JPH03238342A - Apparatus for measuring mechanical characteristic of surface - Google Patents

Apparatus for measuring mechanical characteristic of surface

Info

Publication number
JPH03238342A
JPH03238342A JP3394490A JP3394490A JPH03238342A JP H03238342 A JPH03238342 A JP H03238342A JP 3394490 A JP3394490 A JP 3394490A JP 3394490 A JP3394490 A JP 3394490A JP H03238342 A JPH03238342 A JP H03238342A
Authority
JP
Japan
Prior art keywords
spring
displacement
measurement
indenter
pushing piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3394490A
Other languages
Japanese (ja)
Other versions
JP2755333B2 (en
Inventor
Takanori Miyamoto
宮本 孝典
Reizo Kaneko
金子 礼三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP3394490A priority Critical patent/JP2755333B2/en
Publication of JPH03238342A publication Critical patent/JPH03238342A/en
Application granted granted Critical
Publication of JP2755333B2 publication Critical patent/JP2755333B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

PURPOSE:To perform minute measurement of frictional force, cohesive force and the like with one apparatus by attaching a pushing piece to the other end of a vertically deflecting spring whose one end is fixed to the extending line of the central axis of the free end of a spring whose one end is fixed and which is in parallel with a measuring surface. CONSTITUTION:A measuring surface 2 is brought into contact with a pushing piece 1. The surface 2 is pushed so that the composition deformation does not occur in the surface 2. Then, the surface is separated and lowered. Cohesive force is computed based on the amount of displacement of a vertical spring 3 which is read with a displacement sensor 6 from the contact position to a point where the surface is separated and the constant of the spring. The surface 2 is pushed to the pushing piece 1 in the same way so as to energize the pushing piece 1. A spring 4 is moved in parallel with the surface 2. At this time, the spring 4 is deflected. Frictional force is computed based on the amount of displacement which is read with a displacement sensor 7 at the end part of the spring 4, the constant of the spring, the length from the contact point of a supporting body 5 of the spring 4 to the displacement measuring point at the free end of the spring 4 and the length from that contact point to the contact point between the pushing piece 1 and the surface 2. The surface 2 is pushed to the pushing piece 1 so that slight elastic deformation occurs, or the pushing piece 1 is pushed into the surface 2 by a machining depth. Thus, the surface shape or the machining force of the surface 2 is computed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は固体の表面の機械特性測定装置に関し、特に磁
気ディスク装置、LSI、超伝導素子、光メモリ等のマ
イクロニュートンオーダの摩擦力や凝着力、ナノメート
ルオーダの摩耗、表面形状、加工力の測定装置に関する
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a device for measuring mechanical properties of the surface of a solid, and in particular, it relates to a device for measuring mechanical properties on the surface of a solid, and particularly for measuring micronewton-order frictional force and adhesive force of magnetic disk devices, LSIs, superconducting elements, optical memories, etc. , concerning a measurement device for nanometer-order wear, surface shape, and machining force.

[従来の技術] 従来の表面機械特性測定装置は、摩擦力、凝着力、微小
な加工力、および表面の微細な形状等の測定毎に個別の
装置となっていた。
[Prior Art] Conventional surface mechanical property measuring devices are separate devices for each measurement of frictional force, adhesive force, minute processing force, minute surface shape, and the like.

[発明が解決しようとする課題] 上述した従来の表面機械特性測定装置は、摩擦力、凝着
力、加工力、および表面形状の測定毎に個別の装置とな
っており、同一の装置で測定しようとすると、測定面に
垂直な方向にたわむ垂直方向ばねの中心軸と、測定面に
平行な方向にたわむ平行方向ばねの中心軸が直交するた
め、この2方向のばねの変位を検出するための変位セン
サや、変位センサを微動させるための機構を同時に取付
けることが困難になり、同一装置で摩擦力、凝着力、加
工力、および表面形状の測定はできないという欠点があ
る。
[Problems to be Solved by the Invention] The conventional surface mechanical property measuring devices described above are separate devices for measuring frictional force, adhesion force, processing force, and surface shape, and it is difficult to measure them with the same device. Then, since the center axis of the vertical spring that bends in the direction perpendicular to the measurement surface and the center axis of the parallel spring that bends in the direction parallel to the measurement surface are orthogonal, it is necessary to detect the displacement of the spring in these two directions. This method has the disadvantage that it is difficult to simultaneously install a displacement sensor and a mechanism for finely moving the displacement sensor, and that frictional force, adhesion force, processing force, and surface shape cannot be measured with the same device.

本発明の目的は、1台の装置で摩擦力、凝着力、加工力
および表面形状のマイクロニュートン、ナノメートルオ
ーダの測定が可能な表面機械特性、測定装置を提供する
ことである。
An object of the present invention is to provide a surface mechanical property measuring device capable of measuring frictional force, adhesion force, processing force, and surface shape on the order of micronewtons and nanometers with a single device.

[課題を解決するための手段] 本発明の表面機械特性測定装置は、 一方の端部がベースに固定された、測定面に平行な方向
にたわむばねの自由端に、ばねの中心軸が前記測定面に
平行な方向にたわむばねの中心軸の延長線上に一致し、
または該中心軸の延長線に平行になるように一方の端部
が固定され、他方の端部に圧子が取付けられた、測定面
に垂直な方向にたわむばねを有している。
[Means for Solving the Problems] The surface mechanical property measuring device of the present invention has a free end of a spring whose one end is fixed to a base and which bends in a direction parallel to the measurement surface. It corresponds to the extension line of the central axis of the spring that bends in the direction parallel to the measurement plane,
Alternatively, it has a spring that is fixed at one end so as to be parallel to the extension line of the central axis, has an indenter attached to the other end, and is deflected in a direction perpendicular to the measurement surface.

[作用コ 測定面を圧子に接触させ、さらに、測定面に組成変形が
発生しない程度に押付け、測定面に垂直な方向に圧子な
引離すように測定面を下降させ、前記接触位置から引離
された点迄の垂直ばねの変位量を変位センサで読み、そ
の変位量と、ばね定数から凝着力を算出し、測定面を塑
性変形が発生しない程度に圧子に押付け、圧子に付勢し
て圧子を測定表土を測定面に平行に移動させたときの平
行方向にたわむばねの端部の変位量を変位センサで読み
、その変位量と、ばね定数と、平行方向にたわむばねが
支持体に接する点から平行方向にたわむばねの自由端の
変位測定点までの長さと、平行方向にたわむばねが支持
体に接する点から圧子の測定面に接する位置までの長さ
とから摩擦力を算出し、次に、測定面を圧子に接触して
測定面の表面にわずかに弾性変形が発生する程度に押付
は圧子を測定面に沿って摩擦力測定時と同じ方向に動か
し、その時の垂直方向にたわむばねの変位を読んで表面
形状を知り、圧子を測定面に加工深度に押込んで測定面
上を移動する時の測定面と平行方向にたわむばねの端部
の変位測定点の変位を読み、その変位量と、ばね定数と
、測定面に平行にたわむばねが支持体に接する点から該
平行方向にたわむばねの自由端の変位測定点までの長さ
と、該平行方向にたわむばねの支持体に接する点から圧
子が測定面に接する位置までの長さとから加工力を算出
することにより、この1台の表面機械特性測定装置で摩
擦力、凝着力、加工力および表面形状の測定を行なうこ
とができる。
[Operation] Bring the measurement surface into contact with the indenter, further press it to the extent that compositional deformation does not occur on the measurement surface, lower the measurement surface in a direction perpendicular to the measurement surface so as to separate the indenter, and then pull it away from the contact position. A displacement sensor reads the displacement of the vertical spring up to the point where the vertical spring is pressed, calculates the adhesion force from the displacement and the spring constant, presses the measurement surface against the indenter to the extent that no plastic deformation occurs, and applies force to the indenter. Measure the indenter When the topsoil is moved parallel to the measurement surface, a displacement sensor reads the displacement of the end of the spring that bends in the parallel direction, and calculates the amount of displacement, the spring constant, and the spring that bends in the parallel direction on the support. Calculate the frictional force from the length from the contact point to the displacement measurement point of the free end of the spring that bends in the parallel direction, and the length from the point where the spring that bends in the parallel direction contacts the support body to the position where it touches the measurement surface of the indenter, Next, the measurement surface is brought into contact with the indenter, and the indenter is moved along the measurement surface in the same direction as when measuring the friction force, and the indenter is deflected in the vertical direction at that time. Read the displacement of the spring to know the surface shape, and when the indenter is pushed into the measurement surface to the machining depth and moves on the measurement surface, read the displacement at the measurement point of the end of the spring that deflects in the direction parallel to the measurement surface. The amount of displacement, the spring constant, the length from the point where the spring that bends parallel to the measurement plane contacts the support to the displacement measurement point of the free end of the spring that bends in the parallel direction, and the length of the spring that bends in the parallel direction to the support of the spring that bends in the parallel direction. By calculating the processing force from the length from the contact point to the position where the indenter contacts the measurement surface, this single surface mechanical property measuring device can measure friction force, adhesion force, processing force, and surface shape. can.

[実施例] 次に、本発明の実施例について図面を参照して説明する
[Example] Next, an example of the present invention will be described with reference to the drawings.

第1図は本発明の表面機械特性測定装置の一実施例の斜
視図、第2図は第1図のばね3を1枚ばねとした実施例
の斜視図、第3図は電磁石を用いた場合の実施例の斜視
図である。
Fig. 1 is a perspective view of an embodiment of the surface mechanical property measuring device of the present invention, Fig. 2 is a perspective view of an embodiment in which the spring 3 in Fig. 1 is a single spring, and Fig. 3 is a perspective view of an embodiment using an electromagnet. FIG.

この表面機械特性測定装置は圧子1と、ばね3.4と、
支持体5と、変位センサ6.7と、試片固定台11と、
ベース(不図示)からなる。圧子1はダイヤモンド製で
その先端は目的に応じて加工されているが測定先端の曲
率半径はサブミクロンオーダに仕上げられた角錐で、測
定面の形状をナノメートルオーダで測定可能にする。試
片固定台11はベース(不図示)に対して垂直方向に移
動させて固定することが可能なように取付けられ、表面
に被測定片が測定面2を水平に固定される被測定片の搭
載台である。ばね4は、ベース(不図示)に固定された
支持体5に一方の端部が固定され、測定面2に平行な方
向にたわむ2枚の板ばねな離間対向させた組合せばねで
ある。ばね3は一方の端部がばね4の自由端に中心軸が
ばね4の中心軸の延長線上に一致するように固定され、
測定面2に垂直な方向にたわむ、2枚の板ばねを離間対
向させた組合せばねで、自由端近くに圧子1が先端を測
定面2に垂直になるように固定されている。また、ばね
3,4の材質は弾性が高いステンレス鋼で、そのばね定
数は、マイクロニュートン以下の力を測定可能なように
N / mのオーダーあるいはそれ以下である。変位セ
ンサ6はばね3の端部の変位測定点の変位(ばね3のた
わみ量)を検出するセンサである。変位センサ7はばね
4の自由端位置の変位測定点の変位(ばね4のたわみ量
)を検出するセンサである。
This surface mechanical property measuring device includes an indenter 1, a spring 3.4,
A support body 5, a displacement sensor 6.7, a specimen fixing table 11,
It consists of a base (not shown). The indenter 1 is made of diamond, and its tip is processed according to the purpose, and the measurement tip is a pyramid whose radius of curvature is on the order of submicrons, making it possible to measure the shape of the measurement surface on the order of nanometers. The sample fixing table 11 is attached to a base (not shown) so that it can be moved and fixed in the vertical direction, and the sample to be measured is fixed on the surface of the sample to be measured with the measurement surface 2 horizontally fixed. It is a mounting platform. The spring 4 is a combination of two leaf springs spaced apart and facing each other, one end of which is fixed to a support 5 fixed to a base (not shown), and deflected in a direction parallel to the measurement surface 2. One end of the spring 3 is fixed to the free end of the spring 4 so that its central axis is aligned with the extension of the central axis of the spring 4,
It is a combination spring made up of two leaf springs spaced apart and facing each other, which bends in a direction perpendicular to the measurement surface 2, and an indenter 1 is fixed near the free end so that the tip is perpendicular to the measurement surface 2. The springs 3 and 4 are made of highly elastic stainless steel, and their spring constants are on the order of N/m or less so that forces of less than micronewtons can be measured. The displacement sensor 6 is a sensor that detects the displacement (the amount of deflection of the spring 3) at a displacement measurement point at the end of the spring 3. The displacement sensor 7 is a sensor that detects the displacement (the amount of deflection of the spring 4) at a displacement measurement point at the free end position of the spring 4.

次に、この実施例による測定について説明する。Next, measurement according to this example will be explained.

まず凝着力の測定の場合は、試片固定台II上に被測定
片をその測定面2を水平にして固定する。
First, in the case of measuring the adhesive force, the sample to be measured is fixed on the sample fixing table II with its measurement surface 2 horizontal.

その後、試片固定台11を上昇させて測定面2を圧子1
に接触させ、ばね3の自由端の変位測定点の位置を変位
センサ6で読む。その後、さらに付勢手段により、測定
面2を表面に塑性変形が起きない程度の力で圧子1に押
付ける。つぎに、付勢手段により試片固定台11を徐々
に降下させて測定面2を圧子lから離反する方向に移動
する。前記離反動作を継続すると、圧子1と測定面2と
の間に作用する凝着力でばね3が測定面2の方向にたわ
む。さらに、離反動作を継続すると、ばね3がたわむこ
とによって発生する力が圧子1と測定面2との間に作用
する凝着力を超えて、圧子1が測定面2から離反する。
After that, the specimen fixing table 11 is raised and the measurement surface 2 is placed on the indenter 1.
The position of the displacement measuring point on the free end of the spring 3 is read by the displacement sensor 6. Thereafter, the measuring surface 2 is further pressed against the indenter 1 by the biasing means with a force that does not cause plastic deformation on the surface. Next, the specimen fixing table 11 is gradually lowered by the biasing means to move the measurement surface 2 in a direction away from the indenter l. When the separation operation continues, the spring 3 is bent in the direction of the measurement surface 2 due to the adhesive force acting between the indenter 1 and the measurement surface 2. Furthermore, if the separation operation continues, the force generated by the deflection of the spring 3 exceeds the adhesive force acting between the indenter 1 and the measurement surface 2, causing the indenter 1 to separate from the measurement surface 2.

この離反したときのばね3の自由端の変位測定点の位置
を変位センサ6で読み、このようにして圧子1が測定面
2に接触した位置から、圧子1が測定面2から離反した
位置までのばね3自出端のたわみ量を、変位センサ6に
よってミクロンメートルあるいはそれ以下の精度で測定
すれば、圧子1と測定面2との間に作用するマイクロニ
ュートン以下の凝着力がばね3のたわみ量と、ばね3の
ばね定数から算出できる。さらに、付勢手段を用いて、
前記凝着力の測定を測定面2に沿った方向で、しかもげ
ね4がたわむ方向で繰り返し行なうことにより、凝着力
の分布を測定できる。
The position of the displacement measurement point of the free end of the spring 3 when the spring 3 is separated is read by the displacement sensor 6, and in this way from the position where the indenter 1 contacts the measurement surface 2 to the position where the indenter 1 separates from the measurement surface 2. If the amount of deflection of the protruding end of the spring 3 is measured with an accuracy of micrometers or less using the displacement sensor 6, the adhesive force of less than micronewtons acting between the indenter 1 and the measurement surface 2 will cause the deflection of the spring 3. It can be calculated from the amount and the spring constant of spring 3. Furthermore, using a biasing means,
By repeatedly measuring the adhesive force in the direction along the measurement surface 2 and in the direction in which the brace 4 is deflected, the distribution of the adhesive force can be measured.

凝着力の分布の測定に引き続いて摩擦力を測定するには
、前記同様の付勢手段により、測定面2を表面間に塑性
変形が起きない程度の力で圧子1に押付け、ばね4の自
由端の変位測定点の位置を変位センサ7で読む。その後
に、付勢手段を用いて、圧子lを測定面に沿ってばね3
の軸に直角な方向に移動させる。圧子1を前記方向に移
動させた時、圧子1と測定面2との摩擦力によってばね
4がたわむので、ばね4の自由端の変位測定点の値を変
位センサ7で読み、このようにして圧子1を測定面に押
し付けた位置からのばね4の自由端のたわみ量を、変位
センサ7の測定によってミクロンメートルあるいはそれ
以下の精度で検出すれば、圧子1と測定面2との間に作
用するマイクロニュートン以下の摩擦力は、ばね4のた
わみ量と、ばね4のばね定数と、ばね4が支持体5に接
する点からばね4の変位測定点までの長さと、ばね4が
支持体5に接する点から圧子lが測定面2に接する位置
までの長さとから算出することができる。
To measure the frictional force subsequent to the measurement of the adhesive force distribution, the measurement surface 2 is pressed against the indenter 1 using the same biasing means as described above with a force that does not cause plastic deformation between the surfaces, and the spring 4 is free. The position of the displacement measurement point at the end is read by the displacement sensor 7. Thereafter, using the biasing means, the indenter l is moved along the measurement surface by the spring 3.
move in a direction perpendicular to the axis of When the indenter 1 is moved in the above direction, the spring 4 is deflected by the frictional force between the indenter 1 and the measurement surface 2, so the value at the displacement measurement point of the free end of the spring 4 is read by the displacement sensor 7, and in this way, If the amount of deflection of the free end of the spring 4 from the position where the indenter 1 is pressed against the measurement surface is detected with an accuracy of micrometers or less by measurement with the displacement sensor 7, it is possible to detect an effect between the indenter 1 and the measurement surface 2. The frictional force of micronewtons or less is determined by the amount of deflection of the spring 4, the spring constant of the spring 4, the length from the point where the spring 4 contacts the support 5 to the displacement measurement point of the spring 4, and the distance between the spring 4 and the support 5. It can be calculated from the length from the point where the indenter l contacts the measurement surface 2 to the position where the indenter l contacts the measurement surface 2.

摩擦力の測定に引き続いて表面形状を測定するには、ま
ず、付勢手段を用いて、試片固定台11を上昇させ圧子
1に測定面2を押付け、表面がわずかに弾性変形する程
度にし、このときのばね3の自由端の変位測定点の位置
を変位センサ6で読む。つぎに、付勢手段を用いて、測
定面2を前記摩擦力の測定を行なった方向に移動させる
。この時、ばね3は測定面の形状に応じて変位する。こ
の時の変位測定点の変位を変位センサ6によってミクロ
ンメートルあるはそれ以下の精度で測定すれば、ナノメ
ートルオーダの表面形状は測定面に沿う方向への圧子1
の移動量と測定面2に対向する方向へのばね3の変位を
知ることができる。
To measure the surface shape subsequent to the measurement of the frictional force, first, use the biasing means to raise the specimen fixing table 11 and press the measurement surface 2 against the indenter 1 to the extent that the surface is slightly elastically deformed. At this time, the position of the displacement measurement point of the free end of the spring 3 is read by the displacement sensor 6. Next, the measurement surface 2 is moved in the direction in which the frictional force was measured using the biasing means. At this time, the spring 3 is displaced according to the shape of the measurement surface. If the displacement of the displacement measurement point at this time is measured by the displacement sensor 6 with an accuracy of micrometers or less, the surface shape of the nanometer order will be obtained by the indenter 1 in the direction along the measurement surface.
The amount of movement of the spring 3 and the displacement of the spring 3 in the direction facing the measurement surface 2 can be determined.

表面形状の測定に引き続いて加工力を測定するには、試
片固定台11を上昇させて、加工深度まで圧子1を測定
面2に押込み、このときのばね4の自由端の変位測定点
の位置を変位センサ7で読む。その後、付勢手段を用い
て、圧子1を測定面2に沿った方向で、しかも、ばね4
がたわむ測定面2に平行な方向に測定面2に沿って摩擦
力測定のときと同様に移動させる。この時、圧子1によ
り測定面2が加工される際の加工力によってばね4がた
わむので、圧子1を測定面に押付けた位置からのばね4
の自由端の変位測定点のたわみ量を、変位センサ7によ
ってミクロンメートルあるいはそれ以下の精度で測定す
れば、圧子1と測定面2との間に作用するマイクロニュ
ートン以下の加工力は、ばね4のたわみ量と、ばね4の
ばね定数と、ばね4が支持体5と接する点からばね4の
変位測定点までの長さと、ばね4が支持体5と接する点
から圧子1が測定面2に接する点までの長さとから算出
できる。
To measure the machining force subsequent to the measurement of the surface shape, raise the sample fixing table 11, push the indenter 1 into the measurement surface 2 to the machining depth, and measure the displacement measurement point of the free end of the spring 4 at this time. The position is read by the displacement sensor 7. Thereafter, using the biasing means, the indenter 1 is moved in the direction along the measurement surface 2, and the spring 4
It is moved along the measurement surface 2 in a direction parallel to the measurement surface 2 where the surface is bent in the same manner as when measuring the frictional force. At this time, the spring 4 is bent by the processing force when the measurement surface 2 is processed by the indenter 1, so the spring 4 is bent from the position where the indenter 1 is pressed against the measurement surface.
If the amount of deflection at the displacement measurement point of the free end is measured with an accuracy of micrometers or less using the displacement sensor 7, the processing force of less than micronewtons acting between the indenter 1 and the measurement surface 2 will be the same as that of the spring 4. the amount of deflection, the spring constant of the spring 4, the length from the point where the spring 4 contacts the support 5 to the displacement measurement point of the spring 4, and the distance from the point where the spring 4 contacts the support 5 to the measurement surface 2 of the indenter 1. It can be calculated from the length to the point of contact.

前述した凝着力、摩擦力、表面形状および加工量の測定
を測定面2上の複数の位置で繰り返し行なうことにより
、表面の機械特性を詳細に知ることができる。
By repeatedly measuring the adhesion force, friction force, surface shape, and processing amount described above at a plurality of positions on the measurement surface 2, the mechanical properties of the surface can be known in detail.

このようにして、同一の装置でマイクロニュートン以下
の凝着力、摩擦力および加工力や、ナノメートルオーダ
の表面形状を繰り返し測定することが可能であり、表面
の機械特性を高精度で測定できる。
In this way, it is possible to repeatedly measure adhesion forces, frictional forces, and processing forces of micronewtons or less, as well as surface shapes on the order of nanometers, with the same device, and the mechanical properties of the surface can be measured with high precision.

以上の実施例では、代表的な表面機械特性装置について
第1図により説明を行なったが、第2図に示すように、
測定面に垂直な方向にたわむばねが1枚のばね12であ
っても、凝着力、表面形状、摩擦力、加工力の測定がで
きる。また、試片固定台11を水平に移動可能とした場
合第3図に示すように、付勢手段を用いて、測定面2を
表面に塑性変形が起きない程度の力で圧子lに押付け、
その後に、付勢手段を用いて、測定面2をばね4がたわ
む測定面2に平行な方向に移動させる際に、圧子1と測
定面2との摩擦力によるばね4のたわみ量が零となるよ
うに、ベース(不図示)に固定された電磁石支持体IO
上に支持された電磁石8でばね4の測定点に固定されて
いる鉄片9を吸引する制御電流を制御し、前記制御電流
を測定することによっても、摩擦力が測定できる。
In the above embodiments, a typical surface mechanical property device was explained using FIG. 1, but as shown in FIG.
Even if there is only one spring 12 that bends in the direction perpendicular to the measurement surface, adhesive force, surface shape, frictional force, and processing force can be measured. In addition, when the specimen fixing table 11 is made horizontally movable, as shown in FIG.
After that, when the biasing means is used to move the measuring surface 2 in a direction parallel to the measuring surface 2 where the spring 4 is deflected, the amount of deflection of the spring 4 due to the frictional force between the indenter 1 and the measuring surface 2 becomes zero. An electromagnetic support IO fixed to a base (not shown) so that
The frictional force can also be measured by controlling a control current that attracts an iron piece 9 fixed to a measurement point of the spring 4 using an electromagnet 8 supported above and measuring the control current.

[発明の効果コ 以上述べたように、本発明は、一方の端部が固定され、
測定面に平行にたわむばねの他方の端部に、該ばねの中
心軸の延長線上または該延長線に平行な中心軸を有する
ように、一方の端部が固定され、他方の端部に圧子が取
付けられた垂直方向にたわむばねを用いることにより、
マイクロニュートン以下の凝着力、摩擦力および加工力
やナノメートルオーダの表面形状を同一の装置で容易に
観測することが可能になり、表面層や薄膜の機械特性を
高精度で測定できる効果がある。
[Effects of the Invention] As described above, the present invention has one end fixed,
One end is fixed to the other end of the spring that bends parallel to the measurement plane, and an indenter is attached to the other end so that the spring has a central axis on or parallel to the central axis of the spring. By using a vertically deflecting spring attached to
It is now possible to easily observe adhesion forces, frictional forces, and processing forces of micronewtons or less, as well as surface shapes on the order of nanometers, with the same device, making it possible to measure the mechanical properties of surface layers and thin films with high precision. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の表面機械特性測定装置の一実施例の斜
視図、第2図は第1図のばね3を一枚ばねとした実施例
の斜視図、第3図は電磁石を用いた場合の実施例の斜視
図である。 1・・・圧子、     2・・・測定面、3.4.1
2・・・ばね、   5・・・支持体、6.7・・・変
位センサ、 8・・・電磁石、9・・・鉄片、    
 10・・・電磁石支持体、11・・・試片固定台。
Fig. 1 is a perspective view of an embodiment of the surface mechanical property measuring device of the present invention, Fig. 2 is a perspective view of an embodiment in which the spring 3 in Fig. 1 is a single piece spring, and Fig. 3 is a perspective view of an embodiment using an electromagnet. FIG. 1... Indenter, 2... Measurement surface, 3.4.1
2... Spring, 5... Support, 6.7... Displacement sensor, 8... Electromagnet, 9... Iron piece,
10... Electromagnet support, 11... Sample fixing stand.

Claims (1)

【特許請求の範囲】 1、一方の端部がベースに固定され、測定面に対して平
行または垂直のいずれか一方向にたわむばねと、該ばね
の他方の端部に取付けられた圧子と、該圧子の測定面上
の変位を検出する変位センサを有する表面機械特性測定
装置において、 一方の端部がベースに固定された、測定面に平行な方向
にたわむばねの自由端に、ばねの中心軸が前記測定面に
平行な方向にたわむばねの中心軸の延長線上に一致し、
または該中心軸の延長線に平行になるように一方の端部
が固定され、他方の端部に圧子が取付けられた、測定面
に垂直な方向にたわむばねを有することを特徴とする表
面機械特性測定装置。
[Claims] 1. A spring whose one end is fixed to a base and bends in one direction either parallel or perpendicular to the measurement surface, and an indenter attached to the other end of the spring; In a surface mechanical property measuring device having a displacement sensor that detects the displacement of the indenter on the measurement surface, a spring whose one end is fixed to the base and which is deflected in a direction parallel to the measurement surface has a center of the spring. the axis coincides with an extension of the central axis of the spring that bends in a direction parallel to the measurement plane;
or a surface machine characterized by having a spring that is fixed at one end so as to be parallel to the extension line of the central axis, has an indenter attached to the other end, and is deflected in a direction perpendicular to the measuring surface. Characteristic measuring device.
JP3394490A 1990-02-16 1990-02-16 Surface mechanical property measuring device Expired - Lifetime JP2755333B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3394490A JP2755333B2 (en) 1990-02-16 1990-02-16 Surface mechanical property measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3394490A JP2755333B2 (en) 1990-02-16 1990-02-16 Surface mechanical property measuring device

Publications (2)

Publication Number Publication Date
JPH03238342A true JPH03238342A (en) 1991-10-24
JP2755333B2 JP2755333B2 (en) 1998-05-20

Family

ID=12400621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3394490A Expired - Lifetime JP2755333B2 (en) 1990-02-16 1990-02-16 Surface mechanical property measuring device

Country Status (1)

Country Link
JP (1) JP2755333B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5859357A (en) * 1995-12-25 1999-01-12 Fujitsu Limited Apparatus for measuring friction force between a magnetic head and a magnetic disk
JP2007271318A (en) * 2006-03-30 2007-10-18 Japan Science & Technology Agency Agglutination simulator for contact mode atomic force microscope, agglutination simulation program, recording medium recorded with agglutination simulation program, and agglutination simulation method
CN117238812A (en) * 2023-11-10 2023-12-15 四川省农业机械科学研究院 Substrate warp measuring device and measuring method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7557933B2 (en) 2006-02-14 2009-07-07 Japan Science And Technology Agency Measuring probe, sample surface measuring apparatus and sample surface measuring method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5859357A (en) * 1995-12-25 1999-01-12 Fujitsu Limited Apparatus for measuring friction force between a magnetic head and a magnetic disk
JP2007271318A (en) * 2006-03-30 2007-10-18 Japan Science & Technology Agency Agglutination simulator for contact mode atomic force microscope, agglutination simulation program, recording medium recorded with agglutination simulation program, and agglutination simulation method
CN117238812A (en) * 2023-11-10 2023-12-15 四川省农业机械科学研究院 Substrate warp measuring device and measuring method
CN117238812B (en) * 2023-11-10 2024-04-05 四川省农业机械科学研究院 Substrate warp measuring device and measuring method

Also Published As

Publication number Publication date
JP2755333B2 (en) 1998-05-20

Similar Documents

Publication Publication Date Title
US5852232A (en) Acoustic sensor as proximity detector
US9829303B2 (en) Shape measuring apparatus
US4691559A (en) Device for measuring the properties of solid materials which can be derived from the behavior of a penetrating body
WO2010084662A1 (en) Load measuring apparatus
JP2002062124A (en) Length measuring device
US20210116344A1 (en) Measuring system, measuring arrangement and method for determining measuring signals during a penetration movement of a penetration body into a surface of a test body
US3446065A (en) Automatic probing apparatus
JPH03238342A (en) Apparatus for measuring mechanical characteristic of surface
GB2117908A (en) Linear scale type displacement measuring instrument
GB2284057A (en) Centring device for a deflectably mounted mechanical probe
JPS62245131A (en) Scratch testing machine
JP2966214B2 (en) Surface profile measuring device
JP3624607B2 (en) Surface hardness measuring device
JP2853687B2 (en) Surface property evaluation device
JPH11230875A (en) Micro spring constant measuring device and measuring method therefor
JP2004354107A (en) Spring load measuring method, apparatus, and system
JP2014077692A (en) Stylus-type measuring device and height measuring method with stylus-type measuring device
JP2003021513A (en) Device and method for surface shape measurement
JPH01195301A (en) Measuring instrument for surface mechanical characteristic
KR0143747B1 (en) Device for measuring thickness of coating film
WO2017042946A1 (en) Scanning probe microscope
JP5209440B2 (en) Shape measuring probe
JPH02128109A (en) Surface shape measuring apparatus
JPH10253310A (en) Contact type displacement measuring device
JPS589007A (en) Length measuring device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090306

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090306

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100306

Year of fee payment: 12

EXPY Cancellation because of completion of term