JPS6277454A - Formation of cubic boron nitride film - Google Patents

Formation of cubic boron nitride film

Info

Publication number
JPS6277454A
JPS6277454A JP21518685A JP21518685A JPS6277454A JP S6277454 A JPS6277454 A JP S6277454A JP 21518685 A JP21518685 A JP 21518685A JP 21518685 A JP21518685 A JP 21518685A JP S6277454 A JPS6277454 A JP S6277454A
Authority
JP
Japan
Prior art keywords
boron nitride
substrate
cubic boron
nozzle
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21518685A
Other languages
Japanese (ja)
Other versions
JPH0568541B2 (en
Inventor
Kazuhiro Watanabe
一弘 渡辺
Kazuya Saito
一也 斎藤
Ichiro Tanaka
一郎 田中
Konosuke Inagawa
幸之助 稲川
Akio Ito
昭夫 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP21518685A priority Critical patent/JPS6277454A/en
Publication of JPS6277454A publication Critical patent/JPS6277454A/en
Publication of JPH0568541B2 publication Critical patent/JPH0568541B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To form a cubic BN film on a substrate by providing the substrate, high-voltage electron vapor source contg. B and activating nozzle for supplying gaseous N2 into a vacuum vessel and forming high-density plasma, thereby activating a gaseous raw material. CONSTITUTION:The substrate 3 is placed in the vacuum vessel 1 and is heated by a heater 6; at the same time, a high-frequency negative bias voltage is impressed by a high-frequency source 9 thereto. The high-voltage electron beam vapor source 2 contg. B is placed in the position opposite to the substrate 3 and the B is heated to evaporate. The activating nozzle 5 for ejecting a gaseous mixture composed of an inert gas such as Ar and gaseous N2 is provided near the vapor source 2 and is connected to an AC power source 8. A hot-cathode 4 is disposed and is heated red hot by a power source 8. The vapor of the B is generated from the vapor source 2 and the gas emitted from the nozzle 5 generates the high-density plasma by the thermions from the cathode 4. The cubic BN film formed by the reaction of the B and N is formed on the substrate 3 to which the negative bias voltage is impressed.

Description

【発明の詳細な説明】 し産業上の利用分野〕 本発明は、例えば電子材料としての絶縁膜、切削工具等
の超硬被暎、或いは酸化防止喚等に利用これ得る立方晶
窒化ホウ素膜の形成方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is directed to a cubic boron nitride film that can be used, for example, as an insulating film as an electronic material, as a carbide coating for cutting tools, or as an antioxidant. This relates to a forming method.

〔従来の技術〕[Conventional technology]

従来、立方晶窒化ホウ素の合成ij高温、高圧下におい
て成功しており、この高温高圧法でl’i完全註の高め
結晶を得ることができるガ、立方晶窒化ホウ素を薄膜状
に形成することはできない。
Conventionally, cubic boron nitride has been successfully synthesized under high temperature and high pressure, and this high temperature and high pressure method allows for the formation of cubic boron nitride in the form of a thin film. I can't.

一方、立方晶窒化ホウ素の薄膜合成は、イオン注入と蒸
着を組合せた方法、イオンビ・−ムスパツタ法、レーザ
蒸着法、イオン化蒸着法、プラズマ(〕V D法等いわ
ゆる気相法に工って試みられている。
On the other hand, attempts have been made to synthesize thin films of cubic boron nitride using so-called gas phase methods such as a combination of ion implantation and vapor deposition, ion beam sputtering, laser vapor deposition, ionized vapor deposition, and plasma (VD) methods. It is being

〔発明が解決しょうとする問題点〕[Problem that the invention seeks to solve]

ところで、例えば、イオン注入と蒸着と會絹合せた方法
でに、膜に僅〃・な立方晶が存在するだけで、はとんど
が六方晶まfcは非晶質であり、また形成できる試料の
面積が小さいもの[限らt1高価なイオン注入装置it
必シとするなど実用的ではない。
By the way, for example, when using a method that combines ion implantation, vapor deposition, and silica, even if there is only a small amount of cubic crystal in the film, most of the film is hexagonal, and fc is amorphous and can be formed. Small sample area [Limited to 1 expensive ion implantation equipment
It is not practical to make it mandatory.

″また、イオン化蒸着法では、基板に直流電圧を印加し
ているために、絶縁体である窒化ホウ素嘆が蒸着されて
ゆくに従い基板のバイアス効果が薄れてくるので、安定
して成摸ヲ行なうことができない。また、これら析出膜
の評価データもほとんどない。
``Also, in the ionization deposition method, since a DC voltage is applied to the substrate, the bias effect of the substrate weakens as the insulator boron nitride is deposited, making it possible to perform stable deposition. Furthermore, there is almost no evaluation data for these deposited films.

レーザ蒸着法やプラズマCvD法による窒化ポウ累換は
非晶質重たは六方晶のものし〃1得られていない。
Amorphous or hexagonal crystals have not been obtained by the accumulation of nitrided powder by the laser vapor deposition method or the plasma CVD method.

このように、従来性なわれてきた技術では、組成や結晶
構造笠模質の点で充分に満足できるような立方晶窒化ホ
ウ素it形収することは極めて困難である。
As described above, using conventional techniques, it is extremely difficult to obtain cubic boron nitride in an IT form that is fully satisfactory in terms of composition and crystal structure.

そこで1本発明の目的は、組成や結晶構造等映質が9好
でしη≧も高析出速度で成膜できる立方晶窒化ホウ素脇
の形成方法を提供することにある。
Accordingly, one object of the present invention is to provide a method for forming a cubic boron nitride film having film qualities such as composition and crystal structure of 90%, and which can form a film at a high deposition rate even when η≧.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的を達成するためvc1本発明による立方晶窒
化ホウ素模の形成方法は、活性化ノズルに直流または交
流、のバイアス電田を印加して高密度のプラズマを生成
し、立方晶窒化ホウ素暎の形成される被処理物に高周波
電圧を印加し・て上記被処理物9)表面近傍に高周波電
界?形成し、高圧電子ビーム蒸発源および上記活性化ノ
ズル前方の高密既プラズマに対して■効なバイアス電王
が上記彼処3ffi 物iC711〃・る工うにすると
共に、窒素、またはアンモニア、ヒrラジン等窒素化水
素化合物ガヌ等の反応ガスをアルゴン、ネオン等の放電
基体ガスと混合してまたは同時に上記活性化ノズルケ介
して導入することを特徴として(/′する。
To achieve the above object, the method for forming a cubic boron nitride model according to the present invention involves applying a direct current or alternating current bias electric field to an activation nozzle to generate high-density plasma. A high-frequency voltage is applied to the object to be processed, on which a high-frequency electric field is applied near the surface of the object to be processed (9). The bias electric current that is effective against the high-pressure electron beam evaporation source and the high-density pre-existing plasma in front of the activation nozzle is used to form a high-pressure electron beam evaporation source and the high-density plasma in front of the activation nozzle. The present invention is characterized in that a reactive gas such as a hydrogen chloride compound is introduced through the activation nozzle mixed with or simultaneously with a discharge base gas such as argon or neon.

〔作 用〕[For production]

このように構成した本発明による立方晶窒化ホウ素膜の
形成方法においてに、立方晶窒化ホウ素膜の形成される
ことになる被処理物に高周波ノ々イ了ス電田を印加して
いるので、絶縁体である窒化ホウ素膜の蒸着が進行して
いっても、被処理物のバイアス効果は所望のレベルに維
持され、安定した蒸着作用全保証することができる。ま
た活性化ノズルを介してアルゴンやネオン等の放電基体
ガスおよび窒素ガスまたはアンモニア、ヒドラジン等窒
化水素化合物ガス等の反応ガスを混合して或いけ同時に
導入することによって、高析出速度で結晶性のよい立方
晶窒化ホウ素@を形成することができる。例えばアルゴ
ンと窒素との混合ガスを用いた場合には活性化ノズルの
放電が安定し、電流%電圧ともに制御し易くなり、また
放′JL電流も大きくとることができ、大面積への成膜
を行なうことができ、被処理物上の生成膜の再ス、eツ
タリングを抑制でき、立方晶窒化ホウ素喚の高速成膜ケ
行なうことができる。ま友アルゴンガスと窒素ガスとを
同時に導入した場合には六方晶の生図?抑止でき立方晶
窒化ホウ素摸會効果的に生成させることができる。
In the method for forming a cubic boron nitride film according to the present invention configured as described above, a high frequency electrical current is applied to the object to be processed on which the cubic boron nitride film is to be formed. Even as the deposition of the boron nitride film, which is an insulator, progresses, the bias effect of the object to be processed is maintained at a desired level, and a stable deposition effect can be guaranteed. In addition, by mixing or simultaneously introducing a discharge base gas such as argon or neon and a reactive gas such as nitrogen gas or hydrogen nitride compound gas such as ammonia or hydrazine through an activation nozzle, crystalline crystallinity can be achieved at a high precipitation rate. Good cubic boron nitride can be formed. For example, when a mixed gas of argon and nitrogen is used, the discharge from the activation nozzle becomes stable, and it becomes easier to control both current and voltage, and the discharge current can also be large, making it possible to form a film on a large area. It is possible to suppress re-splatter and e-stumbling of the film formed on the object to be processed, and to perform high-speed film formation of cubic boron nitride. Mayu: If argon gas and nitrogen gas are introduced at the same time, will a hexagonal crystal be formed? The cubic boron nitride model can be suppressed and effectively produced.

〔実施例〕〔Example〕

以下、添附図面を参照して本発明の実施例について説明
する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

第1図は、本発明による立方晶窒化ホウ素膜の形成方法
を実施している装置の一例を概略的に示し、lけ真空容
器で、この真空容器l内には、ホウ素の入った品玉電子
ビーム蒸発の2.この高圧電子ビーム蒸発源コに対向し
た被処理物1r収す基板3.熱陰蓚μm活性化ノズルよ
および基板加熱用ヒータ6が配置されている。熱陰極グ
は直流ま−fcは交ηを電源7KW続され、活性化ノズ
ル!は直流または交流電源tに接続され、正の電圧また
は交流電圧が印加される。また基板3け高周波電源りに
接続される。
FIG. 1 schematically shows an example of an apparatus for carrying out the method of forming a cubic boron nitride film according to the present invention. 2. Electron beam evaporation. A substrate 3 containing an object to be processed 1r facing this high-voltage electron beam evaporation source. A thermal shade μm activation nozzle and a heater 6 for heating the substrate are arranged. The hot cathode is connected to DC or AC to the 7KW power source, and the activation nozzle is activated! is connected to a DC or AC power source t, and a positive voltage or AC voltage is applied. It is also connected to three high-frequency power sources on the board.

この工うに構成した図示装置rcおいて%高圧電子ビー
ム蒸発源λによりホウ素を安定に蒸発させ、活性化ノズ
ルji介して窒素ガス(またはアンモニアやヒrラジン
等)とアルゴンガス(またはネオン、クリプトン、キセ
ノン或いはこれらの混合ガス)とが同時にまfcld混
合した状態で真空容器l内に導入される。直流またに交
流電源ざによって正の電圧または交流電圧の印加された
活性化ノズルjVcFi熱陰極蓼からの熱電子が引きつ
けられ、活性化ノズルjの先端部におけるガス密度の制
い領域に混合ガスの高密度プラズマが発生し、ガス種の
イオン化や励起が起こる。
In the illustrated apparatus rc configured in this manner, boron is stably evaporated using a high-pressure electron beam evaporation source λ, and nitrogen gas (or ammonia, hirazine, etc.) and argon gas (or neon, krypton, etc.) are evaporated through the activation nozzle ji. , xenon, or a mixture thereof) are simultaneously introduced into the vacuum vessel 1 in a mixed state. Thermionic electrons from the activation nozzle jVcFi hot cathode to which a positive voltage or AC voltage is applied are attracted by the DC or AC power source, and the mixed gas is transferred to the region where the gas density is limited at the tip of the activation nozzle j. A high-density plasma is generated, causing ionization and excitation of gas species.

一方、基板3にil−を高周波電源りからの高周波電圧
に1リブロツクキングコンデンサ?介して発生された負
バイアス電田が印加される。高周波電圧を用いることに
よって、基板3上に窒化ホウ素の絶縁膜が析出しても有
効なノ々イアヌ電圧が維持され得る。
On the other hand, Il- is connected to the high frequency voltage from the high frequency power source on the board 3 with one rib blocking capacitor? A negative bias electric field generated through the capacitor is applied. By using a high frequency voltage, an effective No. 1 voltage can be maintained even if an insulating film of boron nitride is deposited on the substrate 3.

このバイアス電圧により加速されたイオンは、基板3上
の析出膜に射突し%電界によって与えられた運動エネル
ギを放出して局部的に高温高圧状態?発生し、そこに生
成した窒化ホウ素の立方晶相が間詰されて立方晶窒化ホ
ウ素膜が形成されるものと考えられる。
The ions accelerated by this bias voltage impinge on the deposited film on the substrate 3 and release the kinetic energy given by the electric field, resulting in a locally high temperature and high pressure state. It is thought that the cubic crystal phase of boron nitride generated therein is interfilled to form a cubic boron nitride film.

また放電基体ガスとしてアルゴンガスを、反応ガスとし
て窒素ガスを混合して或いは同時に活性化ノズルj全通
して導入することによシ立方品窒化ホウ素唖ヲ昼析出速
度で形成することができ、さらにアルゴンガスと窒素ガ
スとの混合ガヌ糸では上述の工うに活性化ノズルjの放
電が安定し、@、流、電圧ともに制御し易くなり、放電
電流も大きくとることができ、この場合、アルゴンの効
果(六方晶の生成抑止、生FIt膜の再スパツタリング
現象の抑制等)は、アルゴン分圧(PAρ・と窒素分圧
(PN2)との比PAr/PN2が7以上の領、域で顕
著となることが認められる。
Furthermore, by mixing argon gas as the discharge base gas and nitrogen gas as the reaction gas, or simultaneously introducing them through the activation nozzle, cubic boron nitride can be formed at a diurnal deposition rate. With the Ganu thread mixed with argon gas and nitrogen gas, the discharge of the activated nozzle j becomes stable due to the above-mentioned method, and it becomes easier to control both the current and the voltage, and the discharge current can also be increased. The effects (suppression of hexagonal crystal formation, suppression of re-sputtering phenomenon of raw FIt film, etc.) are noticeable in regions where the ratio of argon partial pressure (PAρ) to nitrogen partial pressure (PN2) PAr/PN2 is 7 or more. It is recognized that

次に第1図の装置を用いて本発明の方法により立方晶窒
化ホウ素膜を形成した例について説明する。
Next, an example in which a cubic boron nitride film is formed by the method of the present invention using the apparatus shown in FIG. 1 will be described.

活性化ノズルjには正電圧を印加し、活性化ノズルj〃
1らの導入ガスとしては窒素およびアルゴンを使用し、
a脱条件を下記のように設定した。
A positive voltage is applied to the activation nozzle j, and the activation nozzle j
Nitrogen and argon are used as the introduced gases in 1.
a The removal conditions were set as follows.

窒素分圧      jj X / 0−2Paアルゴ
ン分1)   0.t6Pa 活性化ノズル電圧・を流  70V 、/jA電子ビー
ムを刀   /:jKW FLF電力      30W 基板バイアス電圧  −1rov 基板温度      300℃ これにより得られた窒化ホウ素聡の赤外線吸収スペクト
ルを第2図に示す。第一図〃λられ〃・る工うに、立方
晶に固有の1ctus−付近の吸収が認められるが、六
方晶による/3jOcnI お工び7jOcm  付近
の吸収は認められない。
Nitrogen partial pressure jj X / 0-2Pa Argon component 1) 0. t6Pa Activation nozzle voltage 70V, /JA electron beam /:jKW FLF power 30W Substrate bias voltage -1rov Substrate temperature 300°C The infrared absorption spectrum of the boron nitride obtained in this way is shown in FIG. In Figure 1, absorption near 1ctus, which is characteristic of cubic crystals, is observed, but absorption near /3jOcnI and 7jOcm due to hexagonal crystals is not observed.

また通過型電子顕微鏡による電子線回折環図形からも、
形成された膜は立方晶窒化ホウ素の多結晶暎であること
が確認された。なお、この膜の組成はX線マイクロアナ
ライザで分析した結果化学量論比(B/N=/)である
ことが認められたわ一方、活性化ノズル、tf介して導
入するガスを窒素ガス(0,2/Pa)だけとし、その
他は上記の成嘆条件と同じ条件のもとで形成した嘆の赤
外線吸収スペクトルを第3図に示す。この図〃・らけ。
Also, from the electron diffraction ring pattern obtained using a transmission electron microscope,
The formed film was confirmed to be polycrystalline cubic boron nitride. The composition of this film was analyzed using an X-ray microanalyzer and was found to have a stoichiometric ratio (B/N=/). However, the gas introduced through the activation nozzle, tf, was nitrogen gas ( FIG. 3 shows an infrared absorption spectrum formed under the same conditions as above, except that the temperature was 0.2/Pa). This figure.

六方晶の吸収ピークが/ 3 ! 0tys  、 7
 j 0on−’に見られ、六方晶と立方晶の両方が存
在することが明らかである。
The hexagonal absorption peak is /3! 0tys, 7
j 0on-', and it is clear that both hexagonal and cubic crystals exist.

従って、第2,3図の赤外線吸収スペクトルかられ7)
hる工うに、アルゴンガスを窒素ガスと同時に導入する
ことによって六方晶の生成が抑止され。
Therefore, from the infrared absorption spectra in Figures 2 and 3,
However, by introducing argon gas and nitrogen gas at the same time, the formation of hexagonal crystals can be suppressed.

立方晶喚が効果的に生成され得る。また、アルゴンとV
素の混合ガスにより生成暎の再スパツタリング現象が抑
制され、その結果、立方晶嗅の高速Fiy、唖が可訃で
ある。
Cubic crystals can be effectively generated. Also, argon and V
The raw mixed gas suppresses the re-sputtering phenomenon of the generated particles, and as a result, the high speed Fiy of the cubic crystal can be reduced.

〔発明の効果〕〔Effect of the invention〕

以上説明してきた工うに、本発明VC,,cれば、活性
化ノズルを用いた反応蒸着法において反応ガスをアルゴ
ンやネオン等の放電基体ガスと混合して或いは一緒に導
入するようVC構成し、ているので、結晶性のすぐれた
立方晶窒化ホウ素膜會高速で成膜することができる。立
方晶窒化ホウ素はダイヤモンPに次ぐ硬さケもち、良熱
伝導性の晶絶縁体で大気中ではダイヤモンを工りも品温
安定性VC優れている等、利用価値の憂い材料である。
As explained above, the VC of the present invention is configured so that a reactive gas is introduced mixed with or together with a discharge base gas such as argon or neon in a reactive vapor deposition method using an activated nozzle. , a cubic boron nitride film with excellent crystallinity can be formed at high speed. Cubic boron nitride has a hardness second only to Diamond P, and is a crystalline insulator with good thermal conductivity, and even when diamond is machined in the atmosphere, it has excellent temperature stability VC, making it a worrying material for its utility value.

これケ本発明の方法に工り薄脇化す、ることで、電子材
料としての放熱効果の品い絶縁膜、切阻工具等への超硬
被俟、晶湛まで耐える酸化防止膜等に有利に応用され得
る。また高名高圧下で合成され立方晶窒化ホウ素ケ片い
て様々な部品の製作が試みられているが、本発明の方法
を通産することによって被覆部品とすることで向様な機
能をもつもの?安価に型造することができる。
By using the method of the present invention to make the walls thinner, it is advantageous for insulating films with good heat dissipation effects as electronic materials, carbide coatings for cutting tools, etc., and oxidation prevention films that can withstand crystallization. It can be applied to In addition, attempts have been made to manufacture various parts using cubic boron nitride, which is synthesized under high pressure, but is it possible to manufacture coated parts using the method of the present invention, which would have better functions? It can be molded at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施している反応熱別装置の一例を示
す概略線図、第2図は第7図の装@ケ用bて形成した立
方晶窒化ホウ素暎の赤外線吸収スペクトルを示すグラフ
、第3図は比較のための第2図と同様な赤外線吸収スペ
クトル?示すグラフである、 し1中、l・・・真空容器、λ・・・晶出電子ビーム蒸
発ひ、3・・・被処理物、μ・・・熱陰極、!・・・活
性化ノズル、t・・・被処理物加熱用ヒータ、7.lr
・・・直流または交流電源、り・・・島周波電源。 第1図
Figure 1 is a schematic diagram showing an example of a reaction heat separation apparatus in which the present invention is implemented, and Figure 2 shows an infrared absorption spectrum of cubic boron nitride prepared using the equipment shown in Figure 7. Is the graph, Figure 3, the same infrared absorption spectrum as Figure 2 for comparison? This is a graph showing the following: In 1, 1...vacuum vessel, λ...crystallization electron beam evaporation, 3...object to be processed, μ...hot cathode,! Activation nozzle, t... Heater for heating the object to be processed, 7. lr
...DC or AC power supply, ri...Island frequency power supply. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 活性化ノズルに直流または交流のバイアス電圧を印加し
て高密度のプラズマを生成し、立方晶窒化ホウ素膜の形
成される被処理物に高周波電圧を印加して上記被処理物
の表面近傍に高周波電界を形成し、高圧電子ビーム蒸発
源および上記活性化ノズル前方の高密度プラズマに対し
て有効なバイアス電圧が上記被処理物にかかるようにす
ると共に、窒素またはアンモニア、ヒドラジン等窒素化
水素化合物ガス等の反応ガスをアルゴン、ネオン等の放
電基体ガスと混合してまたは同時に上記活性化ノズルを
介して導入することを特徴とする立方晶窒化ホウ素膜の
形成方法。
A high-density plasma is generated by applying a DC or AC bias voltage to the activation nozzle, and a high-frequency voltage is applied to the workpiece on which a cubic boron nitride film is to be formed to generate a high-frequency wave near the surface of the workpiece. An electric field is formed so that a bias voltage effective for the high-pressure electron beam evaporation source and the high-density plasma in front of the activation nozzle is applied to the object to be treated, and a hydrogen nitride compound gas such as nitrogen, ammonia, or hydrazine is applied. A method for forming a cubic boron nitride film, characterized in that a reactive gas such as argon, neon, etc. is mixed with or simultaneously introduced through the activation nozzle with a discharge base gas such as argon or neon.
JP21518685A 1985-09-30 1985-09-30 Formation of cubic boron nitride film Granted JPS6277454A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21518685A JPS6277454A (en) 1985-09-30 1985-09-30 Formation of cubic boron nitride film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21518685A JPS6277454A (en) 1985-09-30 1985-09-30 Formation of cubic boron nitride film

Publications (2)

Publication Number Publication Date
JPS6277454A true JPS6277454A (en) 1987-04-09
JPH0568541B2 JPH0568541B2 (en) 1993-09-29

Family

ID=16668096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21518685A Granted JPS6277454A (en) 1985-09-30 1985-09-30 Formation of cubic boron nitride film

Country Status (1)

Country Link
JP (1) JPS6277454A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01246357A (en) * 1988-03-28 1989-10-02 Mitsubishi Heavy Ind Ltd Production of cubic boron nitride film
US4941430A (en) * 1987-05-01 1990-07-17 Nihon Sinku Gijutsu Kabusiki Kaisha Apparatus for forming reactive deposition film
JPH02259059A (en) * 1989-03-31 1990-10-19 Mitsubishi Heavy Ind Ltd Formation of boron nitride
US5227318A (en) * 1989-12-06 1993-07-13 General Motors Corporation Method of making a cubic boron nitride bipolar transistor
US5232862A (en) * 1990-07-16 1993-08-03 General Motors Corporation Method of fabricating a transistor having a cubic boron nitride layer
US5264296A (en) * 1989-12-06 1993-11-23 General Motors Corporation Laser depositon of crystalline boron nitride films
US5330611A (en) * 1989-12-06 1994-07-19 General Motors Corporation Cubic boron nitride carbide films
US5725674A (en) * 1991-03-18 1998-03-10 Trustees Of Boston University Device and method for epitaxially growing gallium nitride layers

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4941430A (en) * 1987-05-01 1990-07-17 Nihon Sinku Gijutsu Kabusiki Kaisha Apparatus for forming reactive deposition film
JPH01246357A (en) * 1988-03-28 1989-10-02 Mitsubishi Heavy Ind Ltd Production of cubic boron nitride film
JPH02259059A (en) * 1989-03-31 1990-10-19 Mitsubishi Heavy Ind Ltd Formation of boron nitride
US5227318A (en) * 1989-12-06 1993-07-13 General Motors Corporation Method of making a cubic boron nitride bipolar transistor
US5264296A (en) * 1989-12-06 1993-11-23 General Motors Corporation Laser depositon of crystalline boron nitride films
US5279869A (en) * 1989-12-06 1994-01-18 General Motors Corporation Laser deposition of cubic boron nitride films
US5330611A (en) * 1989-12-06 1994-07-19 General Motors Corporation Cubic boron nitride carbide films
US5232862A (en) * 1990-07-16 1993-08-03 General Motors Corporation Method of fabricating a transistor having a cubic boron nitride layer
US5725674A (en) * 1991-03-18 1998-03-10 Trustees Of Boston University Device and method for epitaxially growing gallium nitride layers

Also Published As

Publication number Publication date
JPH0568541B2 (en) 1993-09-29

Similar Documents

Publication Publication Date Title
US5096740A (en) Production of cubic boron nitride films by laser deposition
JPS6277454A (en) Formation of cubic boron nitride film
Xu et al. Characterization of CNx films prepared by twinned ECR plasma source enhanced DC magnetron sputtering
US5952061A (en) Fabrication and method of producing silicon films
Nakamura et al. Synthesis of aluminium nitride thin films by ion-vapour deposition method
RU2532749C1 (en) Method of obtaining nanosized carbon layers with diamond properties
JPS6247472A (en) Formation of cubic boron nitride film
KR0153567B1 (en) Apparatus and method for fabricating diamond thin film
JPH0417669A (en) Film forming method using plasma and rf ion plating device
JPS6395200A (en) Production of hard boron nitride film
JPH04318162A (en) Formation of cubic boron nitride film and forming device therefor
JP2617539B2 (en) Equipment for producing cubic boron nitride film
JPS63277767A (en) Method for synthesizing high-pressure phase boron nitride in gaseous phase
JPH0590253A (en) Insulating film forming method and device
JP2603919B2 (en) Method for producing boron nitride film containing cubic boron nitride crystal grains
JP2504426B2 (en) Method and apparatus for forming cBN thin film
JPH07110995B2 (en) Thin film forming method and thin film forming apparatus
JPH01246357A (en) Production of cubic boron nitride film
JPH05147908A (en) Production of cubic boron nitride powder
JP2687468B2 (en) Thin film forming equipment
JP2525910B2 (en) Laser excited thin film formation method
Rother Calculations on ion-assisted deposition techniques examined in relation to the deposition of diamond-like carbon coatings
JPH0135799B2 (en)
JPS6315346B2 (en)
Kapsa et al. The AES and EELS study of thin alumina films deposited on niobium