JPH01126276A - Production of ceramic sintered body - Google Patents

Production of ceramic sintered body

Info

Publication number
JPH01126276A
JPH01126276A JP62286346A JP28634687A JPH01126276A JP H01126276 A JPH01126276 A JP H01126276A JP 62286346 A JP62286346 A JP 62286346A JP 28634687 A JP28634687 A JP 28634687A JP H01126276 A JPH01126276 A JP H01126276A
Authority
JP
Japan
Prior art keywords
ceramic powder
metal
ceramic
powder
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62286346A
Other languages
Japanese (ja)
Inventor
Kenji Izumi
泉 賢次
Hiroshi Ishii
宏 石井
Tetsuo Hata
哲郎 秦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inax Corp
Original Assignee
Inax Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inax Corp filed Critical Inax Corp
Priority to JP62286346A priority Critical patent/JPH01126276A/en
Publication of JPH01126276A publication Critical patent/JPH01126276A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate production by mixing an alkoxide compd. of a metal in the form of a nonaqueous soln. with ceramic powder to uniformly stick the compd. of the metal to the surface of the ceramic powder, then sintering the mixture. CONSTITUTION:The alkoxide compd. of the metal such as yttrium is mixed in the form of the nonaqueous soln. of alcohol, etc., uniformly with the ceramic powder. The moisture contained at a small ratio in the nonaqueous soln. and the moisture or OH groups on the surface of the ceramic powder and the alkoxide of the metal react with each other and the yttrium oxide sticks easily and uniformly to the surface of the ceramic powder at this time. This ceramic powder is then sintered to form the ceramic sintered body. The addition of the assistants is executed in a short period of time without subjecting the powder to a mechanical mixing treatment with a ball mill, etc., and, therefore, the production of the ceramic sintered body is facilitated.

Description

【発明の詳細な説明】 利用分野 本発明は、セラミック焼結体の製法に関する。[Detailed description of the invention] Field of use The present invention relates to a method for manufacturing a ceramic sintered body.

詳しくは、金属化合物の焼結助剤を混合してセラミック
粉を焼結する工程において、該助剤用金属のアルコキシ
ド化合物の非水性溶液を該セラミック粉に均一混合して
、該セラミック粉表面に該金属の化合物を微細かつ均一
に付着せしめた材料を焼結する、均質なセラミック焼結
体の容易な製法に関する。
Specifically, in the step of sintering ceramic powder by mixing a sintering aid of a metal compound, a non-aqueous solution of an alkoxide compound of the metal for the aid is uniformly mixed with the ceramic powder, and the surface of the ceramic powder is coated. The present invention relates to an easy method for producing a homogeneous ceramic sintered body by sintering a material to which the metal compound is finely and uniformly adhered.

従来の技術および問題点 一般に、セラミックは高温で焼成されるが、その際に焼
結を促進させるために種々の金属化合物が焼結助剤とし
て添加される。各セラミック原料に適当な焼結助剤は、
当業界によく知られている。
Prior Art and Problems Generally, ceramics are fired at high temperatures, and various metal compounds are added as sintering aids to promote sintering. Sintering aids suitable for each ceramic raw material are:
Well known in the industry.

例えばチッ化アルミニウム(以下にAQNということ′
がある)焼結体の製造においては、イツトリウム、アル
カリ土類金属またはランタン族金属等の化合物を0.1
〜10重量%程度添加し1700〜2000℃で焼成さ
れている。焼結助剤は試薬級の粉体であり、焼結を容易
にするため主成分のAQN粉体の粒径も2ミクロン以下
である場合が多い。したがって、主成分であるAQNと
焼結助剤粉体との混合は、困難であり、通常ボールミル
等で長時間混合処理を行わなければならない。アトライ
ター、振動ミルなど高効率の混合機を用いれば混合時間
は短縮できるが、設備的に高価であり、装置からのコン
タミも多くなる。
For example, aluminum nitride (hereinafter referred to as AQN)
) In the production of sintered bodies, compounds such as yttrium, alkaline earth metals, or lanthanum group metals are
It is added in an amount of about 10% by weight and fired at 1700 to 2000°C. The sintering aid is a reagent-grade powder, and in order to facilitate sintering, the particle size of the main component, AQN powder, is often 2 microns or less. Therefore, it is difficult to mix AQN, which is the main component, and the sintering aid powder, and usually requires a long mixing process using a ball mill or the like. Mixing time can be shortened by using a highly efficient mixer such as an attritor or a vibration mill, but the equipment is expensive and contamination from the equipment increases.

第4図は、湿式ボールミル混合法による焼結助剤の添加
実験の結果を示す混合時間とAQN焼結体の嵩比重の関
係図である。ナイロン製ボールミル容器に5mm、12
199.5%のアルミナボールを用い、n−ブタノール
を溶媒とした。A、!N原料は東芝セラミック製を用い
、焼結助剤はY t O3を3重量%とした。このよう
にしてボールミルで混合されたスラリーを乾燥し、10
0 MPaで単軸加圧成形し、チッ素雰囲気下にて18
00℃で2時間焼成した。焼成体の嵩比重はアルキメデ
ス法で測定した。緻密な焼成体を得るのに約72時間混
合しなければならず、Δf2Nセラミックの製造工程上
大きな制約となる。しかも装置からのコンタミも多く、
アルミナボールの摩耗成分は主成分であるAl2N原料
の約5ffiffi%にも達する(72時間混合にて)
FIG. 4 is a diagram showing the relationship between the mixing time and the bulk specific gravity of the AQN sintered body, showing the results of a sintering aid addition experiment using a wet ball mill mixing method. 5mm, 12 in a nylon ball mill container
199.5% alumina balls were used, and n-butanol was used as the solvent. A,! The N raw material was manufactured by Toshiba Ceramics, and the sintering aid was 3% by weight of Y t O3. The slurry thus mixed in a ball mill was dried and
Uniaxial pressure molding at 0 MPa and 18
It was baked at 00°C for 2 hours. The bulk specific gravity of the fired body was measured by the Archimedes method. It takes about 72 hours of mixing to obtain a dense fired body, which is a major constraint on the manufacturing process of Δf2N ceramics. Moreover, there is a lot of contamination from the equipment.
The abrasion component of alumina balls reaches approximately 5ffiffi% of the main component Al2N raw material (after 72 hours of mixing)
.

上記の問題点は、他のセラミック焼結体の製造において
も全く同様である。すなわち、ボールミル混合等による
機械的な助剤添加法は、ミクロ的に不均一になる可能性
があり、セラミックスの内部不均一の原因になりやすい
。従ってセラミックの製造において、焼結助剤が十分に
均一に混合でき、しかも短時間で処理でき、コンタミも
少なく、特殊な装置が不要な方法が必要視されていた。
The above problems are exactly the same in the production of other ceramic sintered bodies. That is, mechanical additive addition methods such as ball mill mixing may result in microscopic non-uniformity, which is likely to cause internal non-uniformity in the ceramic. Therefore, in the production of ceramics, there has been a need for a method that allows the sintering aid to be sufficiently and uniformly mixed, that can be processed in a short time, that causes less contamination, and that does not require special equipment.

問題点を解決するための手段 本発明者は、該焼結助剤の金属のアルコキシド化合物の
非水性溶液を焼結性セラミック粉に均一混合し、該セラ
ミック粉表面に存在するOH基および/または付着水の
作用によって微細な金属化合物を析出等によって付着さ
せそして乾燥して該セラミック粉表面に均一に付着せし
めた材料が、上記の焼結体の製法に極めて有利であるこ
とを見出した。
Means for Solving the Problems The present inventor uniformly mixed a non-aqueous solution of a metal alkoxide compound of the sintering aid into sinterable ceramic powder, and solved the OH groups and/or It has been found that a material in which a fine metal compound is deposited by precipitation or the like under the action of deposited water and dried to be uniformly deposited on the surface of the ceramic powder is extremely advantageous for the above method of manufacturing the sintered body.

従って本発明によって、焼結性セラミック粉に金属化合
物の焼結助剤を混合して焼結する方法において:該金属
のアルコキシド化合物を実質的に非水性溶液の形態にて
該セラミック粉と均一混合し、そして該セラミック粉の
表面に該金属の化合物を微細かつ均一に付着せしめた材
料を焼結することを特徴とする、セラミック焼結体の製
法が提供される。なお、上記の「実質的に非水性溶液」
とは、該非水性溶剤中に含有される僅かな水分等によっ
て溶液中に金属化合物微粉子が若干析出している溶液も
使用できる意味である。
Therefore, according to the present invention, in a method of mixing a sinterable ceramic powder with a sintering aid of a metal compound and sintering the mixture, the alkoxide compound of the metal is homogeneously mixed with the ceramic powder in the form of a substantially non-aqueous solution. There is also provided a method for producing a ceramic sintered body, which is characterized by sintering a material in which the metal compound is finely and uniformly adhered to the surface of the ceramic powder. In addition, the above-mentioned "substantially non-aqueous solution"
This means that a solution in which a small amount of metal compound fine particles are precipitated in the solution due to a small amount of water contained in the non-aqueous solvent can also be used.

発明の詳しい記述 本発明にて使用される金属アルコキシド化合物のアルコ
キシル基部分としては、非水性溶剤(例えば相当するア
ルコール)に容易に溶解するものが使用される。例えば
炭素数が1〜5程度の低級アルコキシドが有利に使用で
きるが、特に限定はされない。通常はエトキシドまたは
イソプロポキシドが用いられる。
DETAILED DESCRIPTION OF THE INVENTION As the alkoxyl moiety of the metal alkoxide compound used in the present invention, one that is easily soluble in a non-aqueous solvent (for example, a corresponding alcohol) is used. For example, lower alkoxides having about 1 to 5 carbon atoms can be advantageously used, but are not particularly limited. Usually ethoxide or isopropoxide is used.

一般に金属のアルコキシドは、加水分解によって金属酸
化物またはその水和物となるが、本発明では特別に水を
アルコキシドに加えることは行わない。AQNを例とし
て記述するとA(!N粉体の表面のOH基および付着水
分を利用して、A12N粒子表面に酸化イツトリウムを
形成させている。第1図の説明図に示すようにAf2N
粒子表面にY、03が形成されるとηえられる。すなわ
ち、ACN粉体ニ限うず実質的にすべてのセラミック用
粉体は、大気中の水分により表面に付着水またはOH基
の存在が認められている。AQN粉も第2図に示す赤外
線吸収スペクトルの分析結果により、表面にOH基が存
在していることが明らかになっている。
Generally, metal alkoxides become metal oxides or hydrates thereof through hydrolysis, but in the present invention, water is not specifically added to the alkoxides. To describe AQN as an example, yttrium oxide is formed on the surface of A12N particles using the OH groups and attached moisture on the surface of A(!N powder.
When Y,03 is formed on the particle surface, η is obtained. That is, in virtually all ceramic powders, including ACN powders, it is recognized that water or OH groups are present on the surface due to moisture in the atmosphere. The analysis results of the infrared absorption spectrum shown in FIG. 2 reveal that the AQN powder also has OH groups on its surface.

また溶媒として使用したエタノール中にも小債の水分が
含まれているため、これらの水分とイツトリウムエトキ
シドが反応し、イツトリウムの酸化物が形成されること
も考えられる。なお、セラミック用粉体に加水分解され
ていない金属アルコキシドが付着して残存していても、
差支えない。
In addition, since the ethanol used as a solvent also contains moisture in the small bonds, it is possible that this moisture reacts with yttrium ethoxide to form yttrium oxide. Furthermore, even if unhydrolyzed metal alkoxide remains on the ceramic powder,
No problem.

本発明のアルコキシドを用いた助剤添加の場合、湿式ボ
ールミル等の方法よりも、短時間で混合が行われる。す
なわち、セラミックの粉体同士の混合は、微細な粒子は
ど粒子間相互作用が大きく、一部で凝集し易く完全な分
散状態は得にくいため、均一な混合が行いにくい。しか
し金属アルコキシドを用いた場合、イツトリウムエトキ
シドがエタノール中で均一に実質的に溶液状に分散して
おりAf2N粉体に対しても容易に均一に分I牧する。
In the case of adding an auxiliary agent using the alkoxide of the present invention, mixing can be carried out in a shorter time than by a method such as a wet ball mill. That is, when mixing ceramic powders with each other, it is difficult to achieve uniform mixing because the interaction between fine particles is large and they tend to aggregate in some areas, making it difficult to obtain a complete dispersion state. However, when a metal alkoxide is used, yttrium ethoxide is uniformly and substantially dispersed in solution in ethanol, and is easily and uniformly divided into Af2N powder.

上記においてAffNセラミックの焼結助剤としてイツ
トリウム元素について記述したが、アルカリ土類、ラン
タン族元素等のアルコキシドも同様に適用できる。さら
にA72N以外のセラミックス(例えばZrO*、 5
iJa、 A1*Os、 SiC,Ti1t等)におい
て、同様に本発明が適用できる。
Although yttrium element has been described above as a sintering aid for AffN ceramics, alkoxides of alkaline earth elements, lanthanum group elements, etc. can be similarly applied. Furthermore, ceramics other than A72N (e.g. ZrO*, 5
The present invention is similarly applicable to iJa, A1*Os, SiC, Tilt, etc.).

なお、本発明に従って微細な金属化合物(例えば粒径0
.01−1ミクロン程度)を焼結性セラミック粉表面上
に均一に付着させた材料は、(イ)常温にて加圧・成形
した後に焼結するか(ロ)高温加圧焼成して焼結するか
、(ハ)いわゆるHIP焼結する等の公知の方法によっ
て容易に焼結できる。
In addition, according to the present invention, fine metal compounds (for example, particle size 0
.. The material in which particles (approximately 0.01-1 micron) are uniformly adhered to the surface of sinterable ceramic powder can be either (a) sintered after being pressurized and shaped at room temperature, or (b) sintered by high-temperature pressure firing. or (c) it can be easily sintered by a known method such as so-called HIP sintering.

実施例 AIN原料として、徳山曹達(株)製Fグレード粉体を
使用した。焼結助剤としては、高純度化学研究新製のイ
ツトリウムエトキシドを用いた。
Example F grade powder manufactured by Tokuyama Soda Co., Ltd. was used as an AIN raw material. As the sintering aid, yttrium ethoxide manufactured by Kojundo Kagaku Kenkyushin was used.

表Iに示す所定mのイツトリウムエトキシドを100m
σのエチルアルコール クスターラーで30分撹拌して溶液2を得た。
100 m of yttrium ethoxide of the specified m shown in Table I
Solution 2 was obtained by stirring for 30 minutes with a σ ethyl alcohol stirrer.

アルミナ製ポットに該溶成〆およびA12N粉体(表1
の通り)を投入し、20時間混合した。こうして得られ
たスラリーを乾燥後、12 mmφの金型を用いtoo
 MPaでプレス成形した。該成形体を、カーボンるつ
ぼ中でチッ素雰囲気下1800℃で2時間焼成した。焼
成体のかさ比重等を表2に示す。
The melted finish and A12N powder were placed in an alumina pot (Table 1).
) and mixed for 20 hours. After drying the slurry thus obtained, it was molded using a 12 mm diameter mold.
Press molding was performed at MPa. The molded body was fired at 1800° C. for 2 hours in a nitrogen atmosphere in a carbon crucible. Table 2 shows the bulk specific gravity of the fired body.

/INのかさ密度は約3.26であるから、十分緻密な
/INセラミックが得られたことが確認された。
Since the bulk density of /IN was approximately 3.26, it was confirmed that a sufficiently dense /IN ceramic was obtained.

孝」− 原料組成(全体を約100gとして) AIN−YtO+   Y(QC,H5)3   AI
NO,5重量%     0.9924g     9
9.5g1、0重量%     1.9848g   
  99.0g3、0重量%     5.9543g
     97.0g表2 焼結体 0、5重量% 10113% 3,Q重量%吸水率(1
)  1.65   0.77   0.71かさ比重
  3.11   3.20   3.24第3図に、
得られたA12N焼結体の粉末X線回折(XRD)パタ
ーンを示す。なお、イツトリウム元素として同当量の酸
化イツトリウムを従来法である湿式ボールミルにて72
時間混合し、同様に焼結したA12N焼結体も同様なX
RDパターンを示すことを確認した。
- Raw material composition (total about 100g) AIN-YtO+ Y(QC,H5)3 AI
NO, 5% by weight 0.9924g 9
9.5g1, 0% by weight 1.9848g
99.0g3, 0% by weight 5.9543g
97.0gTable 2 Sintered body 0,5 wt% 10113% 3,Q wt% water absorption rate (1
) 1.65 0.77 0.71 Bulk specific gravity 3.11 3.20 3.24 In Figure 3,
The powder X-ray diffraction (XRD) pattern of the obtained A12N sintered body is shown. In addition, the same amount of yttrium oxide as the yttrium element was prepared using a wet ball mill, which is a conventional method.
The A12N sintered body mixed for a time and sintered in the same manner also had the same
It was confirmed that it showed an RD pattern.

作用および効果 本発明において、焼結助剤の金属のアルコキシド化合物
の非水性溶液を焼結性セラミック粉に均一混合し、該セ
ラミック粉表面に存在するOH基および/または付着水
を利用して微細な金属化合物を析出等によって該セラミ
ック粉表面に均一に付着せしめる作用によって、下記の
ような優れた代表的な効果が達成される。
Functions and Effects In the present invention, a non-aqueous solution of a metal alkoxide compound as a sintering aid is uniformly mixed with sinterable ceramic powder, and fine particles are formed by using the OH groups and/or adhering water on the surface of the ceramic powder. By the action of uniformly adhering a metal compound to the surface of the ceramic powder by precipitation or the like, the following excellent typical effects can be achieved.

すなわち、(1)焼結助剤を十分均一に混合することが
できるため、通常のボールミル混合に比べ、短時間で処
理ができる。(2)原理的に液相反応で助剤添加をする
ため、ミクロ的に均一な混合状態が得られる。(3)特
殊な装置を使わずに混合操作が行える。(4)均一な混
合のため添加する焼結助剤は必要最小限で済むので、助
剤量を減らすことができる。(5)助剤添加操作以外は
、通常の操作がそのまま適用できる。(6)本発明によ
り製造したA72Nセラミックスは、十分に緻密化およ
び均質化しており、従来法と比較して同等以上の品質が
得られる。
That is, (1) since the sintering aid can be mixed sufficiently uniformly, the processing can be completed in a shorter time than in normal ball mill mixing. (2) Since the auxiliary agent is added by a liquid phase reaction in principle, a microscopically uniform mixing state can be obtained. (3) Mixing operations can be performed without using special equipment. (4) The amount of sintering aid added can be reduced to the minimum necessary for uniform mixing, so the amount of the aid can be reduced. (5) Except for the operation of adding the auxiliary agent, the usual operations can be applied as they are. (6) The A72N ceramics produced according to the present invention are sufficiently densified and homogenized, and the quality equivalent to or higher than that obtained by conventional methods can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明における焼結助剤添加の説明図である
。第2図は、チッ化アルミニウム粉の水分を示す赤外線
吸収スペクトルである。第3図は、本発明によるチッ化
アルミニウム焼結体の粉末X線回折パターンである。第
4図は、従来法にょるヂッ化アルミニウム焼結体のかさ
比重と混合時間の関係を示すグラフである。 特許出願人   株式会社 イナックス第1図 第2図 第3図 第4図 o2oPaI7aPoii。 混合時間
FIG. 1 is an explanatory diagram of the addition of a sintering aid in the present invention. FIG. 2 is an infrared absorption spectrum showing the moisture content of aluminum nitride powder. FIG. 3 is a powder X-ray diffraction pattern of the aluminum nitride sintered body according to the present invention. FIG. 4 is a graph showing the relationship between bulk specific gravity and mixing time of a sintered aluminum didide body according to a conventional method. Patent applicant Inax Co., Ltd. Figure 1 Figure 2 Figure 3 Figure 4 o2oPaI7aPoii. mixing time

Claims (2)

【特許請求の範囲】[Claims] (1)焼結性セラミック粉に金属化合物の焼結助剤を混
合して焼結する方法において;該金属のアルコキシド化
合物を実質的に非水性溶液の形態にて該セラミック粉と
均一混合し、そして該セラミック粉の表面に該金属の化
合物を微細かつ均一に付着せしめた材料を焼結すること
を特徴とする、セラミック焼結体の製法。
(1) In a method of mixing a sinterable ceramic powder with a sintering aid of a metal compound and sintering it; homogeneously mixing the metal alkoxide compound with the ceramic powder in the form of a substantially non-aqueous solution; A method for producing a ceramic sintered body, characterized by sintering a material in which the metal compound is finely and uniformly adhered to the surface of the ceramic powder.
(2)焼結性セラミック粉がチッ化アルミニウムである
、特許請求の範囲第1項の製法。
(2) The manufacturing method according to claim 1, wherein the sinterable ceramic powder is aluminum nitride.
JP62286346A 1987-11-11 1987-11-11 Production of ceramic sintered body Pending JPH01126276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62286346A JPH01126276A (en) 1987-11-11 1987-11-11 Production of ceramic sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62286346A JPH01126276A (en) 1987-11-11 1987-11-11 Production of ceramic sintered body

Publications (1)

Publication Number Publication Date
JPH01126276A true JPH01126276A (en) 1989-05-18

Family

ID=17703198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62286346A Pending JPH01126276A (en) 1987-11-11 1987-11-11 Production of ceramic sintered body

Country Status (1)

Country Link
JP (1) JPH01126276A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01317155A (en) * 1988-03-04 1989-12-21 Mitsubishi Kasei Corp Production of ceramic compact
JPH02233546A (en) * 1989-03-07 1990-09-17 Mitsubishi Kasei Corp Ceramic material and production of ceramic using the same
JPH04362066A (en) * 1991-06-10 1992-12-15 Toshiba Corp Production of ceramic sintered body
JP2009235181A (en) * 2008-03-26 2009-10-15 Hitachi Metals Ltd Method for manufacturing fluorescent material
JP2013512794A (en) * 2009-12-02 2013-04-18 セラムテック ゲゼルシャフト ミット ベシュレンクテル ハフツング Functional extrudate made of high thermal conductive ceramic

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56149378A (en) * 1980-04-21 1981-11-19 Toyota Motor Co Ltd Manufacture of silicon nitride sintered body
JPS60210574A (en) * 1984-03-30 1985-10-23 工業技術院長 Manufacture of high strength heat-resistant ceramic sinteredbody
JPS61251578A (en) * 1985-04-30 1986-11-08 住友電気工業株式会社 Manufacture of silicon nitride sintered body
JPS61251571A (en) * 1985-04-26 1986-11-08 日立金属株式会社 Manufacture of ceramic formed body
JPS61281069A (en) * 1985-06-05 1986-12-11 日立金属株式会社 Manufacture of ceramic sintered body
JPS6221764A (en) * 1985-07-18 1987-01-30 住友電気工業株式会社 Manufacture of aluminum nitride
JPS62235262A (en) * 1986-04-07 1987-10-15 住友電気工業株式会社 Manufacture of aluminum nitride sintered body
JPS63242972A (en) * 1987-03-31 1988-10-07 株式会社東芝 Manufacture of aluminum nitride sintered body

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56149378A (en) * 1980-04-21 1981-11-19 Toyota Motor Co Ltd Manufacture of silicon nitride sintered body
JPS60210574A (en) * 1984-03-30 1985-10-23 工業技術院長 Manufacture of high strength heat-resistant ceramic sinteredbody
JPS61251571A (en) * 1985-04-26 1986-11-08 日立金属株式会社 Manufacture of ceramic formed body
JPS61251578A (en) * 1985-04-30 1986-11-08 住友電気工業株式会社 Manufacture of silicon nitride sintered body
JPS61281069A (en) * 1985-06-05 1986-12-11 日立金属株式会社 Manufacture of ceramic sintered body
JPS6221764A (en) * 1985-07-18 1987-01-30 住友電気工業株式会社 Manufacture of aluminum nitride
JPS62235262A (en) * 1986-04-07 1987-10-15 住友電気工業株式会社 Manufacture of aluminum nitride sintered body
JPS63242972A (en) * 1987-03-31 1988-10-07 株式会社東芝 Manufacture of aluminum nitride sintered body

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01317155A (en) * 1988-03-04 1989-12-21 Mitsubishi Kasei Corp Production of ceramic compact
JPH02233546A (en) * 1989-03-07 1990-09-17 Mitsubishi Kasei Corp Ceramic material and production of ceramic using the same
JPH04362066A (en) * 1991-06-10 1992-12-15 Toshiba Corp Production of ceramic sintered body
JP2009235181A (en) * 2008-03-26 2009-10-15 Hitachi Metals Ltd Method for manufacturing fluorescent material
JP2013512794A (en) * 2009-12-02 2013-04-18 セラムテック ゲゼルシャフト ミット ベシュレンクテル ハフツング Functional extrudate made of high thermal conductive ceramic

Similar Documents

Publication Publication Date Title
Lee et al. Crystallization and densification of nano‐size amorphous cordierite powder prepared by a PVA solution‐polymerization route
Awano et al. Grinding effects on the synthesis and sintering of cordierite
JPH0829975B2 (en) Alumina-based ceramics sintered body
JPH09142936A (en) Si3n4 ceramic, si-base composition for producing the same and their production
Lee et al. Synthesis and characterization of nanocrystalline MgAl 2 O 4 spinel by polymerized complex method
JP2506852B2 (en) Ceramic abrasive product, manufacturing method thereof, and surface grinding method
JP2005306635A (en) Coated alumina particle, alumina formed body, alumina sintered compact and method of manufacturing them
JPS62167209A (en) Alpha-sialon powder and its production
JPS62223009A (en) Production of alpha-sialon powder
JPH01126276A (en) Production of ceramic sintered body
Rasmussen et al. Processing of yttria powders derived from hydroxide precursors
US5439851A (en) Process for coating ceramic powder with alumina by sol-gel process and improved densification
JPH07215707A (en) Large sized aluminum nitride powder and its production
US5362691A (en) Sintered material based on Si3 N4 and processes for its production
JPS63285175A (en) Production of ceramic sintered material
JPH05117039A (en) Aluminum nitride-based powder and its production
JPH08198664A (en) Alumina-base sintered body and its production
JPH04305052A (en) Alpha-alumina-zirconia clad powder and its production
JPH05147924A (en) Production of alumina-silica powder
JP3078462B2 (en) Alumina sintered body and method for producing the same
JPS62297205A (en) Production of aluminum nitride powder
JPH0597523A (en) Production of sintered aluminum nitride
JP3719762B2 (en) Refractories for firing ferrite
JPS63277568A (en) Production of sintered aluminum nitride having high thermal conductivity
JPS63151682A (en) Silicon nitride sintered body and manufacture