JPH03221093A - Carbon fiber reinforced carbon wire - Google Patents

Carbon fiber reinforced carbon wire

Info

Publication number
JPH03221093A
JPH03221093A JP2016963A JP1696390A JPH03221093A JP H03221093 A JPH03221093 A JP H03221093A JP 2016963 A JP2016963 A JP 2016963A JP 1696390 A JP1696390 A JP 1696390A JP H03221093 A JPH03221093 A JP H03221093A
Authority
JP
Japan
Prior art keywords
carbon
fibers
fiber
carbon fiber
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016963A
Other languages
Japanese (ja)
Other versions
JP2658470B2 (en
Inventor
Makoto Utsunomiya
真 宇都宮
Mitsuhiro Okumura
奥村 光弘
Yasuo Kogo
保雄 向後
Takeshi Ozaki
毅志 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2016963A priority Critical patent/JP2658470B2/en
Publication of JPH03221093A publication Critical patent/JPH03221093A/en
Application granted granted Critical
Publication of JP2658470B2 publication Critical patent/JP2658470B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To increase the density and increase the strength by precipitating carbon base material to bundles of carbon fibers by gas phase impregnation to integrate them. CONSTITUTION:Bundles of 100-20000 carbon fibers of an average diameter of 3-15mum are supplied. These fiber bundles are densed by CVI method to have a fiber volume rate of 35-80% at a residual pore rate of 10% or less. (1) shows each carbon fiber, and (2) shows carbon generated by CVI. (4) shows a carbon fiber bundle to be supplied to a reaction furnace continuously. (5) shows a gas supply means to supply material gas and carrier gas, so flow-controlled gas is supplied to the reaction furnace 6. The reaction furnace 6 is a heating furnace for heating the carbon fibers, and material gas is heat decomposed in the surface of the carbon fibers to be carbonized. The carbon fiber bundle 4 passes some such reaction furnaces, while carbon matrix fills the intervals between the fibers, so a carbon fiber-reinforced carbon wire is manufactured. A high density wire having good mechanical characteristics can thus be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、耐熱構造材料などに用いられる炭素繊維強
化炭素複合材料(以下C/C複合材料と称する)を複合
化成形する工程において、中間素材として有用な炭素繊
維強化炭素ワイヤに関するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention provides an intermediate method for forming carbon fiber-reinforced carbon composite materials (hereinafter referred to as C/C composite materials) used for heat-resistant structural materials. This invention relates to carbon fiber-reinforced carbon wire useful as a material.

[従来の技術] C/C複合材料は、2000℃を越える耐熱性と高温強
度を有し、耐熱構造材料としてロケットノズル、ノーズ
コーン、ディスクブレーキ用材料、超高温発熱体、炉体
などへ用いられている。
[Prior art] C/C composite materials have heat resistance exceeding 2000°C and high-temperature strength, and are used as heat-resistant structural materials for rocket nozzles, nose cones, disc brake materials, ultra-high temperature heating elements, furnace bodies, etc. It is being

従来、C/C複合材料は、予め炭素繊維に樹脂あるいは
ピッチなどの炭素マトリックス前駆物質を含浸しておき
、成形した後、炭化処理、黒鉛化処理を行う方法(以下
、前駆物質含浸法と称する)、あるいは炭素繊維の成形
体に化学気相蒸着により熱分解炭素を繊維間隙に充填す
る方法(以下、CVI法と称する)等により製造されて
いた。
Conventionally, C/C composite materials have been produced using a method in which carbon fibers are impregnated with a carbon matrix precursor such as resin or pitch in advance, and then carbonized and graphitized after being formed (hereinafter referred to as the precursor impregnation method). ), or a method in which pyrolytic carbon is filled into the fiber gaps in a carbon fiber molded body by chemical vapor deposition (hereinafter referred to as the CVI method).

[発明が解決しようとする課題] しかしながら、従来のC/C6合材料に共通する課題と
して、炭素繊維の強度発現率が低いこと、及び炭素が高
温では酸化するため耐酸化性に優れた被覆を行う必要が
あることがあった。C/C複合材料を高性能化するのた
めの一手段として、マトリックスの改質を図る方法があ
るが、従来の前駆物質含浸法では、炭化処理の工程にお
いて前駆物質よりの炭素収率に限界があり、マトリック
スが著しく収縮して、その緻密化に限界があった。
[Problems to be solved by the invention] However, as problems common to conventional C/C6 composite materials, the strength development rate of carbon fiber is low, and carbon oxidizes at high temperatures, so it is difficult to provide a coating with excellent oxidation resistance. There was something that needed to be done. One way to improve the performance of C/C composite materials is to modify the matrix, but with the conventional precursor impregnation method, there is a limit to the carbon yield from the precursor in the carbonization process. However, the matrix shrinks significantly, and there is a limit to its densification.

CVI法においては、マトリックスの微細構造を調整す
ることにより高強度が得られることが報告されており、
かつ気相含浸であるため細孔へもマトリックスを含浸で
きる。しかし、表面近傍はど析出量が大きいために、目
詰まりを生じて、C/C複合材料内部まで緻密度を高め
る゛ことができない欠点があった。
In the CVI method, it has been reported that high strength can be obtained by adjusting the microstructure of the matrix.
Moreover, since it is a gas phase impregnation, it is possible to impregnate the matrix even into the pores. However, since the amount of precipitation near the surface is large, clogging occurs and the density cannot be increased to the inside of the C/C composite material.

一方、炭素繊維は、平均径3〜15μmの連続繊維が↓
OO〜20000本の束として供給されるが、これらの
多数本の細い繊維をマトリックス中へ均一に分散するこ
とが難しく、特に繊維体積含有率が高くなると、繊維と
繊維が接触しやすくなり強度低下を生じるという課題が
あった。
On the other hand, carbon fibers are continuous fibers with an average diameter of 3 to 15 μm.
Although it is supplied as a bundle of ~20,000 fibers, it is difficult to uniformly disperse these many thin fibers into the matrix, and especially when the fiber volume content increases, fibers tend to come into contact with each other, resulting in a decrease in strength. There was a problem in that it caused problems.

[課題を解決するための手段] 本発明は、上記従来のC/C複合材料の製造方法の課題
を改良するためになされたもので、CVI法を鋭意研究
した結果、気体が浸透する繊維間隙の径により、緻密化
できる表面からの深さに限界があることを見いだし、中
間素材として炭素繊維強化ワイヤを用いることにより、
上記課題が改善できることを発見したものである。
[Means for Solving the Problems] The present invention was made in order to improve the problems of the above-mentioned conventional method for manufacturing C/C composite materials, and as a result of intensive research on the CVI method, fiber gaps through which gas permeates. It was discovered that there is a limit to the depth from the surface that can be densified depending on the diameter of the material, and by using carbon fiber reinforced wire as an intermediate material,
It was discovered that the above problems can be improved.

この発明における炭素繊維強化炭素ワイヤは、炭素繊維
の束へ炭素母材を気相含浸により析出させ一体化させた
ものである。この発明に用し1られる炭素繊維は、その
起源を問わず平均径3〜15μmの長繊維である。これ
らの繊維は100〜2oooo本が束として供給される
。これらの繊維束が繊維体積分率35〜80%となるよ
うにした場合、CVI法により、実質的iこ緻密化(残
存気孔率10%以下)できる表面からの深さは、せI/
)ぜい↓mmである(第3図)。しかし、本発明番こお
けるワイヤのように、細い炭素繊維束の場合番こは、短
い距離に浸透するだけでよいため、CVI法により均一
に緻密化することが可能である。
The carbon fiber-reinforced carbon wire of this invention is made by precipitating a carbon base material into a bundle of carbon fibers by vapor phase impregnation and integrating them. The carbon fibers used in this invention are long fibers with an average diameter of 3 to 15 μm, regardless of their origin. These fibers are supplied in bundles of 100 to 200 fibers. When these fiber bundles have a fiber volume fraction of 35 to 80%, the depth from the surface that can be substantially densified (residual porosity 10% or less) by the CVI method is
) The width is ↓mm (Fig. 3). However, in the case of a thin carbon fiber bundle such as the wire in the present invention, the fiber only needs to penetrate a short distance, so that it can be uniformly densified by the CVI method.

第1図に、本発明による炭素繊維強化炭素ワイヤの断面
の模式図を、第2図に炭素繊維強化炭素ワイヤを製造す
るための装置の模式図を示す。
FIG. 1 shows a schematic diagram of a cross section of a carbon fiber-reinforced carbon wire according to the present invention, and FIG. 2 shows a schematic diagram of an apparatus for manufacturing the carbon fiber-reinforced carbon wire.

第1図(a)において、(1)は個々の炭素繊維であり
、(2)はCVIにより生成された炭素である。第1図
(b)、第↓図(c)は本発明の他の実施例を示すもの
で、(3)は耐酸化性皮膜である。
In FIG. 1(a), (1) is an individual carbon fiber and (2) is carbon produced by CVI. FIG. 1(b) and FIG. 1(c) show other embodiments of the present invention, in which (3) is an oxidation-resistant film.

第2図において、(4)が炭素繊維束で、反応炉中へ連
続的に供給される。(5)は原料ガス及びキャリアガス
を供給するガス供給装置であり、流量をコントロールさ
れたガスが反応炉(6)へ供給される。反応炉(6)は
、炭素繊維を加熱する加熱炉であり、炭素繊維の表面で
原料ガスが熱分解して炭化する。炭素繊維束(4)は1
反応炉を幾つか通過して、その間に所定の炭素マトリッ
クスが繊維間隙を充填して、炭素繊維強化炭素ワイヤを
製造する。(7)は、本発明の他の実施例に係わる耐酸
化性皮膜用ガス供給装置である。
In FIG. 2, (4) is a carbon fiber bundle that is continuously fed into the reactor. (5) is a gas supply device that supplies raw material gas and carrier gas, and the gas whose flow rate is controlled is supplied to the reactor (6). The reactor (6) is a heating furnace that heats the carbon fibers, and the raw material gas is thermally decomposed and carbonized on the surface of the carbon fibers. Carbon fiber bundle (4) is 1
A carbon fiber-reinforced carbon wire is produced by passing through several reactors during which a predetermined carbon matrix fills the fiber interstices. (7) is a gas supply device for an oxidation-resistant film according to another embodiment of the present invention.

このように連続的にCVI炉を配置することにより、個
々の炭素繊維のうえへ反応防止の薄ル)皮膜を施した後
、炭素マトリックスを含浸処理することが容易である。
By arranging the CVI furnaces continuously in this manner, it is easy to apply a thin reaction-preventing film on each carbon fiber and then impregnate the carbon matrix.

また、最後の反応炉を酸化反応防止作用のある炭化珪素
あるいはその他の炭化物、窒化物のコーティングへ用い
ることにより、耐酸化性に優れた炭素繊維強化炭素ワイ
ヤを得ることができる。
Furthermore, by using the last reactor to coat silicon carbide or other carbides or nitrides that have an oxidation reaction preventing effect, a carbon fiber reinforced carbon wire with excellent oxidation resistance can be obtained.

[作用] 本発明によれば、CVI法により含浸する距離を2mm
以下としたことで、繊維体積含有率が35〜80%であ
る炭素繊維束へ残存気孔率10%以下の緻密化が可能で
ある。繊維体積含有率が35〜80%としたのは、C/
C複合材料を高性能とするためには、繊維体積分率が高
1/)方力玉野ましく、35%以下では、十分な強度が
得られなりX。
[Function] According to the present invention, the impregnating distance is 2 mm by the CVI method.
By setting the following, it is possible to densify a carbon fiber bundle having a fiber volume content of 35 to 80% with a residual porosity of 10% or less. The reason why the fiber volume content was 35 to 80% was because of C/
C In order to make the composite material high-performance, the fiber volume fraction must be high (1/), but if it is less than 35%, sufficient strength cannot be obtained.

80%以上になると繊維同志の接触が増すため、気体が
浸透できない間隙が増し、残存気孔率10%以下の緻密
化が不可能である。
If it exceeds 80%, the contact between the fibers increases, which increases the number of gaps through which gas cannot penetrate, making it impossible to achieve a residual porosity of 10% or less.

炭素繊維の径は、細いほど高性能であるため、上限を1
5μmとした。下限は、細いほどコストが上昇すること
と製造が困難となるため、3μm以上へ限定した。これ
以上細い繊維を用いるとCVIによる緻密化が困難とな
る他、ワイヤの径が細くなるため取り扱い易くなった効
果が減少する。
The thinner the carbon fiber diameter, the higher the performance, so the upper limit is set to 1.
It was set to 5 μm. The lower limit was set to 3 μm or more because the thinner the layer, the higher the cost and the more difficult it would be to manufacture. If fibers that are thinner than this are used, it will be difficult to densify the wire by CVI, and the wire diameter will become thinner, so the effect of making it easier to handle will be reduced.

本発明によれば十分なマトリックスの緻密化が得られる
他、CVI条件の制御により、炭素の微細構造を制御で
きるため、高性能な炭素繊維強化炭素ワイヤを得ること
ができる。
According to the present invention, in addition to obtaining sufficient densification of the matrix, the fine structure of carbon can be controlled by controlling the CVI conditions, so that a high-performance carbon fiber-reinforced carbon wire can be obtained.

一方、CVI法により連続的に含浸を行うため、成分の
異なる層を重ねて析出させることが容易であり、繊維へ
直接耐反応性に優れた皮膜を形成して、1を化雰囲気下
で劣化の小さな繊維とすることができる。また、炭素繊
維強化炭素ワイヤの表面を被覆することによっても同様
優れた耐酸化性を付与することができる。
On the other hand, since impregnation is carried out continuously using the CVI method, it is easy to deposit layers with different components, forming a film with excellent reaction resistance directly on the fiber, and causing 1 to deteriorate in a chemical atmosphere. can be made into small fibers. Furthermore, similarly excellent oxidation resistance can be imparted by coating the surface of the carbon fiber-reinforced carbon wire.

本発明の炭素繊維強化炭素ワイヤの径は、0.1〜2 
m mであり、炭素繊維の束を扱う場合と比べて、繊維
切れなど生じ難く、取り扱いが容易である。
The diameter of the carbon fiber reinforced carbon wire of the present invention is 0.1 to 2
mm, and compared to handling bundles of carbon fibers, fiber breaks are less likely to occur and handling is easier.

[実施例コ 本発明の一実施例では、炭素繊維としてポリアクリロニ
トリル(PAN)系の高弾性糸であるM2O(東し製)
が用いられた。繊維径は、平均6μm、3000本が一
束となっており、束径は約Q 、 5 m m である
。原料ガス′にはメタンガスを用いて、アルゴンガスを
キャリアガスとし、水素ガスとともに反応炉へ繊維の進
行方向と同一方向から供給した。反応炉の圧力は100
torr、温度は1000℃である。表には、得られた
炭素繊維強化炭素ワイヤの引張り強度を示す。強度発現
率は、60%であり、この値は、従来得られてし)る文
献値の最高水準に匹敵する。
[Example] In an example of the present invention, M2O (manufactured by Toshi), which is a polyacrylonitrile (PAN)-based high elastic yarn, was used as the carbon fiber.
was used. The average diameter of the fibers is 6 μm, and a bundle of 3000 fibers has a diameter of approximately Q, 5 mm. Methane gas was used as the raw material gas', argon gas was used as a carrier gas, and the mixture was supplied together with hydrogen gas to the reactor from the same direction as the fiber traveling direction. The pressure of the reactor is 100
torr and the temperature is 1000°C. The table shows the tensile strength of the obtained carbon fiber reinforced carbon wire. The strength development rate was 60%, which is comparable to the highest literature value ever obtained.

反応炉を何段階かにかさねで、それぞれ異なるマトリッ
クラスを析出させて、複合構成とすることができる。実
施例2では最初に炭素被覆を0.5μm行った後、炭化
珪素被覆を行い、さらに炭素マトリックスを含浸させて
緻密化をおこなった。
The reactor can be stacked in several stages, each depositing a different matrix lath, to create a composite configuration. In Example 2, carbon coating was first performed to a thickness of 0.5 μm, then silicon carbide coating was performed, and further densification was performed by impregnating a carbon matrix.

この繊維の強度は実施例1とほぼ同等の強度をしめした
The strength of this fiber was almost the same as that of Example 1.

(繊維体積含有率:50%) 最後の炉に炭化珪素被覆のためのCVD装置を持ってき
て、炭化珪素で被覆した繊維を得ることを行った(実施
例)。この炭素繊維強化炭素ワイヤの強度は実施例1と
比べ低下した。
(Fiber volume content: 50%) A CVD device for silicon carbide coating was brought to the final furnace to obtain fibers coated with silicon carbide (Example). The strength of this carbon fiber reinforced carbon wire was lower than that of Example 1.

[発明の効果] 以上のように、この発明によれば、炭素繊維の束へCV
I法により炭素マトリックスを含浸させたので、緻密度
に優れ、機械的性質に優れた炭素繊維強化炭素ワイヤを
得ることができる。この炭素繊維強化炭素ワイヤをC/
C複合材料の中間素材として用いることにより、複合化
成形工程における炭素繊維の痛みを減少することができ
る。
[Effects of the Invention] As described above, according to the present invention, CV is applied to a bundle of carbon fibers.
Since the carbon matrix was impregnated by the I method, a carbon fiber-reinforced carbon wire with excellent density and mechanical properties could be obtained. This carbon fiber reinforced carbon wire is
By using it as an intermediate material for C composite material, it is possible to reduce the damage caused to the carbon fiber during the composite molding process.

CVI法では、容易に多層のコーティングを形成するこ
とが可能であり、個々の炭素繊維あるl、)は炭素繊維
強化炭素ワイヤの上へ耐酸化性物質を被覆することによ
り、耐酸化性に優れたワイヤをえることができる。
With the CVI method, it is possible to easily form a multilayer coating, and individual carbon fibers (1) have excellent oxidation resistance by coating an oxidation-resistant material on top of the carbon fiber-reinforced carbon wire. You can get the wire you want.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a) 、 (b) 、 (c)は、本発明によ
る炭素繊維強化炭素ワイヤの断面の模式図、第2図は本
発明による炭素繊維強化炭素ワイヤの製造方法を示す模
式図、第3図は、C,VI法による表面からの距離と緻
密化の程度の関係を表すグラフである。 図において、(1)は炭素繊維、(2)は炭素、(3)
は耐酸化性皮膜、(4)は炭素繊維束、(5)はガス供
給装置、(6〉は反応炉、(7)は耐酸化性皮膜用ガス
供給装置、(8)はガスボンベ、(9)は生成装置、(
10)は流量調節装置である。
FIGS. 1(a), (b), and (c) are schematic diagrams of a cross section of a carbon fiber-reinforced carbon wire according to the present invention, and FIG. 2 is a schematic diagram showing a method for manufacturing a carbon fiber-reinforced carbon wire according to the present invention. FIG. 3 is a graph showing the relationship between the distance from the surface and the degree of densification according to the C and VI methods. In the figure, (1) is carbon fiber, (2) is carbon, (3)
is an oxidation-resistant film, (4) is a carbon fiber bundle, (5) is a gas supply device, (6> is a reactor, (7) is a gas supply device for oxidation-resistant film, (8) is a gas cylinder, (9) ) is the generator, (
10) is a flow rate adjustment device.

Claims (3)

【特許請求の範囲】[Claims] (1) 直径が3〜15μmの炭素繊維が、100〜2
0000本集まってなる炭素繊維の束へ、繊維体積分率
が35〜80%の範囲となるように、化学気相含浸によ
り炭素母材を析出させて成形した残留気孔が10%以下
であり、線径が0.1〜2mmであるワイヤであって、
炭素繊維強化炭素複合材料を製造するための中間素材と
して用いられることを特徴とする炭素繊維強化炭素ワイ
ヤ。
(1) Carbon fibers with a diameter of 3 to 15 μm are 100 to 2
A bundle of 0,000 carbon fibers is formed by precipitating the carbon matrix by chemical vapor phase impregnation so that the fiber volume fraction is in the range of 35 to 80%, and the residual pores are 10% or less, A wire having a wire diameter of 0.1 to 2 mm,
A carbon fiber-reinforced carbon wire characterized in that it is used as an intermediate material for manufacturing a carbon fiber-reinforced carbon composite material.
(2) 個々の炭素繊維表面へ耐酸化性皮膜をコーティ
ングした後、繊維間隙を気相含浸により炭素母材でうめ
たことを特徴とする特許請求の範囲第1項記載の炭素繊
維強化炭素ワイヤ。
(2) The carbon fiber-reinforced carbon wire according to claim 1, characterized in that after coating the surface of each carbon fiber with an oxidation-resistant film, the gaps between the fibers are filled with a carbon base material by vapor phase impregnation. .
(3) 最外層に耐酸化性皮膜をコーティングしたこと
を特徴とする特許請求の範囲第1項又は第2項記載の炭
素繊維強化炭素ワイヤ。
(3) The carbon fiber reinforced carbon wire according to claim 1 or 2, wherein the outermost layer is coated with an oxidation-resistant film.
JP2016963A 1990-01-26 1990-01-26 Carbon fiber reinforced carbon wire Expired - Lifetime JP2658470B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016963A JP2658470B2 (en) 1990-01-26 1990-01-26 Carbon fiber reinforced carbon wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016963A JP2658470B2 (en) 1990-01-26 1990-01-26 Carbon fiber reinforced carbon wire

Publications (2)

Publication Number Publication Date
JPH03221093A true JPH03221093A (en) 1991-09-30
JP2658470B2 JP2658470B2 (en) 1997-09-30

Family

ID=11930760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016963A Expired - Lifetime JP2658470B2 (en) 1990-01-26 1990-01-26 Carbon fiber reinforced carbon wire

Country Status (1)

Country Link
JP (1) JP2658470B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012512338A (en) * 2008-12-16 2012-05-31 ナムローゼ・フェンノートシャップ・ベーカート・ソシエテ・アノニム Cord with improved adhesion promoting coating

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012512338A (en) * 2008-12-16 2012-05-31 ナムローゼ・フェンノートシャップ・ベーカート・ソシエテ・アノニム Cord with improved adhesion promoting coating

Also Published As

Publication number Publication date
JP2658470B2 (en) 1997-09-30

Similar Documents

Publication Publication Date Title
US4178413A (en) Fiber reinforced carbon and graphite articles and a method of producing said articles
US8268208B2 (en) Method for reducing variability in carbon-carbon composites
KR101155739B1 (en) A three-dimensional fiber structure of refractory fibers, a method of making it, and an application to thermostructural composite materials
US9611180B2 (en) Method for manufacturing a part made of CMC
US3936535A (en) Method of producing fiber-reinforced composite members
EP3211262B1 (en) Differential needling of a carbon fiber preform
JPH0234788A (en) Fire-proof composite material and method for its manufacture
EP0127491A1 (en) Composite materials comprising a matrix of resin coke carbon reinforced with pyrolytic carbon coated refractory fibres, and method of making the same
JP3034084B2 (en) Oxidation resistant carbon fiber reinforced carbon composite material and method for producing the same
JPS627689A (en) Refractory composite substance and manufacture
KR102153918B1 (en) Method for preparing high density silicon carbide composite by uniform growth of sic nanowire using chemical vapor deposition and silicon carbide composite prepared by the same
US10323339B2 (en) Aircraft brake disc materials and methods
JPH03221093A (en) Carbon fiber reinforced carbon wire
KR101467665B1 (en) THE MANUFACTURING METHOD FOR C-SiC COMPOSITES
JPH0292886A (en) Production of carbon fiber-reinforced composite material having oxidation resistance
JP2669089B2 (en) Hybrid fiber reinforced carbon wire
JP2000086382A (en) C/c crucible for pulling single crystal
EP3401294A1 (en) Carbon-carbon composites including encapsulated isotropic carbon
JP7126872B2 (en) Method for forming moisture resistant coatings on silicon carbide fibers
JP2001048664A (en) Production of carbon fiber-reinforced carbon material
JP3548597B2 (en) Oxidation-resistant treatment method of carbon fiber reinforced carbon composite
JPH02111681A (en) Production of carbon-fiber reinforced composite material having oxidation resistance
JP2002145675A (en) Production process of carbon-fiber-reinforced carbon material
JPH0524212B2 (en)
JPH06305863A (en) Production of carbon fiber-reinforced carbon composite material coated with silicon carbide