JPH03219066A - Method for forming boron nitride thin film - Google Patents

Method for forming boron nitride thin film

Info

Publication number
JPH03219066A
JPH03219066A JP1187990A JP1187990A JPH03219066A JP H03219066 A JPH03219066 A JP H03219066A JP 1187990 A JP1187990 A JP 1187990A JP 1187990 A JP1187990 A JP 1187990A JP H03219066 A JPH03219066 A JP H03219066A
Authority
JP
Japan
Prior art keywords
substrate
target
boron nitride
film
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1187990A
Other languages
Japanese (ja)
Inventor
Shoji Nakagama
詳治 中釜
Nobuhiko Fujita
藤田 順彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP1187990A priority Critical patent/JPH03219066A/en
Priority to EP91100819A priority patent/EP0439135B1/en
Priority to US07/644,586 priority patent/US5096740A/en
Priority to DE69119614T priority patent/DE69119614D1/en
Publication of JPH03219066A publication Critical patent/JPH03219066A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To develop and precipitate high purity cubic crystal boron nitride thin film on a substrate by radiating excimer laser beam to a target containing B and N. CONSTITUTION:In a film forming chamber 0, the target 4 and the substrate 5 faced to the target 4, are set. As the target 4, sintered body of hexagonal crystal boron nitride, or single or polycrystal of cubic crystal boron nitride, etc., is used. The substrate 5 is heated and the laser beam is generated with the excimer laser device 1, and the laser power density is increased with a condenser lens 2 and the surface of target 4 in the chamber 0 is irradiated through an incident hole 3. Further, atmospheric gas containing nitrogen atom of N, NH4, etc., is introduced into the chamber 0. By this method, the high quality cubic crystal boron nitride thin film on the substrate 5 can be stably obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は超硬工具、絶縁膜、16導体などに用いる澹γ
方品窒化ホウ素薄膜の作成方法に関するものである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention is directed to the use of hardened carbide tools, insulation films, 16 conductors, etc.
This invention relates to a method for producing a boron nitride thin film.

[従来の技術] 立方晶窒化ホウ素を気相から合成する方法としては、例
えば次の三つの公知技術がある。
[Prior Art] As a method for synthesizing cubic boron nitride from a gas phase, there are, for example, the following three known techniques.

1、特公昭60−181262号公報に記載される、ホ
ウ素を含有する蒸発源から基体りにホウ素を蒸着させる
と共に、少なくとも窒素を含むイオン種を発生するイオ
ン発生源から基体上に含有イオン種を照射して、該基体
上に窒化ホウ素を生成させる立方晶窒化ホウ素膜の製造
方法。
1. Depositing boron onto a substrate from an evaporation source containing boron, as described in Japanese Patent Publication No. 60-181262, and at the same time depositing ionic species on the substrate from an ion source that generates ionic species containing at least nitrogen. A method for producing a cubic boron nitride film, comprising irradiating the substrate to produce boron nitride on the substrate.

2、+1.+  N?プラズマによるボロンの化学輸送
を行うことによって、基体上に立方晶窒化ホウ素を生成
する方法[文献l:ココマツ外ジャーナルオン マテリ
アルズ サイエンス レターズ、Journal or
 materials 5cience 1etter
s、 4 (1985)p、51〜54]。
2, +1. +N? A method for producing cubic boron nitride on a substrate by chemically transporting boron using plasma [References: Kokomatsu Journal on Materials Science Letters, Journal or
materials 5science 1etter
s, 4 (1985) p, 51-54].

3 、  II CD (llollov Catho
de Discharge  ボロー陰極放電)ガンに
てボロンを蒸発させながら、ホロー陰極からN、をイオ
ン化して基板に放射し、基板には高周波を印加してセル
フバイアス効果を持たせ、該基板上に立方晶窒化放射を
生成する方法[文献:イナガワ外、プロシーデインゲス
 オン 9ス /ンポジウム オン イオン ソースイ
オン アシステツド チクノロシイ、Proceedi
ngs or 9Lh Symposium on t
on As5isted Technology 、 
’85.東京、p、299〜302.(1985)]。
3, II CD (llollov Catho
While evaporating boron with a discharge gun, N is ionized from the hollow cathode and radiated onto the substrate. A high frequency is applied to the substrate to create a self-bias effect, and cubic crystals are formed on the substrate. Method of generating nitriding radiation [References: Inagawa et al.
ngs or 9Lh Symposium on t
on As5isted Technology,
'85. Tokyo, p. 299-302. (1985)].

[発明が解決しようとする課題] しかしながら、前記1の方法はイオンビーム発生装置及
び集束装置が高価であるという欠点を有する。前記2の
方法は高出力のRFプラズマを成膜に利用しているため
、反応系からの不純物が混入しやすいという欠点を有す
る。前記3の方法は1の方法と同じくイオンビームの発
生装置及び集束装置が高価であるに加え、不活性ガスの
原子が析出した窒化ホウ素に取り込まれるという欠点を
有している。
[Problems to be Solved by the Invention] However, the first method has the disadvantage that the ion beam generator and focusing device are expensive. Since method 2 uses high-power RF plasma for film formation, it has the disadvantage that impurities from the reaction system are likely to be mixed in. Like method 1, method 3 has the drawback that the ion beam generator and focusing device are expensive, and in addition, atoms of the inert gas are incorporated into the deposited boron nitride.

また、前記1〜3のいずれの手法においても、現状では
結晶性の優れた立方晶窒化ホウ素が得られているとは言
いがたい。
Further, it is difficult to say that cubic boron nitride with excellent crystallinity is obtained by any of the methods 1 to 3 above.

本発明はこのような従来法の欠点を解消し、より安価な
装置で高純度の立方晶窒化ホウ素薄膜を基材表面に生成
、析出できる新規な作成方法を提供するものである。
The present invention eliminates these drawbacks of the conventional methods and provides a new method for producing and depositing a highly pure cubic boron nitride thin film on the surface of a substrate using less expensive equipment.

[課題を解決するための手段] −F記課題を解決する手段として、本発明はホウ素原子
と窒素原子とを含むターゲットにエキシマレーザ−光を
照射することにより、前記ターゲットに対向して配置し
た基板ヒに立方晶窒化ホウ素薄膜を成膜することを特徴
とする窒化ホウ素薄膜の作成方法を提供する。
[Means for Solving the Problems] - As a means for solving the problem described in F, the present invention provides a method of irradiating a target containing boron atoms and nitrogen atoms with excimer laser light, thereby irradiating a target containing boron atoms and nitrogen atoms, so that a target containing boron atoms and nitrogen atoms is placed facing the target. Provided is a method for forming a thin film of boron nitride, which comprises forming a thin film of cubic boron nitride on a substrate.

以下、図面を参照して本発明の詳細な説明する。Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図は本発明の一具体例であって、成膜チャンバー0
内にターゲット4とこれに対向して基板5が配置されて
いる。ターゲット4としては、六方晶窒化ホウ素(以下
h−B Nとも略記する)の焼結体、q方晶窒化ホウ素
(以下c−BNとも略記する)の中結晶あるいは多結晶
体等が用いられる。
FIG. 1 shows a specific example of the present invention, in which a film forming chamber 0
A target 4 and a substrate 5 are arranged in opposition to the target 4. As the target 4, a sintered body of hexagonal boron nitride (hereinafter also abbreviated as h-BN), a medium crystal or polycrystalline body of q-gonal boron nitride (hereinafter also abbreviated as c-BN), etc. are used.

ターゲット4と基板5の距離りは10〜150+s+s
の範囲に保たれる。基板5はヒーター6により300〜
1300°Cに加熱される。このような状態において、
エキシマレーザ−装置1によりレーザー光11を発光さ
せ、集光レンズ2によりレーザーパワー密度を高め、入
射窓3を介して成膜チャンバー0内のターゲット4表面
に照射する。レーザーパワーは05〜20 J / c
m”の範囲とする。
The distance between target 4 and substrate 5 is 10 to 150+s+s
is kept within the range of The substrate 5 is heated to 300~ by the heater 6.
Heated to 1300°C. In such a situation,
A laser beam 11 is emitted by an excimer laser device 1, the laser power density is increased by a condenser lens 2, and the surface of a target 4 in a film forming chamber 0 is irradiated through an entrance window 3. Laser power is 05-20 J/c
m” range.

史に成膜チャンバー0内にはガスノズル(ガス導入[1
)6によりN、、N!−1,等の窒素層J−を含む≧°
ゾ囲気ガスが導入され、成膜圧力を 0.001〜10
Torrに保つ。7は排気口である。このような手法に
より基板上に立方晶窒化ホウ素が作成される。
Historically, a gas nozzle (gas introduction [1
)6 by N,,N! −1, etc. ≧° including nitrogen layer J−
Surrounding gas is introduced to increase the film forming pressure from 0.001 to 10
Keep at Torr. 7 is an exhaust port. Cubic boron nitride is created on the substrate by such a method.

[作用] エキシマレーザ−は193〜350nmの紫外線領域に
発振波長を有しており、具体的にはΔrF、KrCQ、
KrF、XeCff、XeFなどの種類がある。
[Function] Excimer laser has an oscillation wavelength in the ultraviolet region of 193 to 350 nm, specifically ΔrF, KrCQ,
There are types such as KrF, XeCff, and XeF.

これらエキシマレーザ−を用いる理由として、まず第一
に光子1個の持つエネルギーが大きいことが挙げられる
。例えばArF  エキシマレーザ−であれば、発振波
長が193nmであり、これは6.42eVのエネルギ
ーに相当する。一方、エキシマレーザ−以外の工業用レ
ーザーとして通常使用されているCOtレーザーでは発
振波長10.6μmであり、これは高々0.12eVの
エネルギーしかない。
The first reason for using these excimer lasers is that each photon has a large amount of energy. For example, in the case of an ArF excimer laser, the oscillation wavelength is 193 nm, which corresponds to an energy of 6.42 eV. On the other hand, a COt laser, which is commonly used as an industrial laser other than an excimer laser, has an oscillation wavelength of 10.6 μm, which has an energy of only 0.12 eV at most.

第二にレーザー光はレンズ等の光学系を用いて集光でき
るため、史にエネルギー密度を高めることが出来、この
ような高エネルギーレーザー光によりターゲットが分解
され、発光を伴う励起種が生成され、c −B N膜の
合成が可能となることが、挙げられる。
Second, since laser light can be focused using optical systems such as lenses, it is possible to increase the energy density, and such high-energy laser light decomposes the target and generates excited species that emit light. , c-BN film can be synthesized.

ターゲット表面におけるレーザーパワーを0,5〜2Q
J/cm’とする理由は、低すぎると膜成長速度が小さ
く、ターゲットの励起が不十分でCB Nが成膜できな
くなるし、−刃高すぎるとクラスターが多く発生し、良
好なc−B Nの成膜が行えなくなるためである。N、
、NH,などの窒素原子を含む雰囲気中で成膜すること
により、基板上に生成される膜のB/N比をc−BNの
化学量論比、すなわち1:1に近づけることができる。
Laser power on target surface is 0.5~2Q
The reason for setting J/cm' is that if it is too low, the film growth rate will be low and the target will not be excited enough, making it impossible to form a CBN film.If the blade is too high, many clusters will occur, resulting in a good c-B This is because it becomes impossible to form a N film. N,
By forming the film in an atmosphere containing nitrogen atoms such as , NH, etc., the B/N ratio of the film formed on the substrate can be brought close to the stoichiometric ratio of c-BN, that is, 1:1.

この際、成膜圧力を0.001〜I OTorrの範囲
にするのは、成膜圧力が低い場合には膜中に窒素が取り
込まれなくなり、Bリッチな膜になるためであり、逆に
高すぎる場合には、レーザー照射ニヨってターゲット表
面から基板に向かって発生する励起種による発光の長さ
が小さくなり、CB N合成が困難となり、かつ成膜速
1tが極端に劣り、実際的でない。
At this time, the reason why the film forming pressure is set in the range of 0.001 to I O Torr is that when the film forming pressure is low, nitrogen is not incorporated into the film, resulting in a B-rich film; If it is too long, the length of light emitted by the excited species generated from the target surface toward the substrate during laser irradiation becomes small, making it difficult to synthesize CBN, and the deposition rate of 1t becomes extremely low, making it impractical. .

なお、レーザーの照射角度は特に限定されるわけではな
いが、本発明者等の検討によると、ターゲツト面に対し
45°±20°が好適である。
The irradiation angle of the laser is not particularly limited, but according to studies by the present inventors, a suitable angle is 45°±20° with respect to the target surface.

従ってターゲットと基板との距離(第1図中のし)も成
膜パラメーターとして重要であり、他の他の成膜パラメ
ーターにも依存するが、通常lO〜l 50 mmに保
たれる。その理由は、10mm未満では成膜速度が高す
ぎて膜中B早が増加してしまうためであり、150+m
sを越えると発光を伴う励起種が基板に届き難くなり、
また成膜速度が極端に低いためである。
Therefore, the distance between the target and the substrate (indicated by the arrow in FIG. 1) is also an important film forming parameter, and although it depends on other film forming parameters, it is usually kept at 10 to 150 mm. The reason for this is that if the thickness is less than 10 mm, the film formation rate will be too high and the B content in the film will increase;
If it exceeds s, it becomes difficult for the excited species accompanied by luminescence to reach the substrate,
This is also because the film formation rate is extremely low.

これらレーザーパワー、成膜圧力、ターゲ、2ト基板間
距離は相7iに関連して気相反応を制御しており、所望
の値を選択することができる。
These laser power, film forming pressure, target, and distance between the two substrates control the gas phase reaction in relation to phase 7i, and desired values can be selected.

基板温度はエピタキシャル膜生成のパラメーターとして
重要であり、300℃未満では膜成長面での到達粒子の
マイグレーションが十分に行われず非晶質膜になる。l
300°Cを越えるとC−BN膜がh−13Nに転移し
、また基板自体の耐熱性が問題となる場合が多く、実用
的ではない。
The substrate temperature is important as a parameter for epitaxial film formation, and if it is less than 300° C., migration of particles arriving at the film growth surface will not be sufficient, resulting in an amorphous film. l
If the temperature exceeds 300°C, the C-BN film transforms into h-13N, and the heat resistance of the substrate itself often becomes a problem, making it impractical.

ターゲットとしては、ホウ素原子と窒素原子を含むもの
であれば良く、本発明者等によればh13Nの焼結体、
C−BNの多結晶体、c−BNの中結晶などが有効であ
る。
The target may be anything containing boron atoms and nitrogen atoms, and according to the present inventors, a sintered body of h13N,
Polycrystalline C-BN, medium crystalline c-BN, etc. are effective.

基板は、当事者がその目的により任意に選択できるもの
であり、特に限定されるわけではないが、後述の実施例
のように、Si5ダイヤ、サファイヤ、Mo、WCなど
で、立方晶窒化ホウ素膜の成長が確認されている。
The substrate can be arbitrarily selected by the person concerned depending on the purpose, and is not particularly limited, but as in the examples described later, it can be made of Si5 diamond, sapphire, Mo, WC, etc., and may be made of cubic boron nitride film. Growth has been confirmed.

し実施例] (−1レーザーパワー依  の確認 験第1図の装置に
より、レーザーパワーを種々に変えて、本発明によりc
−BN膜を作成した。レーザーとしてArF  エキシ
マレーザ−1基板としテS i ウェハー、ターゲット
としてc−BN多結晶体を用い、レーザービームとター
ゲツト面は45°に保った。レーザーの発光繰り返し数
はII(zとした。雰囲気ガスとしてN、を5 Q s
ccM流した。成膜圧力はQ 、 5 Torr、基板
とターゲット間距離は401II11、基板温度は80
0℃とした。
[Example] (-1 Confirmation of dependence on laser power) Using the apparatus shown in Fig. 1, the laser power was variously changed, and c
- A BN film was created. An ArF excimer laser 1 substrate was used as a laser, a TeSi wafer was used, and a c-BN polycrystal was used as a target, and the angle between the laser beam and the target plane was maintained at 45°. The number of repetitions of laser emission is II (z. N is the atmospheric gas, 5 Q s
ccM flowed. The film formation pressure was Q, 5 Torr, the distance between the substrate and target was 401II11, and the substrate temperature was 80
The temperature was 0°C.

成膜時間は1時間とした。得られた膜はCuKa線でX
線回折を行い、膜質判定を行った。結果を表1に示す。
The film forming time was 1 hour. The obtained film was X-rayed with CuKa radiation.
Linear diffraction was performed to determine film quality. The results are shown in Table 1.

表1 1圧〕   の 成膜圧力を種々に変え本発明によりc−BN膜を作成し
た。ターゲットとしてm−BN焼結体を用い、雰囲気ガ
スとしてN H、を30s0゜輩流した。
Table 1: c-BN films were created according to the present invention by changing various film forming pressures. An m-BN sintered body was used as a target, and NH was flowed at 30s0° as an atmospheric gas.

レーザーパワーは20 J/Cm’ とし、他の条件は
すべて実施例1と同様とした。結果を表2に示す。
The laser power was 20 J/Cm', and all other conditions were the same as in Example 1. The results are shown in Table 2.

表2 以上のように0.5〜20J/cfi”の範囲でC8N
の生成が確認された。
Table 2 As shown above, C8N in the range of 0.5 to 20 J/cfi”
The generation of was confirmed.

表2に示すように、成膜圧力が5 ×I O−’Tor
r以下の試料NO,11,14では膜中Nff1が減少
し、ボロンリッチな膜で、且つ結晶性の悪いh−BNで
あった。更に 20.0Torrでは膜厚が薄くて評価
できなかった。一方、0. 001= 10Torrの
範囲では良好なc−BNが得られた。
As shown in Table 2, the film forming pressure was 5×I O−'Tor
In samples NO, 11, and 14 with a temperature of r or less, Nff1 in the film decreased, and the film was boron-rich and h-BN with poor crystallinity. Further, at 20.0 Torr, the film thickness was so thin that it could not be evaluated. On the other hand, 0. Good c-BN was obtained in the range of 001=10 Torr.

表3 (、3)ターゲット基板 距離依  の確認試験 基板としてc−BN多結晶体を用い、成膜圧力0.5 
Torrとし、ターゲット基板間距離(■、)を種々に
変化させて、他の条件は全て実施例2と同一で本発明に
よりc−BNの作成を試みた。表3に結果を示す。
Table 3 (, 3) Confirmation of target substrate distance dependence A c-BN polycrystal was used as the test substrate, and the film formation pressure was 0.5.
Torr, the distance between the target substrates (■, ) was variously changed, and all other conditions were the same as in Example 2, and an attempt was made to create c-BN according to the present invention. Table 3 shows the results.

表3に示すように、10〜150mmの範囲では良好な
c−BNが得られたが5■−以下ではボロンリッチで、
密度の低い粗なh−BNになり、180m5以」−では
膜厚が薄く評価不能であった。
As shown in Table 3, good c-BN was obtained in the range of 10 to 150 mm, but in the range of 5 - or less, it was boron rich,
The resulting h-BN was coarse and had a low density, and when the thickness was 180 m or more, the film thickness was so thin that it could not be evaluated.

基 温    の確認試験 ターゲットとしてc−BN単結晶を用い、ターゲット基
板間距離を30膳■とし、基板温度を種々に変化させ、
他の条件はすべて実施例3と同一で、本発明によりC 4に示す。
Base temperature confirmation test Using a c-BN single crystal as the target, the distance between the target and substrate was set at 30mm, and the substrate temperature was varied in various ways.
All other conditions are the same as in Example 3, designated C4 according to the invention.

BNの成膜を試みた。結果を表 表4 (”:’5)基     性の確認試験基板を種々の材
料に変化させ、基板温度は800°Cとして、その他の
条件はすべて実施例4と同一として本発明によりc−B
Nの成膜を試みた。結果を表5に示す。
An attempt was made to form a film of BN. The results are shown in Table 4 ('':'5) Basicity Confirmation The test substrates were changed to various materials, the substrate temperature was 800°C, and all other conditions were the same as in Example 4.
An attempt was made to form a N film. The results are shown in Table 5.

表5 以上のように、300〜1300℃の範囲内で良好なc
−r3Nが得られた。基板をMoとし、温度1500℃
で成膜したが、このものはh−BNであった。
Table 5 As shown above, good c
-r3N was obtained. The substrate is Mo and the temperature is 1500℃.
The film was formed using h-BN.

以上のように、c−BNは勿論のこと、Mo。As mentioned above, not only c-BN but also Mo.

WCをはじめダイヤモンド、サファイア基板−[−でも
本発明によりc−BNが合成でき、応用範囲が大きく広
がった。
According to the present invention, c-BN can be synthesized even on WC, diamond, and sapphire substrates, greatly expanding the range of applications.

なお、実施例では特に示さなかったが、基板にDC,A
C(RF)等の基板バイアスを用いてもよい。これは、
窒素の基板への取り込みをより容易にする効果があり、
膜中B/N比を化学量論比に近づけ易くする。基板が絶
縁性の場合には、基板ホルダーを導電性にして、その部
分にDC,AC等を印加しても同様の効果がある。
Although not particularly shown in the example, DC, A
A substrate bias such as C (RF) may also be used. this is,
It has the effect of making it easier to incorporate nitrogen into the substrate.
To make it easier to bring the B/N ratio in the film closer to the stoichiometric ratio. If the substrate is insulating, the same effect can be obtained by making the substrate holder conductive and applying DC, AC, etc. to that part.

]発明の効果1 以上説明したように、本発明では光子エネルギーの大き
いエキシマレーザ−を用いてチッ素原子、ホウ素原子を
含有するターゲットを照射するという新規な手段により
、高品質な立方晶窒化ホウ素(c−f3N)を安定して
得ることができる。
] Effect of the invention 1 As explained above, in the present invention, high-quality cubic boron nitride can be produced by using a novel method of irradiating a target containing nitrogen atoms and boron atoms using an excimer laser with high photon energy. (c-f3N) can be stably obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のl実施態様を示す概略図である。 図中、o : 成sチャンバー 1:エキシマレーザ−
2:集光レンズ、3:入射光、4:ターゲット、5:基
板、6:ガス導入[J、7:排気口を示す。 第1図
FIG. 1 is a schematic diagram showing one embodiment of the invention. In the figure, o: growth chamber 1: excimer laser
2: Condensing lens, 3: Incident light, 4: Target, 5: Substrate, 6: Gas introduction [J, 7: Exhaust port is shown. Figure 1

Claims (1)

【特許請求の範囲】[Claims] (1)ホウ素原子と窒素原子とを含むターゲットにエキ
シマレーザー光を照射することにより、前記ターゲット
に対向して配置した基板上に立方晶窒化ホウ素薄膜を成
膜することを特徴とする窒化ホウ素薄膜の作成方法。
(1) A thin boron nitride film characterized in that a cubic boron nitride thin film is formed on a substrate placed facing the target by irradiating a target containing boron atoms and nitrogen atoms with excimer laser light. How to create.
JP1187990A 1990-01-23 1990-01-23 Method for forming boron nitride thin film Pending JPH03219066A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1187990A JPH03219066A (en) 1990-01-23 1990-01-23 Method for forming boron nitride thin film
EP91100819A EP0439135B1 (en) 1990-01-23 1991-01-23 Method for producing boron nitride film
US07/644,586 US5096740A (en) 1990-01-23 1991-01-23 Production of cubic boron nitride films by laser deposition
DE69119614T DE69119614D1 (en) 1990-01-23 1991-01-23 Method of making a boron nitride film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1187990A JPH03219066A (en) 1990-01-23 1990-01-23 Method for forming boron nitride thin film

Publications (1)

Publication Number Publication Date
JPH03219066A true JPH03219066A (en) 1991-09-26

Family

ID=11790019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1187990A Pending JPH03219066A (en) 1990-01-23 1990-01-23 Method for forming boron nitride thin film

Country Status (1)

Country Link
JP (1) JPH03219066A (en)

Similar Documents

Publication Publication Date Title
EP0439135B1 (en) Method for producing boron nitride film
KR910001359B1 (en) Method for synthesizing diamond
CA2059185C (en) Process and apparatus for production of diamond like films
EP0578232B1 (en) Diamond synthetic method
JPH0733243B2 (en) Manufacturing method of hard boron nitride by plasma CVD method combined with light irradiation
JPS6184379A (en) Production of high-hardness boron nitride film
JPH03219066A (en) Method for forming boron nitride thin film
JPS6277454A (en) Formation of cubic boron nitride film
JPS62243770A (en) Method for synthesizing high hardness boron nitride
JPH04119982A (en) Production of boron nitride film
JP2611521B2 (en) Method of forming boron nitride thin film
JPH054807A (en) Production of boron nitride film
JPH04107258A (en) Production of thin boron nitride film
JPH0499261A (en) Production of boron nitride film
JPH054808A (en) Production of boron nitride film
JPH04191358A (en) Production of boron nitride film
JP3760175B2 (en) Diamond film formation method
JPH05311429A (en) Thin film forming device
JPH03199378A (en) Method for synthesizing boron nitride thin film
JPH11100295A (en) Formation of diamond film or diamond-like carbon film and device therefor
JP2611522B2 (en) Method of forming boron nitride thin film
JPH05255859A (en) Thin film forming equipment
JPH0222458A (en) Method for synthesizing thin film
JPH02230734A (en) Thin film formation device
JPS63312978A (en) Thin film forming device