樹脂、 ロジ
ン変性フェノール樹脂を単独或はエポキシ樹脂の架橋剤
として用いるのが好ましい。 メラミン樹脂としては、例えばメチロール化メラミン樹
脂あるいはアルキル化メチロールメラミン樹脂等をエポ
キシ樹脂の架橋剤として混ぜ合わせて用いるのがIfま
しい、 エポキシ樹脂の熱硬化剤としては、 必要に応
じて有機ポリアミン、 N無水物、 ジシアンジアミド
、 ベンゾグアナミン、ビグアニド、 アルキルフェニ
ルビグアニド、ヂフェニルビグアニド、三ふっかほう素
などの公知の硬化剤などが用いられる、 本発明の導電+1ベースl−let:、  銀含有合金
粉末100重量部部に対して 有機バインダー5〜10
0重ffi部を有するが、 5重Ii(部未満の場合は
、 り鷹膜中の導電性金属粉末を結合させておくに充分
な樹脂量がなく、 i#導電性機械的強度を低下させる
。 また、  100重量n11を越える場合には、導電性
金属の爪が足りず、 充分な導電e+が得られない。り
rま し く は、  10 〜50 重 量 部 で
 あ る。 本発明の導電性ペーストを用いる場合、必要に応して溶
剤を用いることができる。溶剤の量としては、鎖含有合
金粉末と有機バインダーの合31100重量部に対して
0〜100重量部を含イ1することが好ましい。 本+a明で用いることのできる溶剤としては#J脂によ
って異なるが 公知の溶剤で構わない。 例えば、 トルエン、キシレンなどの芳香族類、 メチ
ルエチルケトン、 メチルイソブチルケI・ンなとのケ
トン類、酢酸ブチル、酢酸エチルなどのエステル° ブ
チルセロソルブ、エチルセロソルブなど) のセロソルブ類、 α−テルベノール、 イソプロパツ
ール、 ブタノールなどのアルコール類、 フエノル、
 クロルフェノール等のフェノール類、 ブチルカルピ
トール、 ブチルカルピト−ルアセテ−1・を1種以上
含むものなどが好ましく、m含イf合金粉末と有機バイ
ンダー合計100重量部に対して0〜100重量部を含
有させるのがよい。 100重量部を越える場合には、
印刷時ににじみ等が生じ導電性を損ねる。 1〜50重
量部がりfましい。 本発明の導電性ペースト中の銀金イノ合金粉末の分散性
を向上させるため、粉末表面の金属酸化物を除去あるい
は還元するなどのため添加剤を加えるのが良い1本Jf
i明で用いる添加剤としては、飽和脂肪酸、不飽和脂肪
酸、飽和脂肪酸の金属塩、不飽和脂肪酸の金属塩、高級
脂+1jr族アミン、有機チタネート化合物、 イj機
リン化合物、 ヒドロキノン及びその誘導体、オキシカ
ルボン酸、オキシカルボン酸、金属キレート形成剤、 
フェノール化合物、 L−アスコルビン酸誘導体 アン
トラセン及びその誘導体、 ロジンより選ばれた1種以
上である。飽和、不飽和脂肪酸としては、炭素数6以上
がI7ましく、炭素数15〜J8のJJn肪酸r;よび
それらの金属塩がさらにITましい7 例えば、 ステ
アリン酸、 バルミチン酸、 リノール酸、 リルン酸
、オレインM、 エライジン酸)、脂肪族ジカルボンN
としてアジピン酸、 ピメリン酸、 スペリン酸、 セ
パシン酸、マレイン酸、 フマル醸、オキシカルボン酸
として例えば、 りんご酸、 ゲルコール酸、 グリセ
リン酸、 乳酸、 酒石酸、 クエン酸、 マンデル酸
、サリチル酸及びその誘導体があげられる。金属塩を構
成する金属どしては、 リチウム、ナトリウム、 カリ
ウム、 マグネシウム、 カルシウム、 バリウム、 
亜鉛、 銅、 釘(、鉱、 ニッケル等が9了 ま し
 い6 高級脂肪族アミンとしては、溶剤に”J溶の炭素数8〜
22のものが好ましく、例えば、ステアリルアミン、 
パルミチルアミン、 ベヘニルアミシャチルアミン、 
オクチルアミン、デシルアミン、ラウリルアミンのよう
な飽゛和モノアミン、 不飽和アミンとしてはオレイル
アミン、 ジアミンとしてはステアリルプロピレンジア
ミン、 オレイルプロピレンジアミンなどが挙げられる
。 金属キレ−1・形+&剤としては、 モノエタノル ア
 ミ ン、  ジ エ タ ノ − ル ア ミ ン、
  l・ リ エ タ ノ − ルアミン、 エチレン
ジアミン、 トリエチレンテトラミンなどや、 アセチ
ルアセトン、 トリフルオルアセチルアセトン、ヘキサ
フルオルアセチルアセトン、ベンゾイルアセトンなどが
拳げられる。 フェノール化合物、 ヒドロキノン誘導体として は、
  例え ば、  フ ェ ノ − ル、  ハ イ 
ド ロ キ ノ ン、  カテコール、 2−メチルハ
イドロキノン、 terlブチルハイドロキノン、 ク
ロルハイドロキノン。 フェニルハイドロキノン、 ピロガロール、 124−
ベンゼントリオールなどが挙げられる。 有機チタン化合物としては、  R1’I’ i 、 
 (R2)3(式中R,は炭素数1〜71.好ましくは
炭素数1〜3のアルコキシ括、  R2は炭素数1〜2
0.好ましくは炭素数2〜18のカルボン酸エステル)
があげられ、 例えば、 イソプロピルトリイソステア
ロイルチタネート、 イソブロビルトリオクタノイルチ
タネ−1・などか)tげられる6アントラセン及びアン
トラセン誘導体としては、例えば、アントラセンカルボ
ンNがあげられる。 ロジンとしては、 アビエチン酸、 あるいは、アビエ
チン酸誘導体が好ましい。例えば、部分水添ロジン、完
全水添ロジン、 エステル化ロジン、マレイン化ロジン
、不均化ロジン、 重合ロジンなどの変性ロジンなどが
挙げられる。 L−アスコルビン酸及びその誘導体としては例えば、 
 L−アスコルビン酸、 L−アスコルビン酸シバルミ
チー1・、 L−アスコルビンrvJG−ズテアレート
などが挙げられるが、特に、エステル、アセタール類、
 ケタール類などが好ましい。 添加剤の爪としては、銀含有合金粉末I()0重量部に
対して、前記添加剤の1種以、1−を0゜〜25重量部
添加するのが良い7 りfましくは、 01−10重ハ
エ311 テあり、 さl’) L: O,l −Fl
 ff(II tillが好ましい。 本発明の導電性ベーストに用いる銀含有合金粉末は、接
点抵抗の低く、  i!’+iい導電性を有するもので
あり、 また、鋲が合金化しているために、41のマイ
グレション防止効果に優れる。 さらに、 前述の添加
剤を加えることで、 分散性、導電性を向上できる効果
がある、 本発明で用いることのできる光硬化性樹脂としては、紫
外線硬化性樹脂、。可視光線光硬化f1樹脂が挙げられ
るが、紫外線硬化性樹脂が好ましい。 紫外線硬化性樹脂を用いる場合には、光重合++オリゴ
マー、光重合性モノマーを光開始剤、 光1;1j始助
剤とともに用いるのが良い。 光重合性オリゴマーとは、低分子量反応や1分子(数百
から数千)で、ポリエステル、エポキシウレタンなどの
骨格に官能基としてアクリルJ、(。 メタアクリル基が2つ以1.付加したものであり。 例えば、 エポキシアクリレ−1・、 ウレタンアクリ
レート ポリエステルアクリレート、 ポリエーテルア
クリレートが)tげられる。 光重合性モノマーとしては、 アクリロイルノ、((C
H2=GOGO−7)またはメタアクリロイル基(CH
2=C(CI43)に、0−)を1分子あたり1個また
は2個以」−を持−)ものであlハ 1測長−)甲官能
アクリレ−1−(メタ)、 2個以1−持つ多′[f能
アクリレート、 その他ビニル基(C112−CII−
)を持つものが好ましい !it ’1イ能アクリレー
トとしては、例えば、 アリルアクリレ−1・、 アリ
ルメタアクリレート、 ベンジルアクリレート(メタ)
、イソボニルアクリレート、 シクロへキシルアクリレ
ート(メタ)、 N、  N−ジメチルアミノエチルア
クリレート、 グリシジルメタアクリレート・、 ラウ
リルアクリレート、 ポリエチレングリコール℃)Oメ
タアクリレート、 [・リフロロエチルメタアクリレー
トなどがある。 多官能アクリレートとしては1例えば
、 1.4ブタンジオールジアクリレト、 I、  6
ヘギサンジオールシアクリレート ンエチレングリコー
ルジアクリレート、 ネオベンチルグリコールジアクリ
レート、 ポリエチレングリコール400ジアクリレー
ト、 トリプロビレングリコールジアクリレ−1・、 
ビスフェノールヘンエトキシジアクリレート、テトラエ
チレングリコルジアクリレート、 トリメチロールプロ
パントリアクリレート、 ペンタエリスリト−ルi・リ
アクリレートなどがあげられる。 ビニル基を有する反応Jflモノマーとしては、例えば
、 スチレン、 ビニルトルエン、  19酸ビニル、
N−ビニルピロリドンなどの単官能モノマーが使用でき
る。 前記オリゴマー、 千ツマ−とともに用いられる光開始
剤は、紫外線を吸収してラジカルを発生しやすくなる物
質が好ましく、アセトフェノン系。 チオキサンソン系、ベンゾイン系、 パーオキサイド系
の公知の光開始剤が使用できる1例えば、 ジェトキシ
アセI・フェノン、 4−フェノキシジクロロアセトフ
ェノン、ベンゾイン、ベンゾインエチルエーテル、ペン
ゾイニソプロビルエーテル、 ベンジルジメチルケター
ル、 ベンゾフェノン、 4フエニルベンゾフエノン、
アクリル化ベンゾフェノン、チオキサンソン、 2−ク
ロルチオキサンソン、ベンジル、 2−エチルアンスラ
キノンなどがあげられる。 また、本発明で用いることのできるん開始助剤としては
、 それ自社は紫外IQ ll(i射により話fi化は
しないが、光開始剤とともに使用すると、 )℃開始Q
t独よりも1;11始反応が促進され、 硬化反11.
.、を効率的にするものであり 1脂肪放、 芳香Jl
)−のアミの公知の光開始助剤が使用できる。例えば、
 トリエタノールアミン、 N−メチルンエタノールア
ミンミヒラーケトン、 44−ジエチルアミノフェノン
などの公知の光開始助剤が使用できる。 本発明の導電性ペーストを用いる際に2 公知の粘度調
整剤、 希釈剤、沈降防止剤、 レベリング剤、泡消剤
、 シランカップリング剤、チタンカップリング剤等の
添加剤を適1L配合しても艮いことは言うまでもない。 硬化力法としては、例えば、室温あるいはそれ以」二、
好ましくは40〜80°Cでロールコータで塗布された
光硬化性樹脂組成物塗膜を水鋸ランプ等の紫外線発生装
置を光源として照射する、光源としては公知の装置で構
わないが、  100W/ c m程度で充分である。 照射時間としては、数秒から数十性程度で10分である
。 また、電子線硬化f1樹脂としては、前記の20硬化性
樹脂(光重合性オリゴマー、 光車合性千ツマ−)を用
いることができる。゛電子線で硬化する場合には、高?
U圧で加速した電子はエネルギーが大きく、 光に比較
して物質透過性が大きいため硬化能力が大きく、 しか
も室温で硬化でき、光硬化より電子線硬化の方がよりI
Tましい、また、 前記オリゴマー、 千ツマ−は電子
線を吸収して、 イオン、ラジカルを発生するため、 
光開始剤、光開始助剤は原則として必要ない。電子線硬
化方法は、公知の方法で祷ねない、たとえば、 塗膜厚
100μm以下程度であれば、  150kVの加速電
圧があれば充分であり5 吸収線量としては、 5M 
r r+dあれば充分であり、公知の方法が使用できる
。 本発明の導電性ペーストを電子回路、  ?IIr機器
などに、素子間の導線、導屯+1接着剤 屯碍θだシー
ルド膜としてI、1.、用するIg f7、 スクリー
ン印刷、スプレーと1、刷毛、バーコー1− rll、
 ドクターブレド法などの印刷、塗21i法などの公知
な方d、で尺い。 本発明の導電性ベーストからなる塗膜の導゛屯性は、 
4端子法を用いて測定した。 また、銀のマイグレーシ
ョンは、Imm間隔に塗布した2本の塗膜(幅1017
I m、 長さ30 Ill IT+ )を作製し 0
2m1の水滴を塗膜間に滴かし、 (この時、水滴が2
本の塗膜のどちら“にも充分接触するようにする入直流
の電圧5■を2木の塗膜に印可し、ユ股間に流れる直流
電流を+1111定する。電流(,7/が+00μAを
越える場合を釦がマイグレーションが生したものとする
。 (発明の効果) 本発明は、導電性に優れ、 長期にわたり耐醇化性が良
く、紐のマイグレーションが起こらない、極少爪の力(
を含む人倫な11含イ1合金粉末及びIK粉末を用いた
導電性ペースト、導電体を供するものであり、電子回路
用導体、導′luヤ1接着剤、′1π磁シルトペースト
、コンデンサー゛Iπ極用ベース1−1低tjt ti
t用ベースト及びそれらを用いた導電体として使用でき
る。 (実施例) 以下、実施例と比較例によって本発明を14体的に説明
する。 実施例1 銅粉(純度99.9%以]二、高純度化学製)630g
、銀粉(純度99.9%以上、 ミツフ化学製、)3g
を混合し、黒鉛るつぼ(BNノズル付き)に入れ、 ア
ルゴンr;囲気中で高周波誘導加熱により溶融し、 1
400℃まで加熱した。この融液をアルゴン大気圧1゛
でノズルより30秒間で噴出した。同時に、ボンベ人す
アルゴンガス(ボンベ圧力150気圧) :I N ’
l’ P を口3を噴出する融液に向かって周囲のノズ
ルより噴出したくガス綿速瓜300 m/秒)。この時
、ガス質量速度/融液質量速度比は8.4らであった、 得られた粉末を走査型電子顕微鏡で観察したところ球状
(平均拉杼20μm)であった。 また、濃硝酸に粒子
の一部を溶解し、 I CPにより・+1均のl1il
濃度をを測定したところ、 (Ag/(Ag十CU)、
原子比〕Xは0.00279であった。 得られた粉末のうちI OILm粒径以ドの粉体1()
gをミネラルスピリットlooml中、窒素雰囲気中で
、 5mmΦのステンレスポールを充カ(シた、振動式
ボールミル中で展延した。得られた鱗片状粉末の平均径
は25μm、平均厚さ1μmであった。この粉末のうち
10μm以下の鱗片状粉末9gを市販のアクリル系熱可
塑性樹脂3g、 トルエン3g、 リノールf’iJ0
. 45gよりなる液に分散し、ガラスエポキシ樹脂基
板上に塗布し、 50℃1日大気中乾燥した。硬化後の
膜を段差針を用いて測定したところ、膜厚は、 20μ
I11であった。。 4端子法を用いてtill定した体積抵抗率は、35X
IO−’Ω cmであった、 この膜を〔)0℃、 湿
度90%の大気中に2000時間放置したところ、t1
− 体#[抵抗率は殆ど変化しなかった、 また、力(のマ
イグレーション試験のために、幅+ 0 In In、
長さ30 tn m、  段間隔1 m mの塗膜を2
本同様に(1製した。 この2木の股間に0.2mlの
水滴を落し、5V (DC:)の直流電圧を2分間印可
した。ゆ膜、塗膜間とも外観上の変化は見られなかった
。 本発明で示される鋲のマイグレーションのイア 焦1こ
ついては、前記マイグレーション試験において直流電流
値が100μΔを越える場合をもって銀のマイグレーシ
ョンが生じたものとする。以Fの実施例、比較例につい
ても同様に判断する。 実施例2 実施例1で得られた10μm以下の鱗片状粉末9gとエ
ポキシ樹脂(AER661)1 g、 メラミン樹脂2
g、 ブチルカルピトール3g、  リルンWi0.4
5g、  ピロカテコール0.4gをよく混合し、ガラ
スエポキシ樹11i1基板十へ塗布した。 塗布後、 160℃、大気中30分間加熱硬化した7硬
化後の膜Ig20μm、体積抵抗率は、 2×104Ω
 ・ c mで あ リ、  60 ℃、  90 %
湿度、  2005− 0期間放置でも体積抵抗率の変化は認められなかった。 また、実施例1と同様にしてatのマイグレション試験
をしたところ、 鋲のマイグレーションは殆ど認められ
なかった。 実施例3 実施例1で得られた鱗片状粉末のうち10μmlJ下の
粉末+1[とエポキシ樹11H(ΔIE +< :+ 
:++)+g、エポキシ樹脂(△1・:R337) 2
 g。 ジシアンジアミド0.03[、ハイドロキノン()。 2gを混ぜ合わせ同様にしてガラスエポキシ樹脂基板上
へ塗布した。塗膜の厚さは、 18μmであった。得ら
れた塗膜を150℃、大気中20分間加熱硬化した。硬
化後の膜の体積抵抗率は、 6×10−’Ω’cmであ
った。 さらに、 60℃、()0%湿度中20’ O
0時間放置したところ、体積抵抗率は、殆ど変化しなか
った。 また、銀のマイグレション試験を実施例1と同
様にして行ったところ釧のマイグレーションは殆ど認め
られなかった。 実施例4 銅粉(純度999%以1:、高純度化−?’llj)6
30gと銀粉(Q!1.9%以上、 みつわ化学製)1
gを実施例]と同様にして黒鉛るつぼ中アルゴン雰囲気
下で1500℃まで溶解した。溶解(礎。 黒鉛ルツボの先端に取り付けた13 Nノズルより、ア
ルゴン雰囲気中へ25秒間で噴出した。噴出と同時に、
ボンベ入りのアルゴンガス(ボンベハコ0気圧)2. 
2N’l’Pm3を噴出する融故に向けて周囲のノズル
から噴出した(ガス線速度200m/秒)、この時のガ
ス質量速度/融散質量速度比は6.2であった。得られ
た粉末は平均粒子Y−5μmの球状であった。得られた
粉末・のlOμm以下logをミネラルスビリッl−1
00m l、窒素雰囲気下、!動式ボールミルを用いて
展延した。 平均粒径19μm、  FXさ1μmの鱗片状粉末が得
られた。 また、  rcpにより測定したところ、 
粉末の(A g / (A g 十Cu )原p比〕X
は0000932であった。 得られた、鱗片状粉末のうち10μm以ドの粉末9gと
フェノール樹脂(C;、+ 1004) 41X。 ブチルカルピトール2g、  メチルエチルケi・ン2
7 g、アントラセン0.05、 ステアリルアミン005
g、 ピロカテコールO,1gを混合し ガラスエポキ
シI+1指基扱4ノ、へ!7!ノli L、た 膚7膜
J7は、 22μmであった。得]〕〉れた塗膜を14
0℃、 1(1r間人気中加熱硬化した。 硬化後の塗膜の体積抵抗室は、3 5Xl(IAΩ C
Inであり、 [i 0 ’C1
(Field of Industrial Application) The present invention relates to an inexpensive conductive paste that has excellent conductivity, good oxidation resistance, and excellent silver migration resistance, and a conductor using the paste. and electromagnetic shielding. IC die bonding paste, capacitor electrode,
Conductive adhesives, contact materials, pastes for conductive circuits Can be applied as low-resistance pastes7 (prior technology) Traditionally, conductive materials such as carbon copper, aluminum, 1'[ Gold 1j+
, silver plating composite powder is used, and these conductive r1
A paste is known in which the powder is dispersed with an organic binder and, if necessary, a solvent and additives. (Issue 2fI to be solved by the invention) Kabon, copper, which is used as a known conductive paste
Nickel, chain and precious metal powders, and triangular composite powders have the following deficiencies and deficiencies. Copper and nickel are cheap, but the conductivity of the coating film tends to decrease due to oxidation, and silver is expensive. Silver tends to migrate in the Il field, especially under high humidity, resulting in poor insulation.Silver plating powder tends to peel off easily and has the problem of metal migration. Pastes using carbon powder have the disadvantage of poor electrical conductivity.6 Although methods for producing alloy powders by mechanically forcing silver, copper, and nickel have been disclosed (for example, in JP-A No. Showa 56-155259,
57 98, '372), it has the disadvantage of poor anti-IL effect against silver migration due to mechanical forced binding r7. (Means for Solving the Problems) The present invention relates to an inexpensive silver-containing alloy powder that has excellent conductivity, long-term oxidation resistance, and does not cause silver migration, and a conductive paste using the powder. The silver-containing alloy powder used in the present invention is produced by a high-pressure water atomization method and a high-pressure gas atomization method. In particular, it is explained in detail in Japanese Patent Application No. 1-20F+569 previously filed by the same applicant, and it is preferable to use a high-pressure gas atomization method. Cu F (one or more selected from ICo and Ni) is mixed and melted using high-frequency induction heating in a crucible in an inert gas atmosphere.Furthermore, the melt is transferred from the tip of the crucible to an inert gas atmosphere. gushes out. At the same time as gushing out,
This is a method in which high-speed airflow generated by adiabatic expansion of high-pressure inert gas is ejected toward the melt, atomizes it, and rapidly solidifies it. The cooling rate for rapidly solidifying the melt is 102℃/
s e c ”, is &f-like, ]03χ;/s
More preferably e c or more, io'T:/sac
The above is most preferable. What is used here? J+l
A gas is defined as a gas that reacts completely or only very slowly with a melt of such composition. Examples include nitrogen, helium, argon, and mixtures thereof. Further, a small amount of impurity gas may be mixed as long as it does not affect the characteristics of the silver-containing alloy powder used in the present invention. Kasuno pressure (before expansion) is 70 kK/Cm2
The speed of the high-speed airflow is preferably 100 m/sec or more at the collision position with the melt, and furthermore, 3゜Om.
7 seconds or more is preferable, 600 m/sec or more is most preferable, the quality ratio of gas to melt is preferably 2 or more - 1-,
Furthermore, 4 or more is preferable. In the high-pressure water atomization method, a melt having the above composition is ejected from the tip of a crucible. At the same time as the ejection, pressurized water is ejected from the nozzle toward the melt ejected from the nozzle tip, collides with the melt having the same composition, becomes fine particles, and rapidly solidifies. At this time, the quality of the water depends on the velocity/melt mass velocity ratio of 1O or more.
1, and more preferably 40 or more. The velocity of water at the collision position of water and melt is 80 +n/
Pressurized water is spouted from the nozzle tip, preferably within seconds, and preferably lOOtn/sec μst.
The pressure of 1 shi is preferably 50 kg/cm'G or more, and more preferably 00 kg/cm2G or more. The rapidly solidified powder produced by the water atomization method often has irregular shapes, but in the present invention, it falls within the category of single spherical particles. In this case, the major axis of each particle is taken as the particle size of each particle. Ag XMI-y of the present invention (however, 1M is Cu, N
2) The alloy powder is one or more selected from i, Fe, GO. 0005<x<0. 01 (atomic ratio), but if X is less than 0.0005, sufficient oxidation resistance cannot be obtained and an expensive button must be used. Cu, Ni, Fe, and Go used in Kaimei not only have high conductivity of 1' = 'c, but also have particularly high conductivity of N1
, lXeC0 has excellent magnetic properties, and has the advantage of being able to further improve electromagnetic shielding. The average particle size of the silver-containing alloy powder used in the present invention is
0.1 to 100 μm, but in the case of a spherical shape, I −
30 It, m is preferred, l -10 μm is most preferred. In the case of scaly shape, it is preferable that the average diameter (if there is a major axis and a minor axis, the IP average of both 471) is 1 to 1°0 μm, more preferably 1 to 30 μm, and more than 100 μm. If the thickness is less than 1 μm, the contact resistance will increase and the conductivity will be poorer. In order to produce particles with a particularly small particle size with a high yield, the higher the gas pressure, the better.
20 or more is preferable, and the gas mass velocity/) IL trade volume velocity ratio is preferably larger, and 4 or more is preferable, and 6
The following two are more preferable. As for the shape, spherical, dendritic, scaly, and mixtures thereof are used, and spherical, scaly, and mixtures thereof are more preferable. It is preferable that the shape of the scaly particles has a diameter/thickness of 3 or more.6 A scanning electron microscope is used to measure the shape and particle size, and the average value of the measured values of 100 powders in the field of view is 1a.
was used. In order to obtain the scaly powder, it is preferable to mechanically deform the silver alloy (off) wood of the present invention by a known method. For example, methods such as a stamp mill, a ball mill, and a vibrating ball mill are preferred. Among them, it is preferable to use a vibratory ball mill. When a vibratory ball mill is used, it is preferable to carry out the process in an inert or reducing atmosphere, and it is more preferable to carry out the process in a four-talk liquid. Inert liquids include mineral spirits, solvent naphtha, etc.
One example is a solvent. The amount of the inert liquid is preferably from E to 10,100 O/g powder.In this case, a known dispersion aid may also be added.8 The silver-containing alloy powder of the present invention has the formula AgyM-8 (but
And M is Cu, Ni, Fe, Co.
1 or more selected species 2.0. 0005<x<O
, O1, Ii, 'F child ratio), but if necessary,
AI, Zn, sn, Pb, Si, Mn, Bi,
Mo, or, Ir, Nb, Sb, I
l, P, Mg, Li, C, Na, 13
a, Ti, In, Au, l'd, PL, Rh, Ru. 1-Metals and compounds thereof may be added to gold such as Zr, Hf, Y, etc. When using the silver-containing alloy powder of the present invention as a paste, it is suitable to use an organic binder. (
This kind of thing is usually called a conductive plague,
(Depending on the method, it is also called a lead-through paint or a barrel electric adhesive; either case falls within the scope of the present invention.) When using a binder, silver-containing alloy powder From the viewpoint of conductivity, it is preferable that the material is mainly scaly. The organic binder used in the present invention is one or more selected from thermoplastic resins, photocurable resins, and electron beam curable IaIII skin thermosetting resins. Examples include acrylic resin, alkyd resin, vinyl chloride resin, urethane resin, polyester resin, vinyl chloride-acetate M-vinyl typical combination, N-vinyl resin, ethylene-vinyl nitrate copolymer, polycarbonate MIIL styrene resin, etc. It will be done. Among them, thermosetting IJl'I acrylic N4rra is particularly frightening7. In addition, as the thermosetting resin 11u, epoxy resin, phenol resin, melamine resin, alkyd resin, polyurethane resin, polyester resin, thermosetting acrylic resin n= , polyimide resins, melamine alkyd resins, and combinations of one or more of these modified resins. Among them, one or a combination of two or more of epoxy resins and phenol resins are preferred.
Epoxy resins include bisphenol Δ-type molecules of f1380 to 8000 (revoxy resins, novolac type epoxy resins, brominated bisphenol Δ-type epoxy resins, alicyclic epoxy resins or modified resins thereof,
Examples include fatty acid-modified resins. As a phenolic resin. It is preferable to use a novolak type, resol type phenolic resin, or rosin-modified phenolic resin alone or as a crosslinking agent for an epoxy resin. As the melamine resin, it is preferable to mix and use, for example, methylolated melamine resin or alkylated methylolmelamine resin as a crosslinking agent for the epoxy resin.As the thermosetting agent for the epoxy resin, organic polyamine, Conductive +1 base l-let of the present invention, in which known hardening agents such as N anhydride, dicyandiamide, benzoguanamine, biguanide, alkylphenyl biguanide, diphenyl biguanide, trifluoroboron, etc. are used: Silver-containing alloy powder 100 5 to 10 parts by weight of organic binder
If it has 0 parts ffi, but less than 5 parts Ii, there is not enough resin to bind the conductive metal powder in the film, reducing the i# conductive mechanical strength. In addition, if it exceeds 100 parts by weight, there are not enough conductive metal claws and sufficient conductivity e+ cannot be obtained.The preferred amount is 10 to 50 parts by weight. When using a conductive paste, a solvent can be used if necessary.The amount of solvent is 0 to 100 parts by weight based on 31,100 parts by weight of the chain-containing alloy powder and organic binder. The solvent that can be used in this process differs depending on the #J resin, but any known solvent may be used. For example, aromatics such as toluene and xylene, methyl ethyl ketone, methyl isobutyl ketone, etc. Ketones, esters such as butyl acetate, ethyl acetate, cellosolves (butyl cellosolve, ethyl cellosolve, etc.), alcohols such as α-terbenol, isopropanol, butanol, phenol,
Those containing one or more of phenols such as chlorophenol, butylcarpitol, and butylcarpitol acetate are preferred, and contain 0 to 100 parts by weight per 100 parts by weight of the m-containing f alloy powder and the organic binder. It is better to let If it exceeds 100 parts by weight,
Bleeding occurs during printing, impairing conductivity. 1 to 50 parts by weight is preferable. In order to improve the dispersibility of the silver-gold ino-alloy powder in the conductive paste of the present invention, it is preferable to add additives to remove or reduce metal oxides on the powder surface.
Additives used in the process include saturated fatty acids, unsaturated fatty acids, metal salts of saturated fatty acids, metal salts of unsaturated fatty acids, higher fats + 1JR group amines, organic titanate compounds, phosphorus compounds, hydroquinone and its derivatives, Oxycarboxylic acid, oxycarboxylic acid, metal chelate forming agent,
One or more selected from phenol compounds, L-ascorbic acid derivatives, anthracene and its derivatives, and rosin. As saturated and unsaturated fatty acids, fatty acids having 6 or more carbon atoms are preferred, JJn fatty acids having 15 to 8 carbon atoms; and metal salts thereof are more preferred. For example, stearic acid, valmitic acid, linoleic acid, lylinic acid, olein M, elaidic acid), aliphatic dicarboxylic N
Examples include adipic acid, pimelic acid, superric acid, sepacic acid, maleic acid, fumaric acid, oxycarboxylic acid such as malic acid, gelcholic acid, glyceric acid, lactic acid, tartaric acid, citric acid, mandelic acid, salicylic acid and their derivatives. It will be done. The metals that make up the metal salts include lithium, sodium, potassium, magnesium, calcium, barium,
Zinc, copper, nails (, ore, nickel, etc.) are used as higher aliphatic amines.
22 is preferred, for example stearylamine,
palmitylamine, behenylamishatylamine,
Saturated monoamines such as octylamine, decylamine, and laurylamine, unsaturated amines include oleylamine, and diamines include stearylpropylene diamine and oleylpropylene diamine. Examples of metal-killing agents include monoethanolamine, diethanolamine,
Examples include l-riethanolamine, ethylenediamine, triethylenetetramine, acetylacetone, trifluoroacetylacetone, hexafluoroacetylacetone, and benzoylacetone. As phenolic compounds and hydroquinone derivatives,
For example, phenol, high
Doroquinone, catechol, 2-methylhydroquinone, terlbutylhydroquinone, chlorohydroquinone. Phenylhydroquinone, pyrogallol, 124-
Examples include benzenetriol. As the organic titanium compound, R1'I' i ,
(R2)3 (in the formula, R is an alkoxy group having 1 to 71 carbon atoms, preferably 1 to 3 carbon atoms, R2 is an alkoxy group having 1 to 2 carbon atoms)
0. Preferably a carboxylic acid ester having 2 to 18 carbon atoms)
Examples of the anthracene and anthracene derivatives include anthracene and anthracene derivatives such as isopropyl triisostearoyl titanate, isobrobyltrioctanoyl titanate, etc. As the rosin, abietic acid or an abietic acid derivative is preferable. Examples include modified rosins such as partially hydrogenated rosin, fully hydrogenated rosin, esterified rosin, maleated rosin, disproportionated rosin, and polymerized rosin. Examples of L-ascorbic acid and its derivatives include:
Examples include L-ascorbic acid, L-ascorbic acid cibalmicii 1., L-ascorbic rvJG-stearate, and in particular, esters, acetals,
Ketals and the like are preferred. As the additive claw, it is preferable to add 0° to 25 parts by weight of one or more of the above additives, 1-, to 0 parts by weight of the silver-containing alloy powder I(). 01-10 heavy fly 311 Te, sl') L: O,l -Fl
ff (II till is preferred. The silver-containing alloy powder used for the conductive base of the present invention has low contact resistance and high conductivity. Also, since the studs are alloyed, The photocurable resin that can be used in the present invention is an ultraviolet curable resin. , Visible light photocurable f1 resins are mentioned, but ultraviolet curable resins are preferred. When using ultraviolet curable resins, photopolymerizable ++ oligomers and photopolymerizable monomers are used as photoinitiators, and light 1; 1j starters are used. Photopolymerizable oligomer is a low-molecular-weight reaction, one molecule (several hundred to several thousand), and a backbone of polyester, epoxy urethane, etc. with acrylic J, (. For example, epoxy acrylate 1, urethane acrylate, polyester acrylate, and polyether acrylate).As photopolymerizable monomers, acryloyl, ((C
H2=GOGO-7) or methacryloyl group (CH
2=C (CI43) has 1 or 2 or more 0-) per molecule; 1-functional acrylate, other vinyl groups (C112-CII-
) is preferred! Examples of the 1-functional acrylate include allyl acrylate-1, allyl methacrylate, and benzyl acrylate (meth).
, isobonyl acrylate, cyclohexyl acrylate (meth), N,N-dimethylaminoethyl acrylate, glycidyl methacrylate, lauryl acrylate, polyethylene glycol ℃)O methacrylate, [-lifluoroethyl methacrylate, etc. Examples of polyfunctional acrylates include 1, 1,4 butanediol diacrylate, I, 6
Hegysandiol cyacrylate, ethylene glycol diacrylate, neobentyl glycol diacrylate, polyethylene glycol 400 diacrylate, triprobylene glycol diacrylate-1,
Examples include bisphenolhenethoxy diacrylate, tetraethylene glycoldiacrylate, trimethylolpropane triacrylate, and pentaerythritol i-reacrylate. Examples of reactive Jfl monomers having a vinyl group include styrene, vinyltoluene, vinyl 19ate,
Monofunctional monomers such as N-vinylpyrrolidone can be used. The photoinitiator used together with the oligomer is preferably a substance that absorbs ultraviolet rays and easily generates radicals, and is preferably an acetophenone type. Known photoinitiators of the thioxanthone type, benzoin type, and peroxide type can be used. For example, jetoxyace I phenone, 4-phenoxy dichloroacetophenone, benzoin, benzoin ethyl ether, penzoinisopropyl ether, benzyl dimethyl ketal, benzophenone. , 4 phenylbenzophenone,
Examples include acrylated benzophenone, thioxanthone, 2-chlorothioxanthone, benzyl, and 2-ethyl anthraquinone. In addition, as an initiation aid that can be used in the present invention, the initiating agent that can be used in the present invention includes ultraviolet IQ ll (although it does not turn into an initiator due to i irradiation, when used with a photoinitiator, ) °C initiation Q
The 1;11 initial reaction is promoted more than the 1;11 reaction, and the curing reaction is accelerated.
.. , which makes it efficient, 1 fat release, aromatic Jl
) - known photoinitiation aids can be used. for example,
Known photoinitiation aids such as triethanolamine, N-methylethanolamine Michler's ketone, and 44-diethylaminophenone can be used. When using the conductive paste of the present invention, add 1 L of known additives such as viscosity modifiers, diluents, anti-settling agents, leveling agents, antifoaming agents, silane coupling agents, and titanium coupling agents. Needless to say, it's also very funny. The curing force method includes, for example, room temperature or higher temperature.
Preferably, the photocurable resin composition coating film applied with a roll coater at 40 to 80°C is irradiated with an ultraviolet generator such as a water saw lamp as a light source, although any known device may be used as the light source. About cm is sufficient. The irradiation time is approximately 10 minutes, ranging from several seconds to several tens of seconds. Further, as the electron beam curing f1 resin, the above-mentioned 20 curable resin (photopolymerizable oligomer, photopolymerizable oligomer) can be used.゛When curing with electron beam, is it high?
Electrons accelerated by U pressure have large energy and have greater material permeability than light, so they have a large curing ability.Moreover, they can be cured at room temperature, and electron beam curing is more effective than light curing.
Moreover, since the oligomers absorb electron beams and generate ions and radicals,
In principle, photoinitiators and photoinitiation aids are not required. For the electron beam curing method, known methods cannot be used; for example, if the coating thickness is about 100 μm or less, an accelerating voltage of 150 kV is sufficient5.The absorbed dose is 5M.
r r+d is sufficient, and known methods can be used. Can the conductive paste of the present invention be used in electronic circuits? I,1. , using Ig f7, screen printing, spray and 1, brush, barco 1-rll,
Printing such as the doctor blade method, or using a known method such as the coating method. The conductivity of the coating film made of the conductive base of the present invention is as follows:
Measurement was performed using the 4-terminal method. In addition, silver migration was performed using two coating films (width 1017 cm) applied at Imm intervals.
I m, length 30 Ill IT+) was created and 0
2m1 of water droplets are dripped between the coating film (at this time, 2m1 of water droplets are
Apply an incoming DC voltage of 5 cm to the two wood coatings so that they are in sufficient contact with either side of the book's coating, and the DC current flowing between the book legs is constant at +1111.The current (,7/ is +00μA). If the button exceeds the threshold, it is assumed that the button has migrated.
It provides conductive pastes and conductors using human-friendly 11-containing 1 alloy powder and IK powder, including conductors for electronic circuits, conductor luer 1 adhesives, 1π magnetic silt paste, and capacitors. Extreme base 1-1 low tjt ti
It can be used as a base for T and a conductor using them. (Examples) Hereinafter, the present invention will be explained in detail with reference to Examples and Comparative Examples. Example 1 630g of copper powder (purity 99.9% or higher) manufactured by Kojundo Chemical Co., Ltd.
, 3g of silver powder (purity 99.9% or more, manufactured by Mitsuf Chemical)
were mixed, placed in a graphite crucible (with a BN nozzle), and melted by high-frequency induction heating in an argon atmosphere.
It was heated to 400°C. This melt was spouted from a nozzle at an argon atmospheric pressure of 1° for 30 seconds. At the same time, open the cylinder with argon gas (cylinder pressure: 150 atm): IN'
The gas velocity of 300 m/sec is to be ejected from the surrounding nozzle toward the melt spouting from the mouth 3. At this time, the gas mass velocity/melt mass velocity ratio was 8.4. When the obtained powder was observed with a scanning electron microscope, it was found to be spherical (average size 20 μm). In addition, by dissolving a part of the particles in concentrated nitric acid and using ICP, +1 yen of l1il
When the concentration was measured, (Ag/(Ag0CU),
Atomic ratio]X was 0.00279. Among the obtained powders, powder 1 () with a particle size of I OILm or less
g was filled with stainless steel poles of 5 mmΦ in a nitrogen atmosphere in a mineral spirit room, and spread in a vibrating ball mill.The average diameter of the obtained scaly powder was 25 μm, and the average thickness was 1 μm. Of this powder, 9 g of scaly powder of 10 μm or less was mixed with 3 g of commercially available acrylic thermoplastic resin, 3 g of toluene, and linol f'iJ0.
.. It was dispersed in a liquid containing 45 g, coated on a glass epoxy resin substrate, and dried in the air at 50°C for one day. When the cured film was measured using a step needle, the film thickness was 20 μm.
It was I11. . The volume resistivity determined till using the 4-terminal method is 35X
When this film was left in the atmosphere at 0°C and 90% humidity for 2000 hours, t1
− body # [resistivity changed little; also for the migration test of force (width + 0 In In,
2 coatings with a length of 30 tnm and a step spacing of 1mm
1 was made in the same manner as the book. 0.2 ml of water was dropped between the crotches of these two trees, and a DC voltage of 5 V (DC:) was applied for 2 minutes. No change in appearance was observed between the painted film and the painted film. Regarding the migration of the studs shown in the present invention, it is assumed that silver migration has occurred when the DC current value exceeds 100 μΔ in the migration test. Example 2: 9 g of scaly powder of 10 μm or less obtained in Example 1, 1 g of epoxy resin (AER661), and 2 melamine resins.
g, butylcarpitol 3g, Rirun Wi0.4
5 g and 0.4 g of pyrocatechol were mixed well and applied to a glass epoxy resin 11i1 substrate. After coating, the film was cured by heating at 160℃ for 30 minutes in the air.7 After curing, the film Ig was 20μm and the volume resistivity was 2×104Ω.
・At cm, 60℃, 90%
No change in volume resistivity was observed even after being left for a period of 2005-0. Further, when the AT migration test was conducted in the same manner as in Example 1, almost no migration of the studs was observed. Example 3 Among the scaly powder obtained in Example 1, 10 μml of powder +1 [and epoxy tree 11H (ΔIE +< :+
:++)+g, epoxy resin (△1・:R337) 2
g. Dicyandiamide 0.03 [, Hydroquinone (). 2 g were mixed and applied on a glass epoxy resin substrate in the same manner. The thickness of the coating film was 18 μm. The resulting coating film was cured by heating at 150° C. in the air for 20 minutes. The volume resistivity of the film after curing was 6 x 10-'Ω'cm. Furthermore, at 60°C, 20'O in ()0% humidity
When the sample was left for 0 hours, the volume resistivity hardly changed. Further, when a silver migration test was conducted in the same manner as in Example 1, almost no silver migration was observed. Example 4 Copper powder (purity 999% or higher 1:, highly purified -?'llj) 6
30g and silver powder (Q! 1.9% or more, manufactured by Mitsuwa Chemical) 1
g was melted to 1500° C. in a graphite crucible under an argon atmosphere in the same manner as in Example]. Melting (foundation) was ejected into the argon atmosphere for 25 seconds from a 13N nozzle attached to the tip of the graphite crucible.At the same time as the ejection,
Argon gas in a cylinder (0 atmosphere in the cylinder) 2.
2N'l'Pm3 was ejected from surrounding nozzles toward the melting point (linear gas velocity 200 m/sec), and the gas mass velocity/melting mass velocity ratio at this time was 6.2. The obtained powder was spherical with an average particle size of Y-5 μm. The obtained powder is less than 10μm log of mineral sviril l-1
00ml, under nitrogen atmosphere! It was spread using a dynamic ball mill. A scaly powder with an average particle size of 19 μm and an FX size of 1 μm was obtained. In addition, when measured by RCP,
(A g / (A g + Cu) original p ratio of powder]
was 0000932. Of the obtained scaly powder, 9 g of powder with a size of 10 μm or more and phenol resin (C;, + 1004) 41X. Butylcarpitol 2g, Methyl Ethylken 2g
7 g, anthracene 0.05, stearylamine 005
g, mix 1 g of pyrocatechol O, glass epoxy I + 1 finger base 4, to! 7! Noli L, skin 7 membrane J7 was 22 μm. 14.
It was heated and cured at 0℃ for 1 hour.The volume resistance chamber of the coating film after curing was 35Xl (IAΩ C
In, [i 0 'C1

【IO%湿11200
 F1時間放1i’L Lでも体積抵抗率は殆ど変化ム
かった。 また、実施例]と同様にして、釦のマイグレーションを
試験したところ、 マイグレーションは殆ど認められな
かった。 実施例5 ニッケル粉末(941,9%以上、みつわ化′を製、)
 63 C1g、  銀粉末(99,9%以上、みつわ
化学製)logとを13N(ボロンナイトライド)ルツ
ボにいれ、 高周波誘導加熱を用いて+ 6. ’、r
 (1℃まで溶解した。 溶解後、 るつぼの先端に取
すイ・1けたB Nノズルより、 アルゴン大気圧ドヘ
融jlkを30秒間で噴出した、噴出と同時に、 ボン
ベ人すアルゴンガス(ボンベn: l ’、) O気圧
) 3 N 1’ l’ m3を周囲のノズルより融液
に向かって噴出した。 この時、ガス質量速度/池質爪
速度比は8.3であった・(ガス線X1!度32 (l
 m /秒)。 得られた粉末は、 平均径23μ「口の球状粉であった
、 また、 TCPにより測定したところ、 〔A g
 / (A g 十Cu ) ] xは0.00917
であった。得られた粉末の中101101jドの粉末1
()gを+00m1のミネラルスピリットとともに振動
式ボールミル中で展延した。得られた粉末は、平均径2
0μm、W、さ1.5μmの鱗片状であ一〕だ。得られ
た鱗片状+5)末の中10μm以下のオフ)末9gを実
施例1で使用したアクリル樹脂3g、 エチルセロソル
ブIg、 トルエン2g、フェノール0.1g、  バ
ルミチン酸0.15gとよく混合しガラスエポキシ樹脂
基板上へ塗布した。塗布後。 50℃、 1日大気中で乾燥した。 硬化後の膜厚は19μm、体積抵抗率は、 ;3XIO
−’Ω・cmであった。 また、 L30 ℃、  !
+ [1%湿度中2000時間放iN後の体積Jl(抗
生は、殆ど変化なかった。 さらに、銀のマイグレーシ
ョン試験を行ったところ、銀のマイグレーションは認ぬ
られなかった。 実施例6 銅粉(純度99.!j%以十、高純度化7製)!500
 g、  ニッケル粉(純度!19.9fi以1..み
っわ化学製)30g、  銀粉(純瓜99.9%以1−
1みつわ化学1)6gとを(1シ合し、 BN(ボロノ
ナイトライド)ルツボ中で高周波誘導加熱を用いて15
50 ’Cに溶解した。洛M後、ルツボ先端に取り付け
たBNノズルより融液をアルゴン大気圧ドへ40秒で噴
出した。噴出と同時に、 ボンベ入りアルゴンガス(ボ
ンベ圧130気圧) 3 N T P m3を融液に向
かって噴出した。 この時、 ガス質11’(速度/液
質爪速度比は99であった(ガス線速度280 m7秒
)。得られた粉末は、平均粒径1(5μmの球状粉末で
あった。ICPで側止したところ、 〔八g/ (Ag
十Cu))xは0. 001i 、’+8であった。 得られた球状粉末のうち、 10μm以(: l (1
gをミネラルスピリットl OOm lとともに、 振
動式ボールミルで展延した。 マ;)られた粉末は、 
鱗片状で平均粒径14μn1.  厚さ2μmであった
。 このうち、 10μn1以ドの鱗片粉6gと10μI1
1以下の球状粉3gとを混合し、 さらに、エポキシ(
AER66])1g、  メラミン([]立化成メラン
27)2g、ブチルカルピト−ル3g、ピロガロール0
3gl ピロカテコール03g、 リルン1%io、3
gと混合し、 実施例1と同様に、 ガラスエポキシ樹
脂Jル板−1,へ塗布した。塗布膜を150℃、 30
分間人気中で加熱硬化した。硬化後の膜厚は21μmで
あり、体積抵抗率は、 2×10−′Ω cmであった
。硬化後の塗膜を60℃90%湿度中で放置したところ
、体積抵抗率は、殆ど変かなかった。また、銀のマイグ
レーション試験を同様にして行ったところ、鎖のマイグ
レションは殆ど認められなかった。 実施例7 銅粉(純度999%以J二、高純度化7製)500 g
、  鉄粉(純度(I99%以」1、高純瓜化学製)1
5g、コバルト粉(純度99.9%以1−みつわ化学製
)1!ig、lt粉(純度9≦1 !3%以上、みつわ
化学製)6gを(昆合し、 B、Nるつぼアルゴン雰囲
気下で1750℃まで溶解した、 溶解後、 るつぼ先
端に取り付けたBNノズルよりアルゴン雰囲気中へ30
秒で噴出した6 噴出とトゴ時に、周囲に取り付けた1
1 Nノズルより融液に向かってボンベ人すアルゴンガ
ス(ボンベ月: l 5 n 4C圧) /I N ’
I’ P m 3を噴出したくガス線速1i 35 (
+ In/秒)、この時、ガス質爪速度/液質箪速度比
は129であった。fiJられた粉末は、平均粒径8μ
mの球状粉であった。Te13で測定したところAg/
 (Ag+Cu+Fe+Co)(原子比)Xは0.00
66であった。このうち10μIn以下の粉末]Ogを
ミネラルスピリット100mとともに振動式ボールミル
を用いて展延した。得られた粉末は、 平均径+gμm
、Iγさ1. 9 p、 Inの鱗片状粉末であった6
 このうちl O(r m以ドの鱗片粉9gと熱可塑性
アクリル樹脂3g、l−ルエン、2g、  ブチルセロ
ソルブ1g、 バルミチン酸0、 5とを混合し、 ガ
ラスエポキシ樹脂基鈑)へ塗布した。塗膜を50 ’C
:、 大気中11J乾燥した1、乾燥後の塗膜の膜ノγ
は、 1918mであり、体積lit抗率抗生XlO−
’Ω・(・Inであった。乾燥後の塗膜を60℃、 9
0%湿瓜中2000時間放置したが、体積抵抗率は殆ど
変化なかった。 また、銀のマイグレーション試験をし
たところ、釦のマイグレーションは殆ど認められなかっ
た。 (比較例) 比較例1 実施例1と同様にして得られた鱗片状粉末の中10μm
以下9gと実施例】で用いたアクリル樹脂20g、 ト
ルエン6g、 リノール酸0.41gとを混ぜ合わせ、
実施例1と同様にしてガラスエポキシ樹脂基板上へ塗布
し、塗膜を50℃、大気中1日乾燥した。乾燥後の体積
抵抗率は、 6×03Ω・Cmと高かった。 比較例2 実施例1と同様にしてt:4られた鱗片状粉末の中10
μIn以下9g、と実施例1で用いたアクリル樹脂0.
  I)z、  l−ルエン3g、エチルセロソルブ3
g、・リノールNl 5gとを混合し、 実施例1ど同
様にしてガラスエポキシ樹脂基鈑 塗膜を50℃、 大獄中I II乾燥した。乾燥後の塗
膜の体積抵抗率は、 6x+o5Ω Crllと篩か−
〕た7比較例3 市販の電解銅1ツ)禾(平均粒径15μm)10gと実
施例1で用いたアクリル樹脂4)τ、 トルエン3 g
、  エチルセロソルブ2g、 リルン酸()2gとを
混合し、実施例1と同様にしてガラスエポキシ樹脂基板
上へ塗布した。塗膜を50℃、 人気中1日乾燥した。 Vt燥後のぐ7膜の体積抵抗率【ま、した、3X10−
3Ω’cmであり、 60℃、!IO%湿度中2000
時間放置したところ、体積抵抗率が初期体積抵抗率の1
5倍に増加していた。 比較例4 市販の紐粉末(・11均私ン杼24m)IOgと実施例
1で用いたアクリル樹脂4g、 トルエン2g。 エチルセロソルブ2g、 リノールQl[O,1gとを
4 混合し、実施例1と同様にしてガラスエポキシ樹脂基板
」−へ塗布した、り!膜を50°0、 大気中乾燥した
、乾燥後の塗膜厚は21μI11、体積++(抗串は、
lXl0−’Ω・【・■であった。 しかし 銀のマイ
グレーション試験をしたところ、 10秒はどで鉗のマ
イグレーションが起こり (電流イII′「〉00μA
)、塗膜間に飯が析出した。
[IO% humidity 11200
There was almost no change in the volume resistivity even with F1 hour exposure 1i'L L. Furthermore, when the button migration was tested in the same manner as in Example], almost no migration was observed. Example 5 Nickel powder (941.9% or more, manufactured by Mitsuwa Chemical)
63C1g and log of silver powder (99.9% or more, made by Mitsuwa Chemical) were placed in a 13N (boron nitride) crucible and heated using high frequency induction heating.6. ', r
(It melted down to 1℃.) After melting, argon gas was ejected at atmospheric pressure for 30 seconds from a single-digit BN nozzle placed at the tip of the crucible. : l', ) O atmospheric pressure) 3 N 1'l' m3 was jetted toward the melt from the surrounding nozzles. At this time, the gas mass velocity/pond nail velocity ratio was 8.3 (gas line X1! degree 32 (l
m/s). The obtained powder was a spherical powder with an average diameter of 23μ, and when measured by TCP, [A g
/ (A g 1 Cu) ] x is 0.00917
Met. Among the obtained powders, 101101j powder 1
() g was spread in a vibratory ball mill with +00 ml of mineral spirit. The obtained powder has an average diameter of 2
It is 0 μm, W, and 1.5 μm in scale. 9 g of the obtained scaly + 5) powder with a diameter of 10 μm or less was thoroughly mixed with 3 g of the acrylic resin used in Example 1, ethyl cellosolve Ig, 2 g of toluene, 0.1 g of phenol, and 0.15 g of valmitic acid, and then mixed with glass. It was applied onto an epoxy resin substrate. After application. It was dried in the air at 50°C for 1 day. The film thickness after curing is 19 μm, and the volume resistivity is ;3XIO
-'Ω·cm. Also, L30℃, !
+ [Volume Jl after being exposed to iN for 2000 hours in 1% humidity (there was almost no change in antibiotics. Furthermore, when a silver migration test was conducted, no silver migration was observed. Example 6 Copper powder ( Purity 99.!J% or more, made of highly purified 7)!500
g, nickel powder (purity! 19.9fi or more 1. Made by Miwa Kagaku) 30g, silver powder (purity 99.9% or more 1-
1 Mitsuwa Chemical 1) 6g and (1) were combined and heated in a BN (borononitride) crucible using high frequency induction heating.
Dissolved at 50'C. After RakuM, the melt was spouted into argon atmospheric pressure for 40 seconds from the BN nozzle attached to the tip of the crucible. Simultaneously with the ejection, 3 NTP m3 of argon gas (cylinder pressure: 130 atm) in a cylinder was ejected toward the melt. At this time, the gaseous quality was 11' (velocity/liquid nail velocity ratio was 99 (gas linear velocity 280 m7 seconds). The obtained powder was a spherical powder with an average particle size of 1 (5 μm). When I stopped it on the side, [8 g/ (Ag
10Cu)) x is 0. 001i, '+8. Of the obtained spherical powder, particles of 10 μm or more (: l (1
g was spread with mineral spirit lOOml in a vibratory ball mill. The powder is
Scale-like with an average particle size of 14 μn1. The thickness was 2 μm. Of these, 6g of scale powder of 10μn1 or more and 10μI1
Mix 3 g of spherical powder of 1 or less, and add epoxy (
AER66]) 1g, melamine ([]Tatekasei Melan 27) 2g, butylcarpitol 3g, pyrogallol 0
3gl Pyrocatechol 03g, Rirun 1%io, 3
g and applied to glass epoxy resin J-ru plate-1 in the same manner as in Example 1. Coating film at 150℃, 30
Cured by heating in hot water for a minute. The film thickness after curing was 21 μm, and the volume resistivity was 2×10 −′Ω cm. When the cured coating film was left at 60° C. and 90% humidity, the volume resistivity hardly changed. Furthermore, when a silver migration test was conducted in the same manner, almost no chain migration was observed. Example 7 Copper powder (purity 999% or higher J2, manufactured by Highly Purified 7) 500 g
, Iron powder (purity (I99% or higher) 1, made by Kojunka Kagaku) 1
5g, cobalt powder (purity 99.9% or higher 1-Mitsuwa Chemical) 1! 6 g of ig, lt powder (purity 9≦1!3% or more, made by Mitsuwa Chemical) was combined and melted in a B, N crucible under an argon atmosphere to 1750°C. After melting, it was melted through a BN nozzle attached to the tip of the crucible. 30 into argon atmosphere
6 spewed out in seconds 1 attached to the surroundings at the time of spouting and togo
Inject argon gas from the cylinder toward the melt from the 1N nozzle (cylinder pressure: l 5 n 4C pressure) /IN'
We want to eject I' P m 3, and the gas linear velocity 1i 35 (
+ In/sec), and at this time, the gas nail speed/liquid nail speed ratio was 129. The fiJ powder has an average particle size of 8μ
It was a spherical powder of m. When measured with Te13, Ag/
(Ag+Cu+Fe+Co) (atomic ratio) X is 0.00
It was 66. Of these, powder of 10 μIn or less] Og was spread using a vibrating ball mill with 100 m of mineral spirit. The obtained powder has an average diameter + gμm
, Iγsa1. 9 It was a scaly powder of p, In6
Of these, lO (9 g of scale powder of rm or less, 3 g of thermoplastic acrylic resin, 2 g of l-toluene, 1 g of butyl cellosolve, and 0.5 g of balmitic acid were mixed and applied to a glass epoxy resin base plate). Paint film at 50'C
:, 1, dried in the atmosphere for 11J, film thickness of the coating film after drying
is 1918 m, and the volume lit resistance antibiotic XlO-
'Ω・(・In. After drying, the coating film was heated at 60℃, 9
Although it was left in 0% moist melon for 2000 hours, there was almost no change in volume resistivity. Furthermore, when a silver migration test was conducted, almost no migration of the buttons was observed. (Comparative example) Comparative example 1 10 μm inside the scale-like powder obtained in the same manner as in Example 1
Mix the following 9g with 20g of the acrylic resin used in Example], 6g of toluene, and 0.41g of linoleic acid,
It was applied onto a glass epoxy resin substrate in the same manner as in Example 1, and the coating film was dried at 50° C. in the air for one day. The volume resistivity after drying was as high as 6×03Ω·Cm. Comparative Example 2 10 out of scaly powder prepared in the same manner as in Example 1 at t:4
9 g of μIn or less, and 0.9 g of the acrylic resin used in Example 1.
I) z, l-toluene 3g, ethyl cellosolve 3
g, and 5 g of linol Nl were mixed, and a glass epoxy resin-based coating film was dried in the same manner as in Example 1 at 50°C. The volume resistivity of the coating film after drying is 6x+o5Ω Crll and sieve -
7 Comparative Example 3 Commercially available electrolytic copper 1) 10 g of copper (average particle size 15 μm), acrylic resin used in Example 1 4) τ, toluene 3 g
, 2 g of ethyl cellosolve, and 2 g of linuric acid (2) were mixed and applied onto a glass epoxy resin substrate in the same manner as in Example 1. The paint film was dried at 50°C for one day. Volume resistivity of the film after Vt drying [well, 3X10-
3Ω'cm and 60℃! IO% humidity 2000
After leaving it for a while, the volume resistivity was 1 of the initial volume resistivity.
It had increased five times. Comparative Example 4 IOg of commercially available string powder (11 yen private shuttle 24m), 4g of the acrylic resin used in Example 1, and 2g of toluene. 2 g of ethyl cellosolve and 1 g of linol Ql[O] were mixed and applied to a glass epoxy resin substrate in the same manner as in Example 1. The film was dried in the air at 50°0, the thickness of the film after drying was 21 μI11, the volume ++ (the anti-skewer was
It was lXl0−'Ω·[·■. However, when we conducted a silver migration test, forceps migration occurred after 10 seconds (current II' 〉00 μA).
), rice was deposited between the coating films.

Claims (12)

【特許請求の範囲】[Claims] (1)一般式Ag_xM_1_−_x(但し,MはCu
、Ni、Co、Feより選ばれた1種以上、0.000
5<x<0.01、原子比)で表わされ、且つ、かかる
組成の融液を高圧アトマイズ法を用いて急冷凝固して得
られる銀含有合金粉末。
(1) General formula Ag_xM_1_-_x (where M is Cu
, one or more selected from Ni, Co, and Fe, 0.000
5<x<0.01, atomic ratio), and is obtained by rapidly solidifying a melt having such a composition using a high-pressure atomization method.
(2)特許請求範囲第1項記載の高圧アトマイズ法が、
高圧水アトマイズ法或は高圧ガスアトマイズ法より選ば
れた1種以上であることを特徴とする請求範囲第1項記
載の銀含有合金粉末。
(2) The high-pressure atomization method described in claim 1,
The silver-containing alloy powder according to claim 1, characterized in that it is one or more types selected from high-pressure water atomization method or high-pressure gas atomization method.
(3)特許請求範囲第1、2項記載の銀含有合金粉末の
平均粒子径が0.1μm〜100μmである球状、樹枝
状、鱗片状或はそれらの1種以上の混合物であることを
特徴とする請求範囲第1,2項記載の銀含有合金粉末。
(3) The silver-containing alloy powder according to claims 1 and 2 has an average particle size of 0.1 μm to 100 μm and is spherical, dendritic, scaly, or a mixture of one or more thereof. Silver-containing alloy powder according to claims 1 and 2.
(4)特許請求範囲第1,2,3項記載の銀含有合金粉
末100重量部に対して有機バインダー5〜100重量
部を有する導電性ペースト。
(4) A conductive paste containing 5 to 100 parts by weight of an organic binder per 100 parts by weight of the silver-containing alloy powder according to claims 1, 2, and 3.
(5)特許請求範囲第4項記載の有機バインダーが、熱
可塑性樹脂、光硬化性、電子線硬化性、あるいは熱硬化
性樹脂より選ばれた1種以上であることを特徴とする特
許請求の範囲第4項記載の導電性ペースト。
(5) A patent claim characterized in that the organic binder recited in claim 4 is one or more selected from thermoplastic resins, photocurable resins, electron beam curable resins, and thermosetting resins. Conductive paste according to range 4.
(6)特許請求範囲4叉は5項記載の導電性ペーストに
対して、飽和胞肪酸、不飽和脂肪酸、飽和脂肪酸の金属
塩、不飽和脂肪酸の金属塩、高級脂肪族アミン、有機チ
タネート化合物、有機リン化合物、ヒドロキノン誘導体
、オキシカルボン酸、オキシジカルボン酸、金属キレー
ト形成剤、フェノール化合物、L−アスコルビン酸誘導
体、アントラセン及びその誘導体、ロジンより選ばれた
1種以上を銀含有合金粉末100重量部に対して0.1
〜25重量部を含有させたことを特徴とする導電性ペー
スト。
(6) For the conductive paste according to claims 4 or 5, saturated fatty acids, unsaturated fatty acids, metal salts of saturated fatty acids, metal salts of unsaturated fatty acids, higher aliphatic amines, organic titanate compounds , an organic phosphorus compound, a hydroquinone derivative, an oxycarboxylic acid, an oxydicarboxylic acid, a metal chelate forming agent, a phenol compound, an L-ascorbic acid derivative, anthracene and its derivatives, and rosin, and 100 weight of silver-containing alloy powder. 0.1 for part
A conductive paste characterized by containing ~25 parts by weight.
(7)特許請求範囲第4、5、または6項記載の導電性
ペーストよりなるスクリーン印刷用導電性ペースト。
(7) A conductive paste for screen printing comprising the conductive paste according to claim 4, 5, or 6.
(8)特許請求範囲第4、5叉は6項記載の導電性ペー
ストからなる導電性接着剤。
(8) A conductive adhesive comprising the conductive paste according to claim 4, 5 or 6.
(9)特許請求範囲第4、5叉は6項記載の導電性ペー
ストからなるプリント回路形成導電体。
(9) A printed circuit-forming conductor comprising the conductive paste according to claim 4, 5 or 6.
(10)特許請求範囲第4、5叉は6項記載の導電性ペ
ーストからなる電磁シールド膜。
(10) An electromagnetic shielding film made of the conductive paste according to claim 4, 5 or 6.
(11)特許請求範囲第4、5叉は6項記載の導電性ペ
ーストからなるコンデンサー電極。
(11) A capacitor electrode made of the conductive paste according to claim 4, 5 or 6.
(12)特許請求範囲第4、5叉は6項記載導電性ペー
ストからなる低抵抗体ペースト。
(12) A low-resistance paste comprising a conductive paste according to claim 4, 5 or 6.
JP2041093A 1990-02-23 1990-02-23 Silver-containing alloy powder and conductive paste using the powder Expired - Lifetime JP2643520B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2041093A JP2643520B2 (en) 1990-02-23 1990-02-23 Silver-containing alloy powder and conductive paste using the powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2041093A JP2643520B2 (en) 1990-02-23 1990-02-23 Silver-containing alloy powder and conductive paste using the powder

Publications (2)

Publication Number Publication Date
JPH03247702A true JPH03247702A (en) 1991-11-05
JP2643520B2 JP2643520B2 (en) 1997-08-20

Family

ID=12598864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2041093A Expired - Lifetime JP2643520B2 (en) 1990-02-23 1990-02-23 Silver-containing alloy powder and conductive paste using the powder

Country Status (1)

Country Link
JP (1) JP2643520B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04262890A (en) * 1990-09-27 1992-09-18 Motorola Inc Flux agent and adhesive containing metal particle
US5840432A (en) * 1995-02-13 1998-11-24 Hitachi Chemical Company, Ltd. Electroconductive paste
WO1999038176A1 (en) * 1998-01-22 1999-07-29 Matsushita Electric Industrial Co., Ltd. Ink for electronic component, method for producing electronic component by using the ink for electronic component, and ink-jet device
JP2002110452A (en) * 2000-10-02 2002-04-12 Murata Mfg Co Ltd Manufacturing method of laminated ceramic electronic part and conductive paste
JP2002197921A (en) * 2000-12-26 2002-07-12 Toppan Forms Co Ltd Electron beam curing conductive paste, conductor circuit using it, and ic media having antenna part formed with electron beam curing conductive paste
JP2002197435A (en) * 2000-12-27 2002-07-12 Toppan Forms Co Ltd Method for forming antenna circuit for non-contacting ic medium using electron beam and the medium provided with the circuit
JP2004172383A (en) * 2002-11-20 2004-06-17 Murata Mfg Co Ltd Conductive paste and method for manufacturing ceramic electronic parts
WO2009084645A1 (en) * 2007-12-28 2009-07-09 Mitsui Mining & Smelting Co., Ltd. Copper powder for electrically conductive paste, and electrically conductive paste
US7857886B2 (en) 2001-10-18 2010-12-28 Canadian Electronic Powders Corporation Powder for laminated ceramic capacitor internal electrode
JP2021107577A (en) * 2016-03-16 2021-07-29 Dowaエレクトロニクス株式会社 Ag-Cu ALLOY POWDER AND MANUFACTURING METHOD THEREFOR
CN114786453A (en) * 2022-04-02 2022-07-22 昆明理工大学 Mg-Li alloy/silicon steel plate electromagnetic shielding material and preparation method thereof
CN115213419A (en) * 2022-07-12 2022-10-21 贵州越达增材材料科技有限公司 Silver powder manufacturing method
WO2023223586A1 (en) * 2022-05-18 2023-11-23 三井金属鉱業株式会社 Copper powder and method for producing same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04262890A (en) * 1990-09-27 1992-09-18 Motorola Inc Flux agent and adhesive containing metal particle
US5840432A (en) * 1995-02-13 1998-11-24 Hitachi Chemical Company, Ltd. Electroconductive paste
US6042933A (en) * 1995-02-13 2000-03-28 Hitachi Chemical Company, Ltd. Electric circuit device having circuit conductors using an electroconductive paste
WO1999038176A1 (en) * 1998-01-22 1999-07-29 Matsushita Electric Industrial Co., Ltd. Ink for electronic component, method for producing electronic component by using the ink for electronic component, and ink-jet device
US6487774B1 (en) 1998-01-22 2002-12-03 Matsushita Electric Industrial Co., Ltd. Method of forming an electronic component using ink
US6979416B2 (en) 1998-01-22 2005-12-27 Matsushita Electric Industrial Co., Ltd. Method of forming an electronic component using ink
JP4507378B2 (en) * 2000-10-02 2010-07-21 株式会社村田製作所 Method for producing multilayer ceramic electronic component and conductive paste
JP2002110452A (en) * 2000-10-02 2002-04-12 Murata Mfg Co Ltd Manufacturing method of laminated ceramic electronic part and conductive paste
JP2002197921A (en) * 2000-12-26 2002-07-12 Toppan Forms Co Ltd Electron beam curing conductive paste, conductor circuit using it, and ic media having antenna part formed with electron beam curing conductive paste
JP2002197435A (en) * 2000-12-27 2002-07-12 Toppan Forms Co Ltd Method for forming antenna circuit for non-contacting ic medium using electron beam and the medium provided with the circuit
US7857886B2 (en) 2001-10-18 2010-12-28 Canadian Electronic Powders Corporation Powder for laminated ceramic capacitor internal electrode
JP2004172383A (en) * 2002-11-20 2004-06-17 Murata Mfg Co Ltd Conductive paste and method for manufacturing ceramic electronic parts
WO2009084645A1 (en) * 2007-12-28 2009-07-09 Mitsui Mining & Smelting Co., Ltd. Copper powder for electrically conductive paste, and electrically conductive paste
JP2021107577A (en) * 2016-03-16 2021-07-29 Dowaエレクトロニクス株式会社 Ag-Cu ALLOY POWDER AND MANUFACTURING METHOD THEREFOR
CN114786453A (en) * 2022-04-02 2022-07-22 昆明理工大学 Mg-Li alloy/silicon steel plate electromagnetic shielding material and preparation method thereof
WO2023223586A1 (en) * 2022-05-18 2023-11-23 三井金属鉱業株式会社 Copper powder and method for producing same
CN115213419A (en) * 2022-07-12 2022-10-21 贵州越达增材材料科技有限公司 Silver powder manufacturing method

Also Published As

Publication number Publication date
JP2643520B2 (en) 1997-08-20

Similar Documents

Publication Publication Date Title
JP2702796B2 (en) Silver alloy conductive paste
JPH03247702A (en) Silver-containing alloy powder and electric conductive paste using this powder
JPH0821254B2 (en) Copper alloy composition, molded product, paste and adhesive printed using the same
JP4839767B2 (en) A method for producing a metal fine particle dispersion, a conductive ink using the metal fine particle dispersion produced by the method, and a conductive pattern.
DE60305333T2 (en) PRESSURE PROCESS AND SOLDERING MASK COLOR COMPOSITION
CN105658745B (en) Film printing conductive composition and Thin film conductive pattern forming method
CN101348634B (en) Photo-curing ink-jet nano conductive printing ink, and preparation and use method thereof
TW201024919A (en) Improved hot melt compositions
EP0378673A4 (en) Method and apparatus for atomization and spraying of molten metals
US9611402B2 (en) Hot melt compositions with improved etch resistance
US5091114A (en) Conductive metal powders, process for preparation thereof and use thereof
JPH03245405A (en) Silver group alloy powder and conductive paste using same
JP2708606B2 (en) Copper alloy conductive paste and conductor using the paste
JPH0428108A (en) Silver conductive paste and conductive material using the same paste
JPH0428109A (en) Copper conductive paste and conductive material using the same paste
JPH0773730A (en) Conductive powder
JP2544963B2 (en) Flaky powder
JPH10162647A (en) Conductive paste
JPS5897892A (en) Method of forming conductive circuit
JPH0672242B2 (en) Conductive metal powder, its manufacturing method and use
JPH07116482B2 (en) Aluminum alloy powder and paint for paint
JPS606757A (en) Method for forming coating film
JPH0293007A (en) Manufacture of powder
JP3153882B2 (en) Method for removing decorative part from decorated resin-made flat molded product and method for recycling decorative resin flat molded product
JP2847563B2 (en) Electron beam-curable conductive paste composition

Legal Events

Date Code Title Description
R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080502

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090502

Year of fee payment: 12

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090502

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100502

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100502

Year of fee payment: 13

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100502

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term