JP3034084B2 - Oxidation resistant carbon fiber reinforced carbon composite material and method for producing the same - Google Patents

Oxidation resistant carbon fiber reinforced carbon composite material and method for producing the same

Info

Publication number
JP3034084B2
JP3034084B2 JP3201047A JP20104791A JP3034084B2 JP 3034084 B2 JP3034084 B2 JP 3034084B2 JP 3201047 A JP3201047 A JP 3201047A JP 20104791 A JP20104791 A JP 20104791A JP 3034084 B2 JP3034084 B2 JP 3034084B2
Authority
JP
Japan
Prior art keywords
composite material
fiber reinforced
carbon fiber
carbon composite
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3201047A
Other languages
Japanese (ja)
Other versions
JPH0543364A (en
Inventor
治郎 平本
和広 長谷川
庸夫 金城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP3201047A priority Critical patent/JP3034084B2/en
Publication of JPH0543364A publication Critical patent/JPH0543364A/en
Application granted granted Critical
Publication of JP3034084B2 publication Critical patent/JP3034084B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は宇宙往還機のノーズキャ
ップ、リーディングエッジなど宇宙航空材料などに使用
される耐酸化性炭素繊維強化炭素複合材料に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxidation-resistant carbon fiber reinforced carbon composite material used for aerospace materials such as a nose cap and a leading edge of a spacecraft.

【0002】[0002]

【従来の技術】炭素繊維強化炭素複合材料いわゆるC/
Cコンポジットは炭素繊維を補強材とし、炭素をマトリ
ックスとした複合材料であって、耐熱性、耐薬品性、摩
擦特性に優れ、かつ高強度で軽量なためロケットノズル
や航空機のブレーキディスク・パッドなどに使用されて
いる。しかしながら、C/Cコンポジットを含めて炭素
材料は一般に 500℃程度から酸化を受け、それ自身の持
つ優れた物理的・化学的性質が低下するため、高温大気
中での使用はごく短時間のものを除き不可能であった。
この現象を防止するために従来から炭素材料の耐酸化処
理方法について種々の検討がなされてきた。
2. Description of the Related Art Carbon fiber reinforced carbon composite materials, so-called C /
C composite is a composite material that uses carbon fiber as a reinforcing material and carbon as a matrix. It has excellent heat resistance, chemical resistance, friction characteristics, and high strength and light weight. Used in However, carbon materials, including C / C composites, are generally oxidized from around 500 ° C, and their excellent physical and chemical properties deteriorate. It was impossible except.
In order to prevent this phenomenon, various studies have been made on the oxidation-resistant treatment of carbon materials.

【0003】それらの方法の中でCVD法によるセラミ
ックスの被覆は最も一般に行われている方法の一つであ
り、この方法により緻密な皮膜を得ることができる。し
かしながら、この方法では基材となる炭素材料の温度を
1000℃前後まで加熱しなければならない場合が多く、基
材の冷却時に表面のセラミックス皮膜が剥離したり割れ
を起こすことが多かった。これは、基材と析出させるセ
ラミックス間の熱膨張率の差が大きいことが原因であ
る。炭素繊維強化炭素複合材料を基材として用いる場合
は、その熱膨張率が炭素繊維自体の熱膨張率に拘束され
自由に調節することができず、また、その熱膨張率に合
致した耐熱性セラミックス被覆材料もないため、CVD
法による優れた耐酸化皮膜を利用することができなかっ
た。
[0003] Among these methods, coating of ceramics by the CVD method is one of the most commonly performed methods, and a dense film can be obtained by this method. However, in this method, the temperature of the carbon material as the base material is reduced.
In many cases, heating to about 1000 ° C. was necessary, and the ceramic film on the surface often peeled or cracked when the substrate was cooled. This is because the difference in the coefficient of thermal expansion between the substrate and the ceramic to be deposited is large. When a carbon fiber reinforced carbon composite material is used as a base material, the coefficient of thermal expansion is restricted by the coefficient of thermal expansion of the carbon fiber itself and cannot be freely adjusted. Because there is no coating material, CVD
An excellent oxidation-resistant film obtained by the method could not be used.

【0004】特開昭61-26563号公報には、有機珪素高分
子化合物を溶融状態で炭素繊維強化炭素複合材料に強制
含浸した後、不活性雰囲気中で1200〜2000℃の温度で高
温焼成して含浸物を炭化珪素に転化する方法が開示され
ている。しかしながら、この方法では炭素繊維強化炭素
複合材料に溶融状態の有機珪素化合物を均一に含浸する
ことが難しく、ムラになりやすい。このような耐酸化皮
膜では、繰り返し高温で使用する場合には割れ、剥離が
起こりやすいという問題があった。
JP-A-61-26563 discloses that an organic silicon polymer compound is forcibly impregnated in a molten state into a carbon fiber reinforced carbon composite material and then fired at a high temperature of 1200 to 2000 ° C. in an inert atmosphere. A method of converting an impregnated material to silicon carbide by using the method is disclosed. However, in this method, it is difficult to uniformly impregnate the organic silicon compound in a molten state into the carbon fiber reinforced carbon composite material, and it tends to be uneven. Such an oxidation resistant film has a problem that cracking and peeling are likely to occur when repeatedly used at a high temperature.

【0005】さらに、特開昭61-27248号公報には炭素繊
維強化炭素複合材料に拡散法による炭化珪素被覆を行
い、その外表面にCVD法により窒化珪素皮膜を被覆す
ることが示されている。この方法によれば、炭素繊維強
化炭素複合材料自体の表面が炭化珪素化するため、CV
D皮膜との熱膨張率差が小さくなり、有効な耐酸化皮膜
の形成は可能であるが、得られた耐酸化性炭素繊維強化
炭素複合材料の強度が著しく低下するという問題があっ
た。
Furthermore, Japanese Patent Application Laid-Open No. 61-27248 discloses that a carbon fiber reinforced carbon composite material is coated with silicon carbide by a diffusion method, and the outer surface thereof is coated with a silicon nitride film by a CVD method. . According to this method, since the surface of the carbon fiber reinforced carbon composite material itself is converted into silicon carbide, the CV
Although the difference in the coefficient of thermal expansion from the D film is small and an effective oxidation-resistant film can be formed, there is a problem that the strength of the obtained oxidation-resistant carbon fiber reinforced carbon composite material is significantly reduced.

【0006】これは、拡散法による炭素繊維強化炭素複
合材料表層の炭化珪素化時、炭素繊維強化炭素複合材料
表面に多くの気孔が存在するため、Siを含む物質が炭素
繊維強化炭素複合材料の表層部にとどまらず、中心部ま
で拡散する。この結果、中心部の炭素繊維強化炭素複合
材料と反応することとなり、炭素繊維強化炭素複合材料
が高強度を示す主要因である、炭素繊維、炭素マトリッ
クスの組織、界面状態の大部分が炭化珪素化により変化
するためであることが判った。
[0006] This is because when the surface layer of the carbon fiber reinforced carbon composite material is siliconized by the diffusion method, many pores are present on the surface of the carbon fiber reinforced carbon composite material, so that the substance containing Si becomes the carbon fiber reinforced carbon composite material. It diffuses not only to the surface but also to the center. As a result, the carbon fiber reinforced carbon composite material reacts with the carbon fiber reinforced carbon composite material in the central portion, and most of the carbon fiber, carbon matrix structure, and interface state, which are the main factors indicating high strength of the carbon fiber reinforced carbon composite material, are silicon carbide. It was found that this was due to the change due to conversion.

【0007】[0007]

【発明が解決しようとする課題】本発明は従来法の欠点
である拡散反応処理時に発生する強度低下を防止するこ
とができる耐酸化性炭素繊維強化炭素複合材料およびそ
の製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an oxidation-resistant carbon fiber reinforced carbon composite material capable of preventing a reduction in strength occurring during a diffusion reaction treatment, which is a drawback of the conventional method, and a method for producing the same. Aim.

【0008】[0008]

【課題を解決するための手段】本発明は、基部が炭素繊
維強化炭素複合材料で、その表面の気孔が熱分解炭素で
充填され、表面からの厚さが10 700μmである表層部
Siを含有する物質の拡散、反応により炭化珪素化さ
れた層でることを特徴とする耐酸化性炭素繊維強化炭
素複合材料であり、また本発明は、前記炭化珪素化され
た被覆層の上に、CVD法によるセラミックスがコーテ
ィングされ、さらにその上にガラス状物質が被覆されて
なることを特徴とする請求項1記載の耐酸化性炭素繊維
強化炭素複合材料である。
Means for Solving the Problems The present invention, base portion in a carbon fiber-reinforced carbon composite material, the pores of the surface is filled with pyrolytic carbon, the thickness from the surface is the surface layer portion is 10 ~ 700 .mu.m, diffusion of materials containing Si, a oxidation resistant carbon fiber reinforced carbon composite material, characterized in Oh Rukoto silicon carbide of the layers by the reaction and the invention is of the silicon carbide reduction has been coated layer 2. The oxidation-resistant carbon fiber reinforced carbon composite material according to claim 1, wherein a ceramic material is coated thereon by a CVD method, and a glassy substance is further coated thereon.

【0009】そして、上記において、CVD法によるセ
ラミックスは、Si、Hf、Zrの炭化物あるいは窒化物の単
体または複合体が好ましく、その膜厚は15〜250 μmが
好ましい。またさらに、上記において、最表面に被覆さ
れるガラス状物質はSiO2、 Al2O3、ZrO2、ThO2、B2O3
単体または複合体が好ましい。
In the above, the ceramics formed by the CVD method is preferably a simple substance or a composite of carbides or nitrides of Si, Hf and Zr, and the thickness thereof is preferably 15 to 250 μm. Further, in the above, the glassy substance coated on the outermost surface is preferably a simple substance or a composite of SiO 2 , Al 2 O 3 , ZrO 2 , ThO 2 , and B 2 O 3 .

【0010】また本発明は、炭素繊維強化炭素複合材料
の空孔部分および表面にCVD法により熱分解炭素を蒸
着させ、しかる後に拡散法により炭素繊維強化炭素複合
材料の表層部を炭化珪素化することを特徴とする耐酸化
性炭素繊維強化炭素複合材料の製造方法であり、また本
発明は、前記炭化珪素化された被覆層の上に、CVD法
によりセラミックスを形成し、さらに該セラミックス層
の上部にガラス状物質を形成することを特徴とする耐酸
化性炭素繊維強化炭素複合材料の製造方法である。
Further, according to the present invention, pyrolytic carbon is vapor-deposited on a void portion and a surface of a carbon fiber reinforced carbon composite material by a CVD method, and thereafter, a surface layer portion of the carbon fiber reinforced carbon composite material is siliconized by a diffusion method. A method for producing an oxidation-resistant carbon fiber reinforced carbon composite material characterized by the fact that the present invention further comprises forming a ceramic on the siliconized coating layer by a CVD method, further comprising: A method for producing an oxidation-resistant carbon fiber reinforced carbon composite material, comprising forming a glassy substance on an upper part.

【0011】そして、上記において、CVD法による熱
分解炭素が炭素を含むガス中で反応温度 900〜1300℃、
ガスの全圧が 200Torr以下の条件により炭素繊維強化炭
素複合材料表層の空孔部分および表面に生成させること
が好ましい。またさらに、上記において、CVD法によ
るセラミックスをSi、Hf、Zrの内1種類以上および炭
素、窒素の内1種類以上を含むガス中で反応温度 900〜
1500℃の条件により生成させることが好ましい。
[0011] In the above, pyrolytic carbon produced by CVD is reacted in a gas containing carbon at a reaction temperature of 900 to 1300 ° C.
It is preferable that the gas be generated in the pore portion and on the surface of the carbon fiber reinforced carbon composite material surface layer under the condition that the total pressure of the gas is 200 Torr or less. Furthermore, in the above, the ceramics obtained by the CVD method are reacted in a gas containing at least one of Si, Hf, and Zr and at least one of carbon and nitrogen at a reaction temperature of 900-900.
It is preferable to generate under conditions of 1500 ° C.

【0012】[0012]

【作 用】以下に本発明ならびにその作用をより詳細に
説明する。本発明に用いられる炭素繊維強化炭素複合材
料を構成する炭素繊維としては、例えば、通常市販され
ているPAN系、ピッチ系の炭素繊維が使用できる。そ
の形態は、平織り、朱子織りなどの織布や、多次元織り
の織布、1次元配向材、フェルトなどを用いることがで
きる。
[Operation] Hereinafter, the present invention and its operation will be described in more detail. As the carbon fibers constituting the carbon fiber reinforced carbon composite material used in the present invention, for example, generally available PAN-based and pitch-based carbon fibers can be used. As the form, a woven fabric such as a plain weave or a satin weave, a multi-dimensional woven fabric, a one-dimensionally oriented material, a felt, or the like can be used.

【0013】次に炭素繊維強化炭素複合材料の具体的な
製造方法を示す。前記炭素繊維に、バインダーとしてフ
ェノール樹脂、フラン樹脂などの熱硬化性樹脂、タール
ピッチのような熱可塑性樹脂を塗布、含浸などの方法に
よってプリプレグ化し、必要に応じてプリプレグ積層
後、加熱加圧成形し成形体を得る。その後、常法にした
がって焼成し、さらに必要に応じて黒鉛化することによ
り炭素繊維強化炭素複合材料を得る。
Next, a specific method for producing a carbon fiber reinforced carbon composite material will be described. To the carbon fiber, a phenol resin as a binder, a thermosetting resin such as a furan resin, a thermoplastic resin such as a tar pitch, prepreg by a method such as impregnation, prepreg lamination as necessary, and heat and pressure molding To obtain a molded body. Then, it is baked according to a conventional method, and is further graphitized as needed to obtain a carbon fiber reinforced carbon composite material.

【0014】しかしながら、ここで得られる炭素繊維強
化炭素複合材料は、樹脂の残炭率が低いため表面に多く
の気孔を有した多孔体となる。そこで、その後、用途に
応じてレジンチャー法(前述の熱硬化性熱可塑性樹脂を
用いて樹脂含浸後焼成する方法)やCVD法によって緻
密化することにより、炭素繊維強化炭素複合材料の強
度、密度を高めることができるが、CVD法による熱分
解炭素の蒸着のみを用いた場合は、緻密化に必要な時間
が非常に長くなること、および炭素繊維強化炭素複合材
料の板厚が2〜3mm以上になると、中心部まで十分にガ
ス拡散が行われず、中心部の密度が上昇せず高強度の炭
素繊維強化炭素複合材料が得られず、緻密化の方法とし
て好ましくない。一方、レジンチャー法を用いた場合は
板厚の厚い材料においても十分にしかもCVDに比べて
短期間で大量の炭素繊維強化炭素複合材料を緻密化でき
る。しかしながら、レジンチャー法を用いた場合、残炭
率の低い樹脂を用いるため気孔を埋めきることができ
ず、緻密化後の炭素繊維強化炭素複合材料の強度、密度
は上昇しても、表面や内部に多くの気孔が存在する。し
たがって、このままの状態で後工程である拡散反応処理
を行った場合、表面の気孔からSiを含む物質が炭素繊維
強化炭素複合材料中心部まで至り、中心部の炭素繊維や
マトリックスを変質させてしまう。
However, the carbon fiber reinforced carbon composite material obtained here is a porous body having many pores on the surface due to a low residual carbon ratio of the resin. Then, the strength and density of the carbon fiber reinforced carbon composite material are increased by densification by the resin method (the method of impregnating the resin with the above-mentioned thermosetting thermoplastic resin and then firing) according to the application or the CVD method. When only the deposition of pyrolytic carbon by the CVD method is used, the time required for densification becomes extremely long, and the thickness of the carbon fiber reinforced carbon composite material is 2 to 3 mm or more. , Gas diffusion is not sufficiently performed up to the center, the density of the center does not increase, and a high-strength carbon fiber reinforced carbon composite material cannot be obtained, which is not preferable as a method of densification. On the other hand, when the resin method is used, a large amount of carbon fiber reinforced carbon composite material can be sufficiently densified even in a thick material and in a shorter time than CVD. However, when the resin method is used, pores cannot be filled because a resin having a low residual carbon ratio is used, and even if the strength and density of the carbon fiber reinforced carbon composite material after densification increase, the surface and There are many pores inside. Therefore, if a diffusion reaction treatment is performed in a subsequent step in this state, the substance containing Si reaches the center of the carbon fiber reinforced carbon composite material from the pores on the surface, and alters the carbon fiber and matrix in the center. .

【0015】ここで、本発明者は炭素繊維強化炭素複合
材料に存在する気孔、特に表層部の気孔を予め封止する
ことにより、Siの中心部までの拡散を効果的に抑止し、
拡散反応に伴う強度低下を最小限に抑制できることを見
出した。表層部の気孔を封止するための方法はCVD法
が好ましい。CVD法は反応種がガスであるため拡散可
能な気孔の大きさにはほとんど制限がなく、かつ緻密な
炭素が得られるためである。また、封止する必要がある
気孔は表面から 700〜800 μm程度であり、この程度の
深さであれば反応ガスが十分に拡散し、熱分解炭素の蒸
着も十分となる。
[0015] Here, the present inventor effectively suppresses the diffusion of Si to the center by pre-sealing the pores present in the carbon fiber reinforced carbon composite material, particularly the pores in the surface layer,
It has been found that a decrease in strength due to a diffusion reaction can be suppressed to a minimum. The method for sealing the pores in the surface portion is preferably a CVD method. This is because, in the CVD method, since the reactive species is a gas, the size of pores that can be diffused is hardly limited, and dense carbon can be obtained. Further, the pores that need to be sealed are about 700 to 800 μm from the surface, and if the pores have such a depth, the reaction gas is sufficiently diffused, and the vapor deposition of pyrolytic carbon is also sufficient.

【0016】気孔封止に熱分解炭素が好ましいのは基部
となる炭素繊維強化炭素複合材料と同じ炭素であるため
密着性に優れることおよび後工程の拡散反応法によって
熱分解炭素も基部の炭素繊維強化炭素複合材料と同様に
炭化珪素化するため炭化珪素転化層のアンカー効果が高
まり密着性が向上するためである。したがって、拡散反
応処理を行う炭素繊維強化炭素複合材料は、熱分解炭素
で気孔が充填されていることが必要である。
[0016] Pyrolytic carbon is preferably used for pore sealing because it is the same carbon as the carbon fiber reinforced carbon composite material used as the base, so that it has excellent adhesiveness. This is because silicon carbide is converted into silicon carbide in the same manner as the reinforced carbon composite material, so that the anchor effect of the silicon carbide conversion layer is enhanced and the adhesion is improved. Therefore, it is necessary that the carbon fiber reinforced carbon composite material to be subjected to the diffusion reaction treatment has pores filled with pyrolytic carbon.

【0017】CVD法により熱分解炭素を炭素繊維強化
炭素複合材料の表層部に蒸着させる方法は、炭素を含む
ガス中で反応温度 900〜1300℃、ガスの全圧が 200Torr
以下の条件で生成するのが好ましい。蒸着は通常の減圧
熱CVD装置で行うことができる。炭素を含むガスとし
ては CH4、C3H8、ベンゼン、CCl4等が使用でき、反応時
キャリアガスとして窒素、Ar、He、H2などが使用でき
る。反応温度は 900℃未満では析出速度が遅すぎ実用的
でない。一方、1300℃を超えると析出速度が速くなりす
ぎ主に炭素繊維強化炭素複合材料表面に熱分解炭素が生
成するため好ましくない。また、反応圧力が 200Torrを
超えると、炭素繊維強化炭素複合材料内部へのガス拡散
が悪くなり、やはり主に表面に熱分解炭素が生成するた
め好ましくない。
In the method of depositing pyrolytic carbon on the surface layer of a carbon fiber reinforced carbon composite material by the CVD method, the reaction temperature is 900 to 1300 ° C. and the total pressure of the gas is 200 Torr in a gas containing carbon.
It is preferable to produce under the following conditions. The vapor deposition can be performed by a normal reduced pressure thermal CVD apparatus. As the gas containing carbon, CH 4 , C 3 H 8 , benzene, CCl 4 and the like can be used, and nitrogen, Ar, He, H 2 and the like can be used as a carrier gas during the reaction. If the reaction temperature is lower than 900 ° C., the deposition rate is too slow to be practical. On the other hand, if the temperature exceeds 1300 ° C., the deposition rate becomes too high, and pyrolytic carbon is generated mainly on the surface of the carbon fiber reinforced carbon composite material, which is not preferable. On the other hand, when the reaction pressure exceeds 200 Torr, gas diffusion into the carbon fiber reinforced carbon composite material becomes worse, and pyrolysis carbon is mainly generated on the surface, which is not preferable.

【0018】上述の方法によって得られた表層部の気孔
に熱分解炭素を充填した炭素繊維強化炭素複合材料は拡
散反応法によりその表層部を炭化珪素に改質する必要が
ある。この層自体でも少なくとも1300℃の耐熱耐酸化性
を有するが、より優れた耐熱性、耐酸化性が必要とされ
る場合に被覆するセラミックスなどと炭素繊維強化炭素
複合材料の間に生ずる熱応力緩和層としての役割を果た
す。この熱応力緩和層すなわち改質層は、炭素繊維強化
炭素複合材料自体を炭化珪素化するため、基部の炭素繊
維強化炭素複合材料と改質層の密着性がよく、さらに前
述の熱分解炭素がアンカー効果をもたらして熱衝撃によ
っても容易に剥離しない。
In the carbon fiber reinforced carbon composite material obtained by filling the pores of the surface layer with pyrolytic carbon obtained by the above method, it is necessary to modify the surface layer to silicon carbide by a diffusion reaction method. Even this layer itself has heat resistance and oxidation resistance of at least 1300 ° C, but when higher heat resistance and oxidation resistance are required, thermal stress relaxation generated between the coating ceramics and carbon fiber reinforced carbon composite material Serves as a layer. Since the carbon fiber reinforced carbon composite material itself is made into silicon carbide, the thermal stress relaxation layer, that is, the modified layer, has good adhesion between the base carbon fiber reinforced carbon composite material and the modified layer. It provides an anchoring effect and does not easily peel off due to thermal shock.

【0019】したがって、改質層はSiを含む物質が拡散
し、炭素繊維強化炭素複合材料自体と反応して生成され
る炭化珪素である必要がある。改質層に炭化珪素が適し
ているのは、炭化物であること、耐熱性、耐酸化性に優
れ、容易に安価に生成できるためである。ここでSiを含
む物質とは、金属Si、 SiO、ポリシランなどが挙げられ
る。
Therefore, the modified layer is required to be silicon carbide generated by the diffusion of the substance containing Si and the reaction with the carbon fiber reinforced carbon composite material itself. Silicon carbide is suitable for the modified layer because it is a carbide, has excellent heat resistance and oxidation resistance, and can be easily and inexpensively produced. Here, the substance containing Si includes metal Si, SiO, polysilane, and the like.

【0020】この熱応力緩和層を得るための方法として
は、たとえば金属Siを含むセラミックス粉末中に炭素繊
維強化炭素複合材料を埋没させ、1500〜1900℃の温度で
反応させる方法、 SiOを発生する原料粉末例えばコーク
スとSiO2の等モル混合物上部に炭素繊維強化炭素複合材
料を置き反応を行わせる方法などが挙げられるが必ずし
もこの方法に限定されない。
As a method for obtaining the thermal stress relaxation layer, for example, a method in which a carbon fiber reinforced carbon composite material is buried in a ceramic powder containing metallic Si and reacted at a temperature of 1500 to 1900 ° C. Examples include a method in which a carbon fiber reinforced carbon composite material is placed on a raw material powder, for example, an equimolar mixture of coke and SiO 2 to cause a reaction, but the method is not necessarily limited to this method.

【0021】拡散法によって改質される炭素繊維強化炭
素複合材料表層部の厚さは10〜700μmに限定される。1
0μm以下では十分な耐酸化性を得られないこと、およ
び炭素繊維強化炭素複合材料と、より優れた耐酸化性に
必要なセラミックスなどとの熱応力緩和層としての役割
が果たせず、密着性が悪くなるため好ましくない。逆に
700μmを超えた場合、該改質層の劣化に伴う割れが発
生しやすくなり、熱サイクル負荷時に皮膜の破壊が生じ
易くなるため好ましくない。
The thickness of the surface portion of the carbon fiber reinforced carbon composite material modified by the diffusion method is limited to 10 to 700 μm. 1
If the thickness is 0 μm or less, sufficient oxidation resistance cannot be obtained, and the carbon fiber reinforced carbon composite material does not function as a thermal stress relieving layer between ceramics and the like required for better oxidation resistance. It is not preferable because it becomes worse. vice versa
When the thickness exceeds 700 μm, cracks accompanying the deterioration of the modified layer are liable to occur, and the coating is liable to be broken when subjected to a heat cycle, which is not preferable.

【0022】以上により得られた改質層を有した耐酸化
性炭素繊維強化炭素複合材料は少なくとも1300℃の耐酸
化性を示し、さらにその強度は基部となる炭素繊維強化
炭素複合材料とほぼ同等のものとなる。ここで、さらに
前述耐酸化性炭素繊維強化炭素複合材料に、より優れた
耐酸化性を付与する場合は、拡散法により得られた炭化
珪素改質層の上にCVD法によりセラミックスを蒸着す
る必要がある。すなわち、拡散反応法により得られる炭
化珪素改質層はCVD法により得られるセラミックスと
比較すると多孔質であるため、十分な耐酸化性を示さな
い。
The oxidation-resistant carbon fiber-reinforced carbon composite material having the modified layer obtained as described above exhibits oxidation resistance of at least 1300 ° C., and its strength is substantially equal to that of the base carbon fiber-reinforced carbon composite material. It will be. Here, in order to impart more excellent oxidation resistance to the oxidation-resistant carbon fiber reinforced carbon composite material, it is necessary to deposit ceramics by a CVD method on the silicon carbide modified layer obtained by the diffusion method. There is. That is, since the silicon carbide modified layer obtained by the diffusion reaction method is more porous than the ceramics obtained by the CVD method, it does not exhibit sufficient oxidation resistance.

【0023】CVD法によるセラミックスの被覆は一般
的に行われており、緻密でかつガス不浸透性の皮膜が得
られる。このため、酸素拡散バリアとして炭素繊維強化
炭素複合材料を保護し、耐酸化性を飛躍的に上昇させる
ことができる。被覆されるセラミックスはSi、Hf、Zrの
炭化物あるいは窒化物の単体または複合体が好ましい。
これは、これらのセラミックスは少なくとも1300℃以上
の耐熱、耐酸化性を示すためである。ここで、例えば、
セラミックス原料を塗布後焼結させる方法などによりセ
ラミックス皮膜を得ることができるが、CVD法により
得られる皮膜と比較して耐酸化性に劣る。化学蒸着法に
よるセラミックスは、Si、Hf、Zrの内1種類以上および
C、Nの内1種類以上を含むガス中で反応温度 900〜15
00℃の条件により生成されるのが好ましい。使用できる
原料としては、Si、Hf、Zrのハロゲン化物、炭化水素ガ
ス、 NH3などが使用できる。蒸着は通常の減圧熱CVD
装置で行うことができる。反応温度は 900℃未満では析
出速度が遅すぎ実用的でない。一方、1500℃を超えると
緻密な膜が得られない。また、生成されるセラミックス
の膜厚は15〜250 μmが好ましい。15μm未満では酸素
拡散バリアとしての機能を十分に果たさず耐酸化性が劣
り、 250μmを超えると、膜厚が厚すぎるために熱応力
が大きくなり、皮膜の剥離、割れが発生し易くなるため
好ましくない。
The coating of ceramics by the CVD method is generally performed, and a dense and gas-impermeable coating is obtained. For this reason, the carbon fiber reinforced carbon composite material can be protected as an oxygen diffusion barrier, and the oxidation resistance can be dramatically increased. The ceramic to be coated is preferably a simple substance or a composite of carbides or nitrides of Si, Hf and Zr.
This is because these ceramics exhibit heat resistance and oxidation resistance of at least 1300 ° C. or higher. Where, for example,
A ceramic film can be obtained by, for example, a method of sintering a ceramic raw material after coating, but is inferior in oxidation resistance as compared with a film obtained by a CVD method. Ceramics produced by chemical vapor deposition have a reaction temperature of 900 to 15 in a gas containing at least one of Si, Hf, and Zr and at least one of C and N.
It is preferably produced under the condition of 00 ° C. Examples of usable raw materials include halides of Si, Hf, and Zr, hydrocarbon gas, and NH 3 . Evaporation is normal pressure thermal CVD
It can be done with the device. If the reaction temperature is lower than 900 ° C., the deposition rate is too slow to be practical. On the other hand, if it exceeds 1500 ° C., a dense film cannot be obtained. Further, the thickness of the formed ceramic is preferably 15 to 250 μm. If it is less than 15 μm, it does not sufficiently function as an oxygen diffusion barrier and has poor oxidation resistance, and if it exceeds 250 μm, the film thickness is too large, so that thermal stress increases, and peeling and cracking of the film are likely to occur. Absent.

【0024】さらに、CVD法によるセラミックスの上
にガラス状物質を被覆することが好ましい。CVDセラ
ミックスは前述の熱応力緩和層によって炭素繊維強化炭
素複合材料との密着性は向上するが熱応力を完全には緩
和できないため、急激な熱衝撃を加えても剥離は起こら
ないものの、皮膜にマイクロクラックが発生し易い。ま
た、CVDセラミックス皮膜自体が持つ欠陥としてピン
ホールが発生することもある。このため、前述した欠陥
から酸素が侵入し、耐酸化性の性能が落ちてしまう。こ
こで、ガラス状物質をセラミックス皮膜に発生した欠陥
及び表面に配することにより前述の欠陥から酸素が侵入
することを防ぐことができる。上記ガラス状物質は、Si
O2、 Al2O3、ZrO2、ThO2、B2O3の単体または複合体が好
ましい。これらの物質は、酸素の透過性が低いか、ある
いは耐エロージョン、コロージョン特性が優れるためで
ある。これらの物質を得る方法としては、Si、Al、Zr、
Thを含有する有機物を塗布後熱分解する方法によって得
られるが、必ずしもこの方法に限定されるものではな
い。
Further, it is preferable to coat a glassy substance on the ceramics by the CVD method. CVD ceramics improves adhesion to carbon fiber reinforced carbon composite material by the above-mentioned thermal stress relaxation layer, but does not completely reduce thermal stress. Therefore, even if a sudden thermal shock is applied, peeling does not occur. Micro cracks are likely to occur. Further, a pinhole may be generated as a defect of the CVD ceramic film itself. For this reason, oxygen penetrates from the above-mentioned defect, and the performance of oxidation resistance falls. Here, by arranging the glassy substance on the defect and the surface generated in the ceramic film, it is possible to prevent oxygen from entering from the above-mentioned defect. The glassy substance is Si
A simple substance or a composite substance of O 2 , Al 2 O 3 , ZrO 2 , ThO 2 , and B 2 O 3 is preferable. This is because these substances have low oxygen permeability or excellent erosion resistance and corrosion properties. Methods for obtaining these materials include Si, Al, Zr,
It can be obtained by a method of thermally decomposing an organic substance containing Th after coating, but is not necessarily limited to this method.

【0025】以上により得られた耐酸化性炭素繊維強化
炭素複合材料は、耐酸化性に優れなおかつ耐酸化被覆に
伴う強度低下も最小限に抑えることができる。なお、本
発明による耐酸化性炭素繊維強化炭素複合材料の模式図
(断面図)を図1に示す。
The oxidation-resistant carbon fiber reinforced carbon composite material obtained as described above has excellent oxidation resistance and can minimize the decrease in strength due to oxidation-resistant coating. FIG. 1 is a schematic view (cross-sectional view) of the oxidation-resistant carbon fiber reinforced carbon composite material according to the present invention.

【0026】[0026]

【実施例】【Example】

実施例1 基部として用いる炭素繊維強化炭素複合材料は以下に示
す方法によって作成した。熱硬化性を示すフェノールホ
ルムアルデヒド樹脂〔郡栄化学(株)製、商品名PL−
2211)が30重量%になるようにメタノールで溶解希釈し
た溶液に、東レ(株)製炭素繊維クロス(高弾性炭素繊
維使用)を含浸した。樹脂目付け量は83g/m2であっ
た。その後オーブン中で80℃、30分間乾燥してメタノー
ルを揮発させ、樹脂含浸炭素繊維クロスを得た。このク
ロスを12枚積層しオートクレーブにより3kg/cm2 の圧
力下、 150℃で60分間加熱加圧成形し、炭素繊維強化プ
ラスチックとした。つぎに、該炭素繊維強化プラスチッ
クをアルゴンガス流通下20℃/Hrの昇温速度で2000℃ま
で焼成し、 300× 300×2mmtの炭素繊維強化炭素複合
材料を得た。このようにして得られた炭素繊維強化炭素
複合材料はさらにピッチの含浸−焼成という緻密化処理
を4回繰り返して行い、曲げ強度35kg/mm2 、密度1.59
g/cm3 の炭素繊維強化炭素複合材料とした。
Example 1 A carbon fiber reinforced carbon composite material used as a base was prepared by the following method. Phenol formaldehyde resin exhibiting thermosetting properties (trade name PL-, manufactured by Gunei Chemical Co., Ltd.)
2211) was dissolved and diluted with methanol so as to be 30% by weight, and a carbon fiber cloth manufactured by Toray Industries Inc. (using high elastic carbon fiber) was impregnated. The resin basis weight was 83 g / m 2 . Thereafter, drying was performed in an oven at 80 ° C. for 30 minutes to evaporate the methanol, thereby obtaining a resin-impregnated carbon fiber cloth. Twelve of these cloths were laminated and molded by heating and pressing at 150 ° C. for 60 minutes under a pressure of 3 kg / cm 2 in an autoclave to obtain a carbon fiber reinforced plastic. Next, the carbon fiber reinforced plastic was baked at a heating rate of 20 ° C./Hr up to 2000 ° C. under a flow of argon gas to obtain a carbon fiber reinforced carbon composite material of 300 × 300 × 2 mmt. The carbon fiber reinforced carbon composite material thus obtained was further subjected to a densification treatment of pitch impregnation and firing four times to obtain a bending strength of 35 kg / mm 2 and a density of 1.59.
g / cm 3 of carbon fiber reinforced carbon composite material.

【0027】以上の方法により得られた炭素繊維強化炭
素複合材料を50×50mmに切断後、熱分解炭素を以下の条
件で炭素繊維強化炭素複合材料に生成させた。反応ガス
としてC3H8、キャリアガスとしてArを用い、両者の体積
比を1:5、ガス総流量2l/min 、反応温度1000℃、
反応圧力 100Torrの反応条件で約24時間反応させた。こ
の後、珪素〔粒径10μm以下、純度99.9%、高純度化学
(株)製〕25重量%、炭化珪素〔平均粒径 1.0μm、純
度99.8%、昭和電工(株)製〕75重量%をボールミル中
で6時間混合した混合物中に炭素繊維強化炭素複合材料
を埋没させるように黒鉛ルツボの中に入れて、アルゴン
ガス10l/min 流通下1600℃で 200分反応させ、炭化珪
素改質層を得た。炭化珪素改質層の厚さは電子顕微鏡写
真及びEPMA分析によって求めた。
After the carbon fiber reinforced carbon composite material obtained by the above method was cut into 50 × 50 mm, pyrolytic carbon was formed in the carbon fiber reinforced carbon composite material under the following conditions. Using C 3 H 8 as a reaction gas and Ar as a carrier gas, the volume ratio of both is 1: 5, the total gas flow rate is 2 l / min, the reaction temperature is 1000 ° C.,
The reaction was performed under a reaction pressure of 100 Torr for about 24 hours. Thereafter, 25% by weight of silicon (particle size: 10 μm or less, purity: 99.9%, manufactured by Kojundo Chemical Co., Ltd.) and 75% by weight of silicon carbide (average particle size: 1.0 μm, purity: 99.8%, manufactured by Showa Denko Co., Ltd.) The carbon fiber reinforced carbon composite material is placed in a graphite crucible so as to be buried in a mixture mixed in a ball mill for 6 hours, and reacted at 1600 ° C. for 200 minutes under a flow of argon gas of 10 l / min to form a silicon carbide modified layer. Obtained. The thickness of the modified silicon carbide layer was determined by an electron micrograph and EPMA analysis.

【0028】得られた耐酸化性炭素繊維強化炭素複合材
料を50×10mmに切り出し、l/d=20(l:支点間距
離、d:試験片厚さ)、クロスヘッドスピード2mm/mi
n の条件で3点曲げ試験を行った。炭化珪素改質層の厚
さおよび3点曲げ試験結果を表1に示す。 比較例1 実施例1と同様の方法で得られた炭素繊維強化炭素複合
材料に、熱分解炭素の蒸着をせずに、実施例1と同様の
方法の拡散反応を施した耐酸化性炭素繊維強化炭素複合
材料を得た。得られた耐酸化性炭素繊維強化炭素複合材
料は実施例1と同様に3点曲げ試験を行った。
The obtained oxidation-resistant carbon fiber reinforced carbon composite material was cut into 50 × 10 mm, 1 / d = 20 (1: distance between supporting points, d: thickness of test piece), crosshead speed 2 mm / mi.
A three-point bending test was performed under the conditions of n. Table 1 shows the thickness of the modified silicon carbide layer and the results of the three-point bending test. Comparative Example 1 Oxidation-resistant carbon fiber obtained by subjecting a carbon fiber-reinforced carbon composite material obtained by the same method as in Example 1 to a diffusion reaction in the same manner as in Example 1 without depositing pyrolytic carbon. A reinforced carbon composite was obtained. The obtained oxidation-resistant carbon fiber reinforced carbon composite material was subjected to a three-point bending test in the same manner as in Example 1.

【0029】炭化珪素改質層の厚さおよび3点曲げ試験
結果を表1に示す。 比較例2 実施例1において、熱分解炭素の被覆条件の内反応温度
を1400℃とする以外は実施例1と全く同じ方法によって
耐酸化性炭素繊維強化炭素複合材料を得た。炭化珪素改
質層の厚さおよび3点曲げ試験結果を表1に示す。
Table 1 shows the thickness of the modified silicon carbide layer and the results of the three-point bending test. Comparative Example 2 An oxidation-resistant carbon fiber reinforced carbon composite material was obtained in exactly the same manner as in Example 1, except that the reaction temperature in the coating conditions of the pyrolytic carbon was changed to 1400 ° C. Table 1 shows the thickness of the modified silicon carbide layer and the results of the three-point bending test.

【0030】比較例3 実施例1において、熱分解炭素の被覆条件の内反応圧力
を 300Torrとする以外は実施例1と全く同じ方法によっ
て耐酸化性炭素繊維強化炭素複合材料を得た。炭化珪素
改質層の厚さおよび3点曲げ試験結果を表1に示す。 実施例2 実施例1で得られたその表面の気孔が熱分解炭素で充填
された耐酸化性炭素繊維強化炭素複合材料に、四塩化珪
素:メタン:水素=1:1:5の流量比で総流量3l/
min 、反応温度1300℃、反応圧力 100Torrの条件で反応
させ、緻密なCVD法による炭化珪素膜を得た。膜厚は
120μmであった。
Comparative Example 3 An oxidation-resistant carbon fiber reinforced carbon composite material was obtained in the same manner as in Example 1 except that the reaction pressure in the coating conditions of the pyrolytic carbon was changed to 300 Torr. Table 1 shows the thickness of the modified silicon carbide layer and the results of the three-point bending test. Example 2 The oxidation resistant carbon fiber reinforced carbon composite material whose surface pores obtained in Example 1 were filled with pyrolytic carbon was mixed with silicon tetrachloride: methane: hydrogen at a flow ratio of 1: 1: 5. Total flow 3l /
The reaction was carried out under the conditions of min, a reaction temperature of 1300 ° C., and a reaction pressure of 100 Torr to obtain a dense silicon carbide film by a CVD method. The film thickness is
It was 120 μm.

【0031】この後、テトラエチルオルソシリケート中
に耐酸化性炭素繊維強化炭素複合材料を入れ、取り出し
後オーブンで 300℃(空気中)で乾燥させる工程を6回
繰り返し、CVDによる炭化珪素皮膜上にSiO2を被覆し
た。得られた耐酸化性炭素繊維強化炭素複合材料は実施
例1と同様に3点曲げ試験を行った。また、耐酸化性試
験として空気中マッハ2のArプラズマを30分照射し、そ
のときの重量減少を調べた。その結果を表2に示す。
Thereafter, a process of putting the oxidation-resistant carbon fiber reinforced carbon composite material into tetraethyl orthosilicate, taking out the material, and drying it in an oven at 300 ° C. (in air) is repeated six times, and the SiO 2 film is formed on the silicon carbide film by CVD. 2 was coated. The obtained oxidation-resistant carbon fiber reinforced carbon composite material was subjected to a three-point bending test in the same manner as in Example 1. Further, as an oxidation resistance test, Ar plasma of Mach 2 in air was irradiated for 30 minutes, and the weight loss at that time was examined. Table 2 shows the results.

【0032】実施例3 実施例1で得られたその表面の気孔が熱分解炭素で充填
された耐酸化性炭素繊維強化炭素複合材料に、四塩化ハ
フニウム:メタン:水素=1:1:7の流量比で総流量
2l/min 、反応温度1200℃、反応圧力 100Torrの条件
で反応させ、緻密なCVD法による炭化ハフニウム膜を
得た。膜厚は 100μmであった。
Example 3 The oxidation-resistant carbon fiber reinforced carbon composite material whose surface pores obtained in Example 1 were filled with pyrolytic carbon was mixed with hafnium tetrachloride: methane: hydrogen = 1: 1: 7. The reaction was carried out under the conditions of a total flow rate of 2 l / min, a reaction temperature of 1200 ° C. and a reaction pressure of 100 Torr to obtain a dense hafnium carbide film by a dense CVD method. The film thickness was 100 μm.

【0033】この後、テトラエチルオルソシリケート中
に耐酸化性炭素繊維強化炭素複合材料を入れ、取り出し
後オーブンで 300℃(空気中)で乾燥させる工程を6回
繰り返し、CVDによる炭化珪素皮膜上にSiO2を被覆し
た。得られた耐酸化性炭素繊維強化炭素複合材料は実施
例1と同様に3点曲げ試験を行った。また、耐酸化性試
験として空気中マッハ2のArプラズマを30分照射し、そ
のときの重量減少を調べた。その結果を表2に示す。
Thereafter, a process of putting the oxidation-resistant carbon fiber reinforced carbon composite material in tetraethyl orthosilicate, taking out the material, and drying it in an oven at 300 ° C. (in air) is repeated six times, and the SiO 2 film is formed on the silicon carbide film by CVD. 2 was coated. The obtained oxidation-resistant carbon fiber reinforced carbon composite material was subjected to a three-point bending test in the same manner as in Example 1. Further, as an oxidation resistance test, Ar plasma of Mach 2 in air was irradiated for 30 minutes, and the weight loss at that time was examined. Table 2 shows the results.

【0034】実施例4 実施例1で得られたその表面の気孔が熱分解炭素で充填
された耐酸化性炭素繊維強化炭素複合材料に、四塩化ジ
ルコニウム:アンモニア:水素=1:1:6の流量比で
総流量3l/min 、反応温度1400℃、反応圧力 100Torr
の条件で反応させ、緻密なCVD法による窒化ジルコニ
ウム膜を得た。膜厚は 200μmであった。
Example 4 The oxidation resistant carbon fiber reinforced carbon composite material whose surface pores obtained in Example 1 were filled with pyrolytic carbon was mixed with zirconium tetrachloride: ammonia: hydrogen = 1: 1: 6. Total flow rate 3l / min, reaction temperature 1400 ℃, reaction pressure 100Torr in flow ratio
To obtain a zirconium nitride film by a dense CVD method. The thickness was 200 μm.

【0035】この後、モノアルミフォスフェート水溶液
(30wt%溶液)中に耐酸化性炭素繊維強化炭素複合材料
を入れ、取り出し後オーブンで 300℃(空気中)で乾燥
させる工程を5回繰り返した後、1000℃に昇温しCVD
による炭化珪素−窒化珪素複合皮膜上に Al2O3を被覆し
た。得られた耐酸化性炭素繊維強化炭素複合材料は実施
例1と同様に3点曲げ試験を行った。また、耐酸化性試
験として空気中マッハ2のArプラズマを30分照射し、そ
のときの重量減少を調べた。その結果を表2に示す。
After that, a step of putting the oxidation-resistant carbon fiber reinforced carbon composite material in a monoaluminum phosphate aqueous solution (30 wt% solution), taking out and drying at 300 ° C. (in air) in an oven is repeated five times. Temperature rise to 1000 ℃, CVD
Al 2 O 3 was coated on the silicon carbide-silicon nitride composite coating by the method described above. The obtained oxidation-resistant carbon fiber reinforced carbon composite material was subjected to a three-point bending test in the same manner as in Example 1. Further, as an oxidation resistance test, Ar plasma of Mach 2 in air was irradiated for 30 minutes, and the weight loss at that time was examined. Table 2 shows the results.

【0036】実施例5 実施例1で得られたその表面の気孔が熱分解炭素で充填
された耐酸化性炭素繊維強化炭素複合材料に、四塩化珪
素:メタン:アンモニア:水素=2:1:1:6の流量
比で総流量3l/min 、反応温度1300℃、反応圧力50To
rrの条件で反応させ、緻密なCVD法による窒化珪素−
炭化珪素複合膜を得た。膜厚は 110μmであった。
Example 5 The oxidation resistant carbon fiber reinforced carbon composite material whose surface pores obtained in Example 1 were filled with pyrolytic carbon was mixed with silicon tetrachloride: methane: ammonia: hydrogen = 2: 1: Total flow rate 3 l / min at a flow ratio of 1: 6, reaction temperature 1300 ° C, reaction pressure 50To
rr, and silicon nitride by a dense CVD method.
A silicon carbide composite film was obtained. The thickness was 110 μm.

【0037】この後、モノアルミフォスフェート水溶液
(30wt%溶液)中に耐酸化性炭素繊維強化炭素複合材料
を入れ、取り出し後オーブンで 300℃(空気中)で乾燥
させる工程を5回繰り返した後、1000℃に昇温しCVD
による炭化珪素−窒化珪素複合皮膜上に Al2O3を被覆し
た。得られた耐酸化性炭素繊維強化炭素複合材料は実施
例1と同様に3点曲げ試験を行った。また、耐酸化性試
験として空気中マッハ2のArプラズマを30分照射し、そ
のときの重量減少を調べた。その結果を表2に示す。
After that, the step of putting the oxidation-resistant carbon fiber reinforced carbon composite material in a monoaluminum phosphate aqueous solution (30 wt% solution), taking out and drying it in an oven at 300 ° C. (in air) was repeated 5 times. Temperature rise to 1000 ℃, CVD
Al 2 O 3 was coated on the silicon carbide-silicon nitride composite coating by the method described above. The obtained oxidation-resistant carbon fiber reinforced carbon composite material was subjected to a three-point bending test in the same manner as in Example 1. Further, as an oxidation resistance test, Ar plasma of Mach 2 in air was irradiated for 30 minutes, and the weight loss at that time was examined. Table 2 shows the results.

【0038】比較例4 実施例2と同様の方法でCVD法による炭化珪素皮膜を
有する耐酸化性炭素繊維強化炭素複合材料を得た。この
あと、ガラス状物質の被覆は行わなかった。得られた耐
酸化性炭素繊維強化炭素複合材料は実施例1と同様に3
点曲げ試験を行った。また、耐酸化性試験として空気中
マッハ2のArプラズマを30分照射し、そのときの重量減
少を調べた。その結果を表2に示す。
Comparative Example 4 An oxidation-resistant carbon fiber reinforced carbon composite material having a silicon carbide film by a CVD method was obtained in the same manner as in Example 2. Thereafter, no coating of the glassy material was performed. The obtained oxidation-resistant carbon fiber reinforced carbon composite material was 3
A point bending test was performed. Further, as an oxidation resistance test, Ar plasma of Mach 2 in air was irradiated for 30 minutes, and the weight loss at that time was examined. Table 2 shows the results.

【0039】比較例5 実施例2において、CVD法による炭化珪素皮膜の膜厚
が 300μmとする以外は実施例2と全く同じ方法で耐酸
化性炭素繊維強化炭素複合材料を得た。得られた耐酸化
性炭素繊維強化炭素複合材料は実施例1と同様に3点曲
げ試験を行った。また、耐酸化性試験として空気中マッ
ハ2のArプラズマを30分照射し、そのときの重量減少を
調べた。その結果を表2に示す。
Comparative Example 5 An oxidation-resistant carbon fiber reinforced carbon composite material was obtained in exactly the same manner as in Example 2, except that the thickness of the silicon carbide film formed by the CVD method was 300 μm. The obtained oxidation-resistant carbon fiber reinforced carbon composite material was subjected to a three-point bending test in the same manner as in Example 1. Further, as an oxidation resistance test, Ar plasma of Mach 2 in air was irradiated for 30 minutes, and the weight loss at that time was examined. Table 2 shows the results.

【0040】比較例6 実施例2において、CVD法による炭化珪素−窒化珪素
複合膜の膜厚が10μmとする以外は実施例5と全く同じ
方法で耐酸化性炭素繊維強化炭素複合材料を得た。得ら
れた耐酸化性炭素繊維強化炭素複合材料は実施例1と同
様に3点曲げ試験を行った。また、耐酸化性試験として
空気中マッハ2のArプラズマを30分照射し、そのときの
重量減少を調べた。その結果を表2に示す。
Comparative Example 6 An oxidation-resistant carbon fiber reinforced carbon composite material was obtained in exactly the same manner as in Example 5, except that the thickness of the silicon carbide-silicon nitride composite film by CVD was changed to 10 μm. . The obtained oxidation-resistant carbon fiber reinforced carbon composite material was subjected to a three-point bending test in the same manner as in Example 1. Further, as an oxidation resistance test, Ar plasma of Mach 2 in air was irradiated for 30 minutes, and the weight loss at that time was examined. Table 2 shows the results.

【0041】比較例7 実施例2において、CVD法により炭化珪素を得る条件
の内反応温度を1600℃とする以外は実施例2と全く同じ
方法によって耐酸化性炭素繊維強化炭素複合材料を得
た。得られた耐酸化性炭素繊維強化炭素複合材料は実施
例1と同様に3点曲げ試験を行った。また、耐酸化性試
験として空気中マッハ2のArプラズマを30分照射し、そ
のときの重量減少を調べた。その結果を表2に示す。
Comparative Example 7 An oxidation-resistant carbon fiber reinforced carbon composite material was obtained in exactly the same manner as in Example 2 except that the reaction temperature was 1600 ° C. among the conditions for obtaining silicon carbide by the CVD method. . The obtained oxidation-resistant carbon fiber reinforced carbon composite material was subjected to a three-point bending test in the same manner as in Example 1. Further, as an oxidation resistance test, Ar plasma of Mach 2 in air was irradiated for 30 minutes, and the weight loss at that time was examined. Table 2 shows the results.

【0042】[0042]

【表1】 [Table 1]

【0043】[0043]

【表2】 [Table 2]

【0044】[0044]

【発明の効果】炭素繊維強化炭素複合材料はその優れた
特性を生かして、航空・宇宙分野や、原子力産業などで
幅広く利用されている。しかし、炭素繊維強化炭素複合
材料に耐酸化性が必要とされる場合には、力学的強度の
低下が激しくその改善が期待されていた。
The carbon fiber reinforced carbon composite material is widely used in the aviation and space fields, the nuclear power industry, and the like, taking advantage of its excellent properties. However, when oxidation resistance is required for the carbon fiber reinforced carbon composite material, the mechanical strength is drastically reduced and improvement thereof has been expected.

【0045】本発明により、耐酸化被覆形成時の力学的
強度の低下が抑止でき、従来の方法では得ることのでき
なかった、高純度の耐酸化性炭素繊維強化炭素複合材料
を得ることができるようになった。
According to the present invention, a decrease in the mechanical strength during the formation of the oxidation-resistant coating can be suppressed, and a high-purity oxidation-resistant carbon fiber-reinforced carbon composite material that could not be obtained by the conventional method can be obtained. It became so.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による耐酸化性炭素繊維強化炭素複合材
料の模式図(断面図)である。
FIG. 1 is a schematic view (cross-sectional view) of an oxidation-resistant carbon fiber reinforced carbon composite material according to the present invention.

【符号の説明】[Explanation of symbols]

1 炭素繊維強化炭素複合材料(基部) 2 熱分解炭素 3 炭化珪素化した改質層 4 CVD法によるセラミックス皮膜 5 ガラス状物質 DESCRIPTION OF SYMBOLS 1 Carbon fiber reinforced carbon composite material (base) 2 Pyrolytic carbon 3 Modified layer made into silicon carbide 4 Ceramics film by CVD method 5 Glassy substance

フロントページの続き (56)参考文献 特開 平2−111681(JP,A) 特開 平1−249659(JP,A) 特開 昭58−104078(JP,A) 特開 平2−111679(JP,A) (58)調査した分野(Int.Cl.7,DB名) C04B 41/89 C04B 41/87 Continuation of front page (56) References JP-A-2-111681 (JP, A) JP-A-1-249659 (JP, A) JP-A-58-1004078 (JP, A) JP-A-2-111679 (JP) , A) (58) Field surveyed (Int. Cl. 7 , DB name) C04B 41/89 C04B 41/87

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基部が炭素繊維強化炭素複合材料で、そ
の表面の気孔が熱分解炭素で充填され、表面からの厚さ
10 700μmである表層部がSiを含有する物質の拡
散、反応により炭化珪素化された層でることを特徴と
する耐酸化性炭素繊維強化炭素複合材料。
The base is a carbon fiber reinforced carbon composite material, the pores of the surface of which are filled with pyrolytic carbon, and the thickness from the surface.
There is a surface layer portion is 10 ~ 700 .mu.m, the diffusion of a substance containing Si, the oxidation resistance of carbon fiber-reinforced carbon composite material characterized Oh Rukoto silicon carbide of the layers by the reaction.
【請求項2】 炭化珪素化された被覆層の上に、CVD
法によるセラミックスがコーティングされ、さらにその
上にガラス状物質が被覆されてなることを特徴とする請
求項1記載の耐酸化性炭素繊維強化炭素複合材料。
2. The method according to claim 1, further comprising the step of: CVD on the siliconized coating layer.
2. The oxidation-resistant carbon fiber reinforced carbon composite material according to claim 1, wherein ceramics is coated by a method, and further a glassy substance is coated thereon.
【請求項3】 CVD法によるセラミックスが、Si、H
f、Zrの炭化物あるいは窒化物の単体または複合体から
なることを特徴とする請求項2記載の耐酸化性炭素繊維
強化炭素複合材料。
3. The method according to claim 1, wherein the ceramic by CVD is Si, H
3. The oxidation-resistant carbon fiber reinforced carbon composite material according to claim 2, comprising a simple substance or a composite of f or Zr carbide or nitride.
【請求項4】 CVD法によるセラミックスの膜厚が15
〜250 μmであることを特徴とする請求項2記載の耐酸
化性炭素繊維強化炭素複合材料。
4. A ceramic film having a thickness of 15
The oxidation-resistant carbon fiber reinforced carbon composite material according to claim 2, wherein the thickness is from 250 to 250 m.
【請求項5】 ガラス状物質がSiO2、 Al2O3、ZrO2、Th
O2、B2O3の単体または複合体からなることを特徴とする
請求項2、3または4記載の耐酸化性炭素繊維強化炭素
複合材料。
5. The glassy substance is composed of SiO 2 , Al 2 O 3 , ZrO 2 , Th
O 2, B 2 O 3 of a single or oxidation resistant carbon fiber reinforced carbon composite material according to claim 2, 3 or 4 further characterized in that a composite body.
【請求項6】 基部である炭素繊維強化炭素複合材料の
空孔部分および表面にCVD法により熱分解炭素を蒸着
させ、しかる後に拡散法により炭素繊維強化炭素複合材
料の表層部を炭化珪素化することを特徴とする耐酸化性
炭素繊維強化炭素複合材料の製造方法。
6. A pyrolysis carbon is deposited on a void portion and a surface of a carbon fiber reinforced carbon composite material as a base by a CVD method, and thereafter, a surface layer portion of the carbon fiber reinforced carbon composite material is siliconized by a diffusion method. A method for producing an oxidation-resistant carbon fiber reinforced carbon composite material, comprising:
【請求項7】 前記したCVD法による熱分解炭素の蒸
着が、炭素を含むガス中で反応温度 900〜1300℃、ガス
の全圧が 200Torr以下の条件により炭素繊維強化炭素複
合材料表層の空孔部分および表面に生成させることを特
徴とする請求項6記載の耐酸化性炭素繊維強化炭素複合
材料の製造方法。
7. A steam of by that pyrolytic carbon CVD method described above
Reaction temperature 900-1300 ℃ in gas containing carbon, gas
Carbon fiber reinforced carbon composite under the condition that the total pressure of
Method for producing oxidation-resistant carbon fiber reinforced carbon composite material according to claim 6, wherein Rukoto to produce the pores portion and the surface of the interleaf material surface.
【請求項8】 炭化珪素化された被覆層の上に、CVD
法によりセラミックスを形成し、さらに該セラミックス
層の上部にガラス状物質を形成することを特徴とする請
求項6または7記載の耐酸化性炭素繊維強化炭素複合材
料の製造方法。
8. The method according to claim 1 , wherein the CVD method comprises the steps of:
To form by Ri ceramics with the law, and further the ceramic
The method according to claim 6 or 7 oxidation resistance carbon fiber reinforced carbon composite material wherein that you form a glassy material on top of the layer.
【請求項9】 前記したCVD法によるセラミックス
Si、Hf、Zrの内1種類以上および炭素、窒素の内1
種類以上を含むガス中で反応温度 900〜1500℃の条件に
より生成させることを特徴とする請求項記載の耐酸化
性炭素繊維強化炭素複合材料の製造方法。
9. A ceramic according to the above-described CVD method, Si, Hf, 1 or more and a carbon of the Zr, of nitrogen 1
9. The method for producing an oxidation-resistant carbon fiber reinforced carbon composite material according to claim 8, wherein the carbon composite material is produced in a gas containing at least one kind at a reaction temperature of 900 to 1500C.
JP3201047A 1991-08-12 1991-08-12 Oxidation resistant carbon fiber reinforced carbon composite material and method for producing the same Expired - Fee Related JP3034084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3201047A JP3034084B2 (en) 1991-08-12 1991-08-12 Oxidation resistant carbon fiber reinforced carbon composite material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3201047A JP3034084B2 (en) 1991-08-12 1991-08-12 Oxidation resistant carbon fiber reinforced carbon composite material and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0543364A JPH0543364A (en) 1993-02-23
JP3034084B2 true JP3034084B2 (en) 2000-04-17

Family

ID=16434528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3201047A Expired - Fee Related JP3034084B2 (en) 1991-08-12 1991-08-12 Oxidation resistant carbon fiber reinforced carbon composite material and method for producing the same

Country Status (1)

Country Link
JP (1) JP3034084B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101178137B1 (en) 2010-05-13 2012-08-29 주식회사 동양일러스트산업 A gloves for motorbike

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2812019B2 (en) * 1991-11-01 1998-10-15 日産自動車株式会社 Carbon fiber / carbon composite
JP3136385B2 (en) * 1993-12-08 2001-02-19 株式会社日立製作所 Heat-resistant oxidation-resistant high-strength member and method for producing the same
JP2777105B2 (en) * 1996-05-08 1998-07-16 財団法人石油産業活性化センター Carbon-based structure
JP4658523B2 (en) * 2004-06-15 2011-03-23 財団法人ファインセラミックスセンター Oxidation-resistant composite material
JP2009210266A (en) * 2008-02-29 2009-09-17 Ibiden Co Ltd Tubular body
FR2936088B1 (en) * 2008-09-18 2011-01-07 Commissariat Energie Atomique NUCLEAR FUEL TANK WITH HIGH THERMAL CONDUCTIVITY AND METHOD OF MANUFACTURING THE SAME.
WO2013001982A1 (en) * 2011-06-30 2013-01-03 エドワーズ株式会社 Cylindrical body and vacuum pump
JP5868336B2 (en) * 2012-02-29 2016-02-24 クアーズテック株式会社 Carbon fiber reinforced silicon carbide composite material and braking material
JP6334292B2 (en) * 2014-07-02 2018-05-30 イビデン株式会社 Method for manufacturing tubular body
JP6334293B2 (en) * 2014-07-02 2018-05-30 イビデン株式会社 Tubular body
JP6473602B2 (en) * 2014-11-12 2019-02-20 イビデン株式会社 Graphite block
JPWO2020203484A1 (en) * 2019-03-29 2020-10-08
JP2021004150A (en) * 2019-06-26 2021-01-14 イビデン株式会社 Carbon-based composite material
CN114645226B (en) * 2020-12-21 2023-04-14 南京航空航天大学 Unidirectional laminated structure carbon fiber reinforced silicon carbide/aluminum-based composite material and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101178137B1 (en) 2010-05-13 2012-08-29 주식회사 동양일러스트산업 A gloves for motorbike

Also Published As

Publication number Publication date
JPH0543364A (en) 1993-02-23

Similar Documents

Publication Publication Date Title
US4837230A (en) Structural ceramic materials having refractory interface layers
JP3034084B2 (en) Oxidation resistant carbon fiber reinforced carbon composite material and method for producing the same
Naslain et al. CVD-processing of ceramic-ceramic composite materials
US7374709B2 (en) Method of making carbon/ceramic matrix composites
US20030214064A1 (en) Method for manufacturing carbon-carbon composites
CN114230347A (en) Preparation method and product of continuous fiber reinforced ZrC/SiC composite part
JP2607409B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon composites.
JP3562989B2 (en) Composite having thermal sprayed layer and method for producing the same
JP3853035B2 (en) Oxidation resistant C / C composite and method for producing the same
US5523035A (en) Process for producing carbonaceous material
JPH06183863A (en) Production of oxidation-resistant carbon fiber-reinforced carbon composite material
JPH0274671A (en) Oxidation-resistant carbon fiber-reinforced carbonaceous material and production thereof
JPH0291270A (en) Oxidation-resistant carbon fiber-reinforced carbon material and production thereof
JP2579563B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon composites.
JPH0597554A (en) Composite carbon material reinforced with carbon fiber and inorganic fiber
JPH03177358A (en) Carbon fiber-reinforced carbon composite material and its production
JP3548597B2 (en) Oxidation-resistant treatment method of carbon fiber reinforced carbon composite
JPH03205358A (en) Production of carbon fiber-reinforced carbon composite material
JP2782891B2 (en) Method for producing fiber-reinforced inorganic material
JPH0274669A (en) Carbon fiber-reinforced carbon material having oxidation resistance and production thereof
JP2827388B2 (en) Corrosion-resistant and oxidation-resistant material and method for producing the same
JP2000219584A (en) Carbon fiber reinforced carbon composite material coated with silicon carbide and its production
JPH09278567A (en) Production of heat-resistant, oxidation-resistant carbon material
JPH11130553A (en) Carbon/carbon composite material
JPH01320152A (en) Carbon fiber reinforced carbon material

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090218

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees