JP2577155B2 - Silicon nitride sintered body - Google Patents

Silicon nitride sintered body

Info

Publication number
JP2577155B2
JP2577155B2 JP4016398A JP1639892A JP2577155B2 JP 2577155 B2 JP2577155 B2 JP 2577155B2 JP 4016398 A JP4016398 A JP 4016398A JP 1639892 A JP1639892 A JP 1639892A JP 2577155 B2 JP2577155 B2 JP 2577155B2
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
nitride sintered
raw material
sintering aid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4016398A
Other languages
Japanese (ja)
Other versions
JPH0543322A (en
Inventor
正宏 白井
知典 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP4016398A priority Critical patent/JP2577155B2/en
Publication of JPH0543322A publication Critical patent/JPH0543322A/en
Application granted granted Critical
Publication of JP2577155B2 publication Critical patent/JP2577155B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、酸化特性を向上した窒
化珪素焼結体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon nitride sintered body having improved oxidation characteristics.

【0002】[0002]

【従来の技術】従来、窒化珪素焼結体の製造方法として
は、市販の窒化珪素原料粉末にY2O3,Al2O3,MgO 等の粒
界に液相を形成する焼結助剤を添加し、成形後不活性ガ
ス雰囲気下で焼成する方法が、例えば特公昭58-49509号
公報において開示されている。
2. Description of the Related Art Conventionally, as a method for producing a silicon nitride sintered body, a sintering aid for forming a liquid phase at a grain boundary of Y 2 O 3 , Al 2 O 3 , MgO, etc. on a commercially available silicon nitride raw material powder is used. A method is disclosed in, for example, Japanese Patent Publication No. 58-49509, in which, after molding, baking is performed in an inert gas atmosphere.

【0003】[0003]

【発明が解決しようとする課題】ところで、酸化物添加
物や窒化珪素原料に元来含まれ焼結助剤として働くSiO2
は、粒界相にガラスを形成して組織の緻密化や微構造の
形成に有効に作用する。しかしながら原料として使用す
る市販の窒化珪素原料粉末は、酸素含有量が少ないと共
にロット間の酸素含有量の変動が大きいため、全般的に
酸化特性の悪い窒化珪素焼結体が得られることが多く、
最近要望が高まっている酸化特性および高温強度をとも
に満足する窒化珪素焼結体を得ることができなかった。
By the way, SiO 2 originally contained in an oxide additive or a silicon nitride raw material and acting as a sintering aid is used.
Forms glass in the grain boundary phase and effectively acts on the densification of the structure and the formation of the microstructure. However, commercially available silicon nitride raw material powder used as a raw material has a low oxygen content and a large variation in the oxygen content between lots, so that a silicon nitride sintered body having generally poor oxidation characteristics is often obtained,
It has not been possible to obtain a silicon nitride sintered body that satisfies both the oxidation characteristics and the high-temperature strength, which have recently been demanded.

【0004】本発明の目的は上述した不具合を解消し
て、高い耐酸化特性および高い高温強度特性を有する窒
化珪素焼結体を提供しようとするものである。
An object of the present invention is to solve the above-mentioned problems and to provide a silicon nitride sintered body having high oxidation resistance and high-temperature strength characteristics.

【0005】[0005]

【課題を解決するための手段】本発明の窒化珪素焼結体
は、YおよびMgをMgO換算で2重量%以上を必須成
分とする焼結助剤を含む窒化珪素焼結体において、該焼
結体中に含まれるSi以外の金属イオンMと酸素イオン
Oとのモル比が、M:O=1:2〜1:3の範囲内にあ
り、かつ該焼結体がJCPDSカード31−1462の
X線回折パターンと同一と同定されるYSiON形態
の結晶を実質的に含まない結晶からなることを特徴とす
るものである。
Means for Solving the Problems A silicon nitride sintered body of the present invention is a silicon nitride sintered body containing a sintering aid containing Y and Mg as essential components in an amount of 2% by weight or more in terms of MgO. The molar ratio of metal ions M other than Si and oxygen ions O contained in the compact is in the range of M: O = 1: 2 to 1: 3, and the sintered body is a JCPDS card 31-1462. Characterized by a crystal substantially not containing a YSiO 2 N form crystal identified as the same as the X-ray diffraction pattern of the above.

【0006】[0006]

【作用】上述した構成において所定範囲の酸素を含むY
およびMgを必須成分とする焼結助剤を含んだ窒化珪素
調製粉末を使用して得た酸素含有量の多い窒化珪素焼結
体が、酸化による体積膨張が大きな結晶相は生ぜず、高
い耐酸化特性および高い高温強度特性を有する。すなわ
ち、酸素含有量の多い焼結体組成ほど耐酸化特性が良好
になるが、あまり多すぎるとその粒界相が十分に結晶化
せずガラス相が残存するため、高温強度の高くない焼結
体となる。従ってSiOに換算して4.5〜7.5w
t%の酸素を含有する窒化珪素粉末を含んだ窒化珪素調
製粉末を使用し、焼結体中に含まれるSi以外の金属イ
オンMと酸素イオンOとのモル比がM:O=1:2〜
1:3の範囲に入る焼結体を得た。なお、本発明におい
て酸素含有量をSiOの量に換算して表わしたのは、
焼結助剤および不純物の量まで考慮すると酸素含有量だ
けを実際に規定することが困難になるためである。粒界
結晶にYSiON形態の結晶を含まないようにするの
は、これを含むと酸化により体積膨張の大きな結晶相を
生じ、この時クラックを生じ破壊してしまうからであ
る。
In the above-described structure, Y containing a predetermined range of oxygen is used.
A silicon nitride sintered body having a high oxygen content obtained by using a silicon nitride preparation powder containing a sintering aid containing Mg and Mg as an essential component does not produce a crystal phase having a large volume expansion due to oxidation, and has a high acid resistance. And high-temperature strength characteristics. That is, the oxidation resistance is better as the composition of the sintered body has a higher oxygen content. However, if the composition is too much, the grain boundary phase is not sufficiently crystallized and the glass phase remains, so that the sintering with low high-temperature strength is not performed. Be a body. Therefore, in terms of SiO 2 4.5~7.5w
Using a silicon nitride preparation powder containing silicon nitride powder containing t% oxygen, the molar ratio of metal ions M other than Si and oxygen ions O contained in the sintered body was M: O = 1: 2. ~
A sintered body falling within the range of 1: 3 was obtained. In the present invention, the expression of the oxygen content in terms of the amount of SiO 2 is as follows.
This is because it is difficult to actually define only the oxygen content when considering the amounts of the sintering aid and the impurities. The reason why the YSiO 2 N type crystal is not included in the grain boundary crystal is that, if it is included, a crystal phase having a large volume expansion is generated by oxidation, and at this time, a crack is generated and destroyed.

【0007】また、原料としてSiO2に換算して4.5 〜7.
5wt %という従来市販の原料より多い酸素含有量を達成
するには、原料を所定の条件で仮焼するか後述するスラ
リー加温法を行って得ると好適である。原料粉末あるい
はスラリー状態にて酸素含有量を増加させるのは、均一
な酸素含有量の分布を持つ焼結体を得るためである。す
なわち、成形体を仮焼して酸素含有量を増加させること
も考えられるがこの場合、酸化される層が表面のみに限
られ、中まで充分に酸化しない。これに対して粉末ある
いはスラリーを酸化させた場合、空気あるいは水の拡
散、分散が充分であるため、均一な酸化反応が進行する
とともに、後工程の混合工程により、さらに均一な成形
体及び焼結体を得ることができるためである。また本発
明において仮焼温度を800 〜1200℃と規定したのは、80
0 ℃以下だと原料が酸化せず所定の酸素含有量を達成で
きないと共に、1200℃以上だと酸化しすぎてしまい同様
に所定の酸素含有量を達成できないためである。また、
スラリー加温時の温度を50〜150 ℃と規定したのは、50
℃以下だと酸化反応が進行せず所定の酸素含有量を達成
できないと共に、150 ℃以上だとスラリーが乾燥してし
まい同様に反応が進行しなくなるためである。
[0007] In addition, in terms of SiO 2 as a raw material from 4.5 to 7.
In order to achieve an oxygen content of 5 wt%, which is higher than that of a conventional commercially available raw material, it is preferable that the raw material be calcined under predetermined conditions or obtained by a slurry heating method described later. The reason for increasing the oxygen content in the raw material powder or slurry state is to obtain a sintered body having a uniform oxygen content distribution. That is, it is conceivable to calcine the molded body to increase the oxygen content. In this case, however, the layer to be oxidized is limited to only the surface and does not sufficiently oxidize to the middle. On the other hand, when the powder or slurry is oxidized, diffusion or dispersion of air or water is sufficient, so that a uniform oxidation reaction proceeds, and a more uniform compact and sintering are performed by a mixing process in a later step. Because you can get your body. In the present invention, the calcination temperature is specified to be 800 to 1200 ° C.
If the temperature is lower than 0 ° C., the raw material does not oxidize and a predetermined oxygen content cannot be achieved, and if the temperature is higher than 1200 ° C., the raw material is excessively oxidized and the predetermined oxygen content cannot be achieved. Also,
The temperature at which the slurry was heated was specified as 50 to 150 ° C.
If the temperature is lower than 150 ° C., the oxidation reaction does not proceed and a predetermined oxygen content cannot be achieved. If the temperature is higher than 150 ° C., the slurry dries and the reaction does not progress similarly.

【0008】さらに、所定量のSiO2を含む窒化珪素調製
粉末から作製した窒化珪素焼結体は、焼結体中に含まれ
るSi以外の金属イオンMと酸素イオンOとのモル比が、
M:O=1:2〜1:3の範囲内の従来よりは高い範囲
の酸素量を含み、それを含むと耐酸化特性が著しく悪化
するJCPDSカード31- 1462のX線回折パターンと同
一と同定されるYSiO2N形態の結晶を実質的に含まない耐
酸化特性が良好で高い高温強度を有する窒化珪素焼結体
を得ることができる。
Further, in a silicon nitride sintered body produced from a silicon nitride preparation powder containing a predetermined amount of SiO 2 , the molar ratio of metal ions M other than Si and oxygen ions O contained in the sintered body is
M: O = 1: 2 to 1: 3, containing an oxygen content in a higher range than before and containing the same oxygen content as the X-ray diffraction pattern of JCPDS card 31-1462, in which the oxidation resistance is significantly deteriorated. It is possible to obtain a silicon nitride sintered body having good oxidation resistance and high high-temperature strength, which is substantially free of the identified YSiO 2 N form crystal.

【0009】さらに、焼結助剤中にCeを加えた場合
は、Mg+Ceの添加でさらに焼結しやすくなるため好
ましい。
Further, when Ce is added to the sintering aid, it is preferable to add Mg + Ce to facilitate sintering.

【0010】[0010]

【実施例】以下、本発明における窒化珪素焼結体の作製
方法について説明する。まず、市販の窒化珪素原料を処
理して、4.5〜7.5wt%のSiOを含む窒化珪
素原料粉末とYおよびMgをMgO換算で2重量%以上
を必須成分とする焼結助剤とからなる窒化珪素調製粉末
を準備する。この調製法としては、市販の窒化珪素原料
を800〜1200℃の温度で適当時間仮焼する方法
や、スラリー状態の原料を50〜150℃で6時間〜1
日スラリー状態のまま加温するスラリー加温法が好適で
ある。上述した調製時の粉砕法としては、湿式のアトリ
ッションミル、ボールミル、振動ミル等が好適である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a method for manufacturing a silicon nitride sintered body according to the present invention will be described. First, a commercially available silicon nitride raw material is treated, and a silicon nitride raw material powder containing 4.5 to 7.5 wt% of SiO 2 and a sintering aid containing Y and Mg as essential components in an amount of 2% by weight or more in terms of MgO. Is prepared. Examples of the preparation method include a method of calcining a commercially available silicon nitride raw material at a temperature of 800 to 1200 ° C. for an appropriate time or a method of preparing a raw material in a slurry state at 50 to 150 ° C. for 6 hours to 1 hour.
A slurry heating method in which the slurry is heated in the state of a slurry day is preferable. As the pulverization method at the time of the preparation described above, a wet attrition mill, a ball mill, a vibration mill, or the like is preferable.

【0011】次に、得られた窒化珪素調製粉末をスプレ
ードライヤ等の方法で乾燥した後、ラバープレス、射出
成形等の方法により成形して所望の成形体を得る。さら
に、得られた成形体を好ましくは1650〜1800℃の温度で
焼成して、所定の高い耐酸化特性と高い高温強度を有す
る窒化珪素焼結体を得る。
Next, the obtained silicon nitride preparation powder is dried by a method such as a spray dryer, and then molded by a method such as rubber pressing or injection molding to obtain a desired molded body. Further, the obtained molded body is preferably fired at a temperature of 1650 to 1800 ° C. to obtain a silicon nitride sintered body having predetermined high oxidation resistance and high high-temperature strength.

【0012】以下、実際の例について説明する。実施例1 第1図に示す本実施例のフローチャートにそって説明す
ると、まず市販の窒化珪素原料を第1表に示す条件で仮
焼した後、YおよびMgをMgO換算で2重量%以上を
必須成分とし、Ceを適当量含む焼結助剤とともに湿式
アトリッションミルにより湿式粉砕し、第1表に示す種
々の組成の窒化珪素調製粉末を得た。次に、得られた窒
化珪素調製粉末をスプレードライヤにより乾燥した後、
ラバープレスにより60×60×7mmの直方体形状に
成形して成形体を得た。さらに、得られた成形体をN
雰囲気、1750℃の条件で焼成して、所望の試験片を
得た。
Hereinafter, an actual example will be described. Example 1 According to the flowchart of this example shown in FIG. 1 , first, after commercially available silicon nitride raw material was calcined under the conditions shown in Table 1, Y and Mg were reduced to 2% by weight or more in terms of MgO. The mixture was wet-pulverized with a wet attrition mill together with a sintering aid containing an appropriate amount of Ce as an essential component to obtain silicon nitride preparation powders having various compositions shown in Table 1. Next, after drying the obtained silicon nitride preparation powder with a spray dryer,
It was molded into a rectangular parallelepiped shape of 60 × 60 × 7 mm by a rubber press to obtain a molded body. Further, the obtained molded body was N 2
The desired test piece was obtained by firing at 1750 ° C. in an atmosphere.

【0013】得られた試験片に対し、X線回折法により
YSiO2N形態の結晶の有無を確認し、さらに結晶体中に含
まれるSi以外の金属イオンと酸素イオンとのモル比、12
00℃におけるJIS R-1601「ファインセラミックスの曲げ
強さ試験法」に準ずる四点曲げ強度および耐酸化特性と
して800 ℃、100 時間保持後の破壊の有無をそれぞれ測
定した。結果を表1に示す。なお表1の耐酸化特性中、
○は800 ℃、100 時間保持後も破壊しなかったものを、
×は800 ℃、100 時間以内で破壊したものを示す。
The obtained test piece was subjected to X-ray diffraction.
The presence or absence of crystals in the form of YSiO 2 N was confirmed, and the molar ratio of metal ions other than Si and oxygen ions contained in the crystal, 12
The four-point bending strength in accordance with JIS R-1601 "Bending strength test method of fine ceramics" at 00 ° C and the presence or absence of breakage after holding at 800 ° C for 100 hours were measured as oxidation resistance properties. Table 1 shows the results. In the oxidation resistance characteristics in Table 1,
○ indicates that the sample did not break even after holding at 800 ° C for 100 hours.
× indicates that it was destroyed within 800 hours at 800 ° C.

【0014】[0014]

【表1】 [Table 1]

【0015】表1の結果から明らかなように、本発明の
範囲内の試料はすべて良好な耐酸化特性と共に高い高温
強度を有しているのに対し、一つでも本発明の条件を満
たしていない試料は所定の耐酸化特性又は高温強度を満
たさなかった。
As is clear from the results in Table 1, all the samples within the scope of the present invention have good oxidation resistance and high high-temperature strength, but at least one of them satisfies the conditions of the present invention. None of the samples did not meet the required oxidation resistance or high temperature strength.

【0016】実施例2 第2図に示す本実施例のフローチャートにそって説明す
ると、まず市販の窒化珪素原料とYおよびMgをMgO
に換算して2重量%以上を必須成分としMg,Ceを適
当量含む焼結助剤とを湿式アトリッションミルにより湿
式粉砕し、第2表に示す種々の温度に所定時間保持して
スラリー加温処理して第2表に示す種々の組成の窒化珪
素調製粉末を得た。次に、得られた窒化珪素調製粉末を
スプレードライヤにより乾燥した後、ラバープレスによ
り60×60×7mmの直方体形状に成形して成形体を
得た。さらに、得られた成形体をN雰囲気、1750
℃の条件で焼成して、所望の試験片を得た。
Embodiment 2 Referring to the flow chart of this embodiment shown in FIG. 2, first, a commercially available silicon nitride raw material and Y and Mg are converted into MgO
And a sintering aid containing an appropriate amount of Mg and Ce containing 2% by weight or more as an essential component and wet-pulverized by a wet attrition mill. Heating treatment was performed to obtain silicon nitride preparation powders having various compositions shown in Table 2. Next, the obtained silicon nitride preparation powder was dried by a spray dryer, and then molded into a rectangular parallelepiped shape of 60 × 60 × 7 mm by a rubber press to obtain a molded body. Further, the obtained molded body was placed in an N 2 atmosphere, 1750
Firing was performed under the condition of ° C. to obtain a desired test piece.

【0017】得られた試験片に対し、X線回折法により
YSiO2N形態の結晶の有無を確認し、さらに結晶体中に含
まれるSi以外の金属イオンと酸素イオンとのモル比、12
00℃におけるJIS R-1601「ファインセラミックスの曲げ
強さ試験法」に準ずる四点曲げ強度および耐酸化特性と
して800 ℃、100 時間保持後の破壊の有無をそれぞれ測
定した。結果を表2に示す。なお表2の耐酸化特性中、
○は800 ℃、100 時間保持後も破壊しなかったものを、
×は800 ℃、100 時間以内で破壊したものを示す。
The obtained test piece was subjected to an X-ray diffraction method.
The presence or absence of crystals in the form of YSiO 2 N was confirmed, and the molar ratio of metal ions other than Si and oxygen ions contained in the crystal, 12
The four-point bending strength in accordance with JIS R-1601 "Bending strength test method of fine ceramics" at 00 ° C and the presence or absence of breakage after holding at 800 ° C for 100 hours were measured as oxidation resistance properties. Table 2 shows the results. In the oxidation resistance properties in Table 2,
○ indicates that the sample did not break even after holding at 800 ° C for 100 hours.
× indicates that it was destroyed within 800 hours at 800 ° C.

【0018】[0018]

【表2】 [Table 2]

【0019】表2の結果から明らかなように、本発明の
範囲内の試料はすべて良好な耐酸化特性と共に高温強度
を有しているのに対し、一つでも本発明の条件を満たし
ていない試料は所定の耐酸化特性又は高温強度を満たさ
なかった。
As is clear from the results in Table 2, all the samples within the scope of the present invention have good oxidation resistance and high temperature strength, but none of them satisfy the conditions of the present invention. The sample did not meet the required oxidation resistance or high temperature strength.

【0020】[0020]

【発明の効果】以上詳細に説明したところから明らかな
ように、本発明の窒化珪素焼結体によれば、従来の含有
量より多い所定量の酸素を含有する窒化珪素調製粉末を
出発原料として窒化珪素焼結体を作製しているため、高
い耐酸化特性および高い高温強度を共に満足する窒化珪
素焼結体を得ることができる。
As is apparent from the above description, according to the silicon nitride sintered body of the present invention, a silicon nitride preparation powder containing a predetermined amount of oxygen larger than the conventional content is used as a starting material. Since the silicon nitride sintered body is manufactured, a silicon nitride sintered body that satisfies both high oxidation resistance and high high-temperature strength can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示すフローチャートであ
る。
FIG. 1 is a flowchart showing one embodiment of the present invention.

【図2】本発明の他の実施例を示すフローチャートであ
る。
FIG. 2 is a flowchart showing another embodiment of the present invention.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭55−3398(JP,A) 特公 昭56−6392(JP,B1) J.of.A.Cer.S.Vol. 63,No.1−2(1980)P.35〜37 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-55-3398 (JP, A) JP-B-56-6392 (JP, B1) of. A. Cer. S. Vol. 1-2 (1980) p. 35-37

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 YおよびMgをMgO換算で2重量%以
上を必須成分とする焼結助剤を含む窒化珪素焼結体にお
いて、該焼結体中に含まれるSi以外の金属イオンMと
酸素イオンOとのモル比が、M:O=1:2〜1:3の
範囲内にあり、かつ該焼結体がJCPDSカード31−
1462のX線回折パターンと同一と同定されるYSi
N形態の結晶を実質的に含まない結晶からなること
を特徴とする窒化珪素焼結体。
1. A silicon nitride sintered body containing a sintering aid containing Y and Mg as essential components in an amount of 2% by weight or more in terms of MgO, wherein metal ions M other than Si and oxygen contained in the sintered body are contained. The molar ratio with ion O is in the range of M: O = 1: 2 to 1: 3, and the sintered body is a JCPDS card 31-
YSi identified as the same as the X-ray diffraction pattern of 1462
A silicon nitride sintered body comprising a crystal substantially containing no O 2 N type crystal.
【請求項2】 前記焼結助剤としてのYをY換算
で5重量%以上含む請求項1記載の窒化珪素焼結体。
2. The silicon nitride sintered body according to claim 1, wherein Y as the sintering aid contains 5% by weight or more in terms of Y 2 O 3 .
【請求項3】 前記焼結肋剤がCeを含む請求項1項記
載の窒化珪素焼結体。
3. The silicon nitride sintered body according to claim 1, wherein said sintered rib contains Ce.
JP4016398A 1992-01-31 1992-01-31 Silicon nitride sintered body Expired - Lifetime JP2577155B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4016398A JP2577155B2 (en) 1992-01-31 1992-01-31 Silicon nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4016398A JP2577155B2 (en) 1992-01-31 1992-01-31 Silicon nitride sintered body

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP61068287A Division JPS62241876A (en) 1986-03-28 1986-03-28 Silicon nitride sintered body and manufacture

Publications (2)

Publication Number Publication Date
JPH0543322A JPH0543322A (en) 1993-02-23
JP2577155B2 true JP2577155B2 (en) 1997-01-29

Family

ID=11915145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4016398A Expired - Lifetime JP2577155B2 (en) 1992-01-31 1992-01-31 Silicon nitride sintered body

Country Status (1)

Country Link
JP (1) JP2577155B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1980000080A1 (en) * 1978-06-15 1980-01-24 Gte Laboratories Inc High strength silicon nitride
DE2925022A1 (en) * 1979-06-21 1981-01-08 Bosch Gmbh Robert BRUSHES

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J.of.A.Cer.S.Vol.63,No.1−2(1980)P.35〜37

Also Published As

Publication number Publication date
JPH0543322A (en) 1993-02-23

Similar Documents

Publication Publication Date Title
US4640903A (en) Silicon nitride sintered bodies and a method for producing the same
JPH07277814A (en) Alumina-based ceramic sintered compact
JP2577155B2 (en) Silicon nitride sintered body
US4818733A (en) Silicon nitride sintered bodies and a method of producing the same
JP2000203933A (en) Production of transparent yttrium/aluminum/garnet sintered body by dry mixing method
US4801414A (en) Production of silicon nitride sintered body
JP3013372B2 (en) Zircon sintered body and method for producing the same
JPH031270B2 (en)
JPH0321500B2 (en)
JPH0460045B2 (en)
JP2687632B2 (en) Method for producing silicon nitride sintered body
JP2927919B2 (en) Crystallizing heat treatment method for silicon nitride sintered body
JPH06287066A (en) Silicon nitride sintered compact and its production
JPH0772105B2 (en) Silicon nitride sintered body and method for manufacturing the same
JPH0585827A (en) Sintered silicon nitride-mixed oxide and its production
JPS63151682A (en) Silicon nitride sintered body and manufacture
JPH02233560A (en) High-strength calcined sialon-based compact
JPH03174364A (en) Silicon nitride-based sintered body
JP3106208B2 (en) Silicon nitride sintered body and method for producing the same
JP2777051B2 (en) Method for producing silicon nitride based sintered body
JP2671539B2 (en) Method for producing silicon nitride sintered body
JP2584996B2 (en) Silicon nitride sintered body
JPS5978972A (en) Manufacture of alumina sintered body
JPH04292466A (en) Silicon nitride sintered compact and its production
JPH0274563A (en) Production of silicon nitride calcined compact

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term