JPH03218957A - Production of ceramic sintered body - Google Patents

Production of ceramic sintered body

Info

Publication number
JPH03218957A
JPH03218957A JP2012340A JP1234090A JPH03218957A JP H03218957 A JPH03218957 A JP H03218957A JP 2012340 A JP2012340 A JP 2012340A JP 1234090 A JP1234090 A JP 1234090A JP H03218957 A JPH03218957 A JP H03218957A
Authority
JP
Japan
Prior art keywords
ceramic
powder
hydroxide
soln
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012340A
Other languages
Japanese (ja)
Inventor
Shogo Suzuki
鈴木 省伍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Ceramics Research Institute Co Ltd
Original Assignee
Isuzu Ceramics Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Ceramics Research Institute Co Ltd filed Critical Isuzu Ceramics Research Institute Co Ltd
Priority to JP2012340A priority Critical patent/JPH03218957A/en
Publication of JPH03218957A publication Critical patent/JPH03218957A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance strength by adding the nitrate soln. of specified metal to a tetraalkylammonium hydroxid soln. in which ceramic powder is dispersed and coprecipitating the hydroxide of the metal on the surface of ceramic powder and then cracking this hydroxide and thereafter roasting it. CONSTITUTION:Ceramic fine powder such as Si3N4 is introduced into a tetraalkylammonium hydroxide soln. like tetramethyl ammonium hydroxide, agitated and dispersed. Then the prescribed amount of the nitrate soln. of metallic element such as an Al(NO3)3 soln. and a Y(NO3)3 soln. is added whose oxide becomes a sintering adjuvant. Al ion and Y ion become Al(OH)3 and Y(OH)3 in this mixed soln. and both are coprecipitated on the surface of ceramic fine powder. This ceramic fine powder whose surface is covered with Al(OH)3 and Y(OH)3 is filtered and washed with water and thereafter dried by a superdryer, etc., and granulated. Furthermore the granulated ceramic is heated to crack Al(OH)3 and Y(OH)3 into Al2O3 and Y2O3. This fine powder covered with the oxide is molded and thereafter roasted in the N2 atmosphere to obtain a high- strength ceramic sintered body.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、粒界相か均一な焼結助剤にて形成されている
セラミック焼結体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing a ceramic sintered body in which the grain boundary phase is formed of a uniform sintering aid.

(従来の技術) 従来のセラミック焼結体、例えば窒化珪素(以下S i
3N4 )の焼結体の製造方法は、焼結母材であるSi
3N4の粉末に焼結助剤として作用する酸化アルミニウ
ム(以下An2o3)や酸化イットリウム(以下Y2 
0ps )の粉末と少量のバインダとを混合し、乾燥造
粒して混合粉末を生成し、該混合粉末を成形した後、焼
結炉内にて加熱焼成している。
(Prior Art) Conventional ceramic sintered bodies, such as silicon nitride (hereinafter referred to as Si
3N4) is a method for producing a sintered body using Si as a sintering base material.
Aluminum oxide (hereinafter referred to as An2o3) and yttrium oxide (hereinafter referred to as Y2) act as sintering aids for the 3N4 powder.
0 ps) and a small amount of binder are mixed, dried and granulated to produce a mixed powder, and after the mixed powder is shaped, it is heated and fired in a sintering furnace.

このような従来の製造方法により製造されるセラミック
焼結体は、焼成前の混合時に、各粉末の粒径や比重が異
なるため完全に均一には混合されす焼結助剤や焼結母材
が偏在する。
Ceramic sintered bodies manufactured by such conventional manufacturing methods are not completely uniformly mixed during mixing before firing because each powder has a different particle size and specific gravity. are unevenly distributed.

すると、焼成時において、焼結体内部が均一に焼成され
ず、Si3N4粒子が異常成長し、また気孔も偏析する
ため、粒界相が不均一となる。
Then, during firing, the inside of the sintered body is not fired uniformly, Si3N4 particles grow abnormally, and pores also segregate, resulting in non-uniform grain boundary phases.

よって、外部からの応力が均等に分散されず集中するた
め、セラミック焼結体の強度が低下し、かつ該強度のバ
ラツキも増大し品質が一定しない。
Therefore, the stress from the outside is not evenly distributed but concentrated, which reduces the strength of the ceramic sintered body and increases the variation in the strength, resulting in inconsistent quality.

そこで、焼結助剤の金属元素、すなわちアルミニウムや
イットリウムの硝酸塩水溶液を焼結母材のセラミック粉
末が分散されているアンモニア水溶液中に滴下し、該セ
ラミック粉末表面に焼結助剤を水酸化物として共沈させ
、該水酸化物を熱分解させることにより焼結助剤と焼結
母材との分散を良好にする方法や、上記硝酸塩水溶液中
に焼結母材のセラミック粉末を拡散させスラリー状にし
、該スラリーな噴露乾燥して硝酸塩を酸化物に熱分解し
焼結助剤と焼結母材との分散を良好にする方法が提案さ
れている。
Therefore, an aqueous solution of nitrates of metal elements such as aluminum and yttrium as a sintering aid is dropped into an ammonia aqueous solution in which ceramic powder as a sintering base material is dispersed, and the hydroxide of the sintering aid is applied to the surface of the ceramic powder. A method of co-precipitating the hydroxide and thermally decomposing the hydroxide to improve the dispersion of the sintering aid and the sintering base material, and a method of dispersing the ceramic powder of the sintering base material in the nitrate aqueous solution to form a slurry. A method has been proposed in which the slurry is spray-dried to thermally decompose the nitrate into oxides, thereby improving the dispersion of the sintering aid and the sintering base material.

(発明が解決しようとする課題) しかしながら、上記の焼結助剤と焼結母材との分散を良
好にする方法においても、水を溶媒として用い、更に、
ボールミル等により厳しい条件下にて攪拌が行なわれる
ため、焼結母材であるセラミック粉末の一部が分解酸化
し強度低下の原因となり、また、焼結助剤と焼結母材と
の分散も充分に満足できるものではない。
(Problem to be Solved by the Invention) However, even in the method for improving the dispersion of the sintering aid and the sintering base material, water is used as a solvent, and further,
Since stirring is performed under harsh conditions using a ball mill, etc., a part of the ceramic powder, which is the sintering base material, decomposes and oxidizes, causing a decrease in strength, and also causes dispersion of the sintering aid and the sintering base material. It's not completely satisfying.

更には、上記焼結母材表面に焼結助剤を共沈させる方法
では、水酸化アルミニウム(以下Aλ(oH)g)と水
酸化イットリウム(以下Y(oH)g)とでは、水に対
する溶解度が異るため、焼結助剤の混合比率を制御する
ことが困難であるという問題がある。
Furthermore, in the method of co-precipitating a sintering aid on the surface of the sintering base material, aluminum hydroxide (hereinafter referred to as Aλ(oH)g) and yttrium hydroxide (hereinafter referred to as Y(oH)g) have different solubility in water. There is a problem in that it is difficult to control the mixing ratio of the sintering aid because of the difference in the sintering aid.

(課題を解決するための手段) 本発明は、上記の点に鑑みてなされたもので、粒子の異
常成長及び気孔の偏析を防止し、粒界相を均一にし、高
強度であるセラミック焼結体の製造方法を提供しようと
するものである。
(Means for Solving the Problems) The present invention has been made in view of the above points. The aim is to provide a method for manufacturing the body.

本発明は、セラミック粉末を分散せしめたテトラアルキ
ル水酸化アンモニウム(R4 NOH : R=アルキ
ル基)溶液中に、酸化物が焼結助剤となる金属元素の硝
酸塩溶液を添加攪拌して該金属元素の水酸化物を生成さ
せて該水酸化物を上記セラミック粉末の粉体粒子表面に
均一に共沈せしめ、次に該セラミック粉末を加熱して粉
体粒子表面に共沈した水酸化物を焼結助剤である酸化物
に熱分解して上記粉体粒子表面を焼結助剤である酸化物
で均一に被覆した後、セラミック粉末を成形し焼成する
ことによりセラミック焼結体を製造するものである。
In the present invention, a nitrate solution of a metal element whose oxide serves as a sintering aid is added and stirred into a tetraalkyl ammonium hydroxide (R4 NOH: R=alkyl group) solution in which ceramic powder is dispersed. The hydroxide is uniformly coprecipitated on the surface of the powder particles of the ceramic powder, and then the ceramic powder is heated to sinter the hydroxide coprecipitated on the surface of the powder particles. Ceramic sintered bodies are manufactured by thermally decomposing the powder particles into oxides, which are sintering aids, and uniformly coating the surfaces of the powder particles with oxides, which are sintering aids, and then molding and firing the ceramic powder. It is.

(作用) 本発明の製造方法は、セラミック粉末粒子表面に均一に
焼結助剤を分散させることができ、また、分散媒にテト
ラアルキル水酸化アンモニウムを使用しているので、セ
ラミック粒子が分解酸化しない。
(Function) The manufacturing method of the present invention can uniformly disperse the sintering aid on the surface of the ceramic powder particles, and since tetraalkyl ammonium hydroxide is used as the dispersion medium, the ceramic particles are decomposed and oxidized. do not.

(実施例) 本発明のセラミック焼結体の製造工程について説明する
(Example) The manufacturing process of the ceramic sintered body of the present invention will be explained.

図は、本発明の製造工程を示すフロー図である。The figure is a flow diagram showing the manufacturing process of the present invention.

テトラメチル水酸化アンモニウム(以下(CH3) 4
NOH)の溶液中に平均粒径0.6μmのSi3N4粉
末を投入し分散攪拌する。
Tetramethyl ammonium hydroxide (hereinafter (CH3) 4
Si3N4 powder with an average particle size of 0.6 μm is added to a solution of NOH) and dispersed and stirred.

次に、Si3N4粉末に対してA120.換算で3wt
%の硝酸アルミニウムlu下Ajl!(NOg)g)と
、Y203換算で5wt%の硝酸イットリウム(以下Y
 (NOES )3)を添加する。
Next, A120. 3wt in conversion
% aluminum nitrate lu Ajl! (NOg)g) and 5wt% yttrium nitrate (hereinafter Y
(NOES)3) is added.

すると、アルミニウムイオンはAi(OH)3となり、
イットリウムイオンはY (OH).となり、Si3N
4粉末表面に共沈する。
Then, the aluminum ion becomes Ai(OH)3,
Yttrium ion is Y (OH). So, Si3N
4 Co-precipitate on the powder surface.

次に、表面がAu (OH)3及びY(OH)3で被覆
されたS i5 N4粉末をろ過水洗した後、スプレー
ドライヤーにて乾燥造粒し、表面を被覆しているA℃(
OH)g及びY(OH)5をAρ203及びY203に
熱分解する。
Next, the S i5 N4 powder whose surface was coated with Au (OH)3 and Y(OH)3 was filtered and washed with water, and then dried and granulated using a spray dryer.
OH)g and Y(OH)5 are thermally decomposed to Aρ203 and Y203.

次に、該造粒された粉体を軸プレスにて成形した後、9
Kg/crn’のN27囲気にて1800℃で5時間加
熱し、試料Aを焼成する。
Next, after molding the granulated powder with an axial press,
Sample A is fired by heating at 1800°C for 5 hours in an N27 atmosphere of Kg/crn'.

該試料Aと比較するため、(CH− )4 NOH溶液
の代わりにアンモニア水溶液を用いて試料Bを作成した
For comparison with Sample A, Sample B was prepared using an ammonia aqueous solution instead of the (CH-)4 NOH solution.

更に、A文(NO3)gとY(NO3)gとの混合水溶
液中にSi3N4粉末を拡散させスラリーとし、該スラ
リーを噴霧乾燥してAIL203及びY2o3に熱分解
した造粒粉体を用いて試料Cを作成した。
Furthermore, Si3N4 powder was dispersed in a mixed aqueous solution of A (NO3) g and Y (NO3) g to form a slurry, and the slurry was spray-dried and pyrolyzed into AIL203 and Y2o3. Created C.

上記試料A,B及びCの各々をJ I S−R1601
に定められた試験片に整形し、4点曲げ強度試験を行な
った。
Each of the above samples A, B and C was tested using JIS-R1601.
The specimen was shaped into a test piece specified in 2013, and a four-point bending strength test was conducted.

該強度試験の結果を表に示す。The results of the strength test are shown in the table.

該表より明らかなように、本発明による焼結体である試
料Aは、従来の焼結体である試料B及びCと比較して、
高強度である。
As is clear from the table, Sample A, which is a sintered body according to the present invention, has a
High strength.

これは、第1に、焼結助剤がSi3N4粉末のの粉体粒
子表面に均一にコーティングされ、焼結時において、S
igN4成型体全体が一様に焼成され、組織が均一にな
るためであると考えられる。
First, the sintering aid is uniformly coated on the surface of the Si3N4 powder particles, and during sintering, the S
This is thought to be because the entire ignN4 molded body was fired uniformly, resulting in a uniform structure.

組織の電子顕微鏡観察結果においても、従来方法にて作
成した試料B及びCには異常粒子が発達しているのが誌
められるが、本発明による方法にて作成した試料Aにお
いては、異常粒子の発達は認められず、均一な組織が観
察された。
The results of electron microscopy of the tissue also show that abnormal particles have developed in Samples B and C prepared using the conventional method, but abnormal particles have developed in Sample A prepared using the method of the present invention. No development was observed, and a uniform structure was observed.

また、第2に、Si3N4粉末が水によって分解酸化等
されず、粉体粒子表面に変質が起きないため粒界相が強
固になり、よって強度が上がっているものと考えられる
Secondly, the Si3N4 powder is not decomposed and oxidized by water, and the surface of the powder particles is not altered, so the grain boundary phase becomes stronger, which is thought to increase the strength.

以上、本発明の実施例について説明したが、本発明の精
神から逸れないかぎりで、種々の異なる実施例は容易に
構成できるから、本発明は前記特許請求の範囲において
記載した限定以外、特定の実施例に制約されるものでは
ない。
Although the embodiments of the present invention have been described above, various different embodiments can be easily constructed without departing from the spirit of the present invention. The invention is not limited to the examples.

(発明の効果) 以上説明したように、本発明によれば、セラミック焼結
体内部に粒子の異常成長や気孔の偏析か無く、粒界相か
均一であるため、従来の製造方法により製造されたセラ
ミック焼結体に対して高強度であるセラミック焼結体の
製造方法を提供できる。
(Effects of the Invention) As explained above, according to the present invention, there is no abnormal growth of particles or segregation of pores inside the ceramic sintered body, and the grain boundary phase is uniform. It is possible to provide a method for manufacturing a ceramic sintered body having higher strength than other ceramic sintered bodies.

4

【図面の簡単な説明】[Brief explanation of drawings]

図は、 本発明の製造工程を示すフロー図であ る。 The diagram is FIG. 2 is a flow diagram showing the manufacturing process of the present invention. Ru.

Claims (4)

【特許請求の範囲】[Claims] (1) セラミック粉末を分散せしめたテトラアルキル
水酸化アンモニウム(R_4NOH:R=アルキル基)
溶液中に、酸化物が焼結助剤となる金属元素の硝酸塩溶
液を添加攪拌して該金属元素の水酸化物を生成させて該
水酸化物を上記セラミック粉末の粉体粒子表面に均一に
共沈せしめ、次に該セラミック粉末を加熱して粉体粒子
表面に共沈した水酸化物を焼結助剤である酸化物に熱分
解して上記粉体粒子表面を焼結助剤である酸化物で均一
に被覆した後、セラミック粉末を成形し焼成することを
特徴とするセラミック焼結体の製造方法。
(1) Tetraalkyl ammonium hydroxide (R_4NOH: R = alkyl group) in which ceramic powder is dispersed
A nitrate solution of a metal element whose oxide serves as a sintering aid is added to the solution and stirred to generate a hydroxide of the metal element, and the hydroxide is uniformly distributed on the surface of the powder particles of the ceramic powder. Co-precipitation is carried out, and then the ceramic powder is heated to thermally decompose the hydroxide coprecipitated on the powder particle surface into an oxide which is a sintering aid, thereby converting the powder particle surface into a sintering aid. A method for producing a ceramic sintered body, which comprises forming and firing ceramic powder after uniformly coating it with an oxide.
(2) 上記テトラアルキル水酸化アンモニウムはテト
ラメチル水酸化アンモニウム((CH_3)_4NOH
)であることを特徴とする請求項(1)記載のセラミッ
ク焼結体の製造方法。
(2) The above tetraalkyl ammonium hydroxide is tetramethyl ammonium hydroxide ((CH_3)_4NOH
) The method for manufacturing a ceramic sintered body according to claim (1).
(3) 上記セラミック粉末は窒化珪素(Si_3N_
4)粉末であることを特徴とする請求項(1)記載のセ
ラミック焼結体の製造方法。
(3) The above ceramic powder is silicon nitride (Si_3N_
4) The method for producing a ceramic sintered body according to claim 1, wherein the ceramic sintered body is a powder.
(4) 上記の硝酸塩は、硝酸イットリウム(Y(NO
_3)_3)及び硝酸アルミニウム(Al(NO_3)
_3)の内の少なくとも1種であることを特徴とする請
求項(1)記載のセラミック焼結体の製造方法。
(4) The above nitrate is yttrium nitrate (Y(NO
_3)_3) and aluminum nitrate (Al(NO_3)
The method for producing a ceramic sintered body according to claim (1), characterized in that the material is at least one of _3).
JP2012340A 1990-01-22 1990-01-22 Production of ceramic sintered body Pending JPH03218957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012340A JPH03218957A (en) 1990-01-22 1990-01-22 Production of ceramic sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012340A JPH03218957A (en) 1990-01-22 1990-01-22 Production of ceramic sintered body

Publications (1)

Publication Number Publication Date
JPH03218957A true JPH03218957A (en) 1991-09-26

Family

ID=11802562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012340A Pending JPH03218957A (en) 1990-01-22 1990-01-22 Production of ceramic sintered body

Country Status (1)

Country Link
JP (1) JPH03218957A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11697880B2 (en) 2016-08-16 2023-07-11 Seram Coatings As Thermal spraying of ceramic materials comprising metal or metal alloy coating

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11697880B2 (en) 2016-08-16 2023-07-11 Seram Coatings As Thermal spraying of ceramic materials comprising metal or metal alloy coating

Similar Documents

Publication Publication Date Title
US4179299A (en) Sintered alpha silicon carbide ceramic body having equiaxed microstructure
EP0774449B1 (en) Silicon nitride ceramic, silicon-base composition for production thereof and processes for producing these
US4346049A (en) Sintered alpha silicon carbide ceramic body having equiaxed microstructure
CN106966732B (en) Fine powder silicon carbide ceramic and preparation method thereof
Marple et al. Mullite/alumina particulate composites by infiltration processing
JPH01230478A (en) Homogeneous sintered silicon nitride and production thereof
CN110204338A (en) A kind of high-purity alpha-SiC ceramics of normal pressure solid-phase sintering and preparation method thereof
US5021208A (en) Method for removal of paraffin wax based binders from green articles
CN109574680A (en) A kind of method that gas-solid reaction combination lqiuid phase sintering method prepares porous silicon nitride ceramic
JPH03218957A (en) Production of ceramic sintered body
US4814128A (en) Process for making a homogeneous doped silicon nitride article
JP2670221B2 (en) Silicon nitride sintered body and method for producing the same
JP2697759B2 (en) Silicon nitride sintered body and method for producing the same
JP4859267B2 (en) Aluminum nitride sintered body and manufacturing method thereof
JP4065589B2 (en) Aluminum nitride sintered body and manufacturing method thereof
JPH0369546A (en) Sintered ceramic body and production therefor
JPS6340711A (en) Production of beta-type silicon nitride
JP3738784B2 (en) Method for producing interface control ceramics
JPH01126276A (en) Production of ceramic sintered body
JPH07267614A (en) Production of silicon nitride powder, sintered compact of silicon nitride and its production
JP2731333B2 (en) Silicon nitride sintered body, method of manufacturing the same, silicon nitride powder and method of manufacturing the same
JP2696596B2 (en) Sialon sintered body and manufacturing method thereof
JPS63151682A (en) Silicon nitride sintered body and manufacture
JP2909264B2 (en) Silicon nitride sintered body and method for producing the same
JP2577155B2 (en) Silicon nitride sintered body