JPH03215743A - Analysis of metallic impurity in alf3 - Google Patents

Analysis of metallic impurity in alf3

Info

Publication number
JPH03215743A
JPH03215743A JP1000390A JP1000390A JPH03215743A JP H03215743 A JPH03215743 A JP H03215743A JP 1000390 A JP1000390 A JP 1000390A JP 1000390 A JP1000390 A JP 1000390A JP H03215743 A JPH03215743 A JP H03215743A
Authority
JP
Japan
Prior art keywords
sample
added
alumina
metallic impurities
alf3
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1000390A
Other languages
Japanese (ja)
Other versions
JP2667920B2 (en
Inventor
Seiji Yoshikawa
吉川 征二
Takao Miyoshi
三好 孝雄
Atsufumi Itou
伊藤 淳文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP1000390A priority Critical patent/JP2667920B2/en
Publication of JPH03215743A publication Critical patent/JPH03215743A/en
Application granted granted Critical
Publication of JP2667920B2 publication Critical patent/JP2667920B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

PURPOSE:To analyze metallic impurities by hydrolyzing AlF3 in a specified high-temp. range and wet-decomposing the formed alumina with a mineral acid under high pressure. CONSTITUTION:A sample is placed in a platinum boat 4 and closed by a 'Viton(R)' plug, an electric furnace 3 is energized and kept at 900-1,000 deg.C, a boiler 2 is heated by a heater 1, the generated steam is introduced into the sample, and the sample is hydrolyzed at high temp. At this time, the AlF3 in the sample is mostly decomposed into alpha-alumina, and the generated HF is condensed by a cooler 6 and absorbed by dil. aq. alkali. The alpha-alumina is charged into a wet high-pressure electrolytic cell, sulfuric acid is added, and the cell is closed and kept at a specified temp. for a specified time to dissolve the sample. Water is then added, the sample is transferred to a separatory funnel, a chelating reagent is added to adjust the pH, and then metallic impurities are extracted by an org. solvent MIBK. A mineral acid is added to the extracted org. layer and heated to volatilze the org. layer, hence the metallic impurities are transferred to the mineral acid, the stripped liq. is measured by ETV-ICP-MS, and the metallic impurities are precisely analyzed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、AlF3中の金属不純物の分析方法に関し、
詳しくは光ファイバー等の原料に用いることのできる極
微量の金属不純物を含むAlhに応用することのできる
金属不純物の分析方法に間する. [従来の技術およびその解決すべき諜R]近年、光通信
用石英ファイバーに替わる超低損失光ファイバー用材料
の一つとして主成分がZr,Ba,La,AI,Na,
Li等から成るフン化物ガラスが注目されている. この種のファイバーは伝送帯域の電滋波の波長が2〜3
μmにあり、従ってこの領域に吸収バンドを持つFe,
Ni,Cu,Co等の微量金属不純物の含有量が問題と
なる.超低損失のフッ化物光ファイバーを実現するため
には、原料の段階においてPPbオーダーの金属不純物
を分析できる定量法が必要である. AIF3は、例え高圧湿式分解法を用いても鉱酸によっ
て酸分解することができず、従来は硼酸と炭酸ソーダに
より分解するアルカリ溶融法が行われていたが、分解さ
せるためには試料に対して多量の上記試薬が必要であり
、またこの目的のために使用できるような高純度の試薬
がないため分析下限値が高くなり、高純度のAlF3中
の金属不純物の定量には適当な方法ではなかった. このように、AlF3中の金属不純物の分析については
、PPbオーダーの分析を行う適当な方法が殆ど開発さ
れていないというのが現状であった. [課題を解決するための千段1 本発明者らはこのような現状において、分解しにくいA
IF3を一旦酸化物に変換して溶解させる方法について
検討を行ったところ、高温加水分解によって生じたアル
ミナを湿式高圧分解することにより試料を汚染なく溶解
できることを見いだし、本発明に到達したものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for analyzing metal impurities in AlF3,
In detail, we will discuss a method for analyzing metal impurities that can be applied to Alh, which contains trace amounts of metal impurities and can be used as raw materials for optical fibers and other materials. [Prior art and its secrets to be solved] In recent years, materials whose main components are Zr, Ba, La, AI, Na,
Fluoride glass consisting of Li, etc. is attracting attention. This type of fiber has a transmission band with radio wave wavelengths of 2 to 3.
µm and therefore has an absorption band in this region,
The content of trace metal impurities such as Ni, Cu, and Co is a problem. In order to realize ultra-low loss fluoride optical fibers, a quantitative method that can analyze metal impurities on the order of PPb is required at the raw material stage. AIF3 cannot be acid-decomposed with mineral acids even if a high-pressure wet decomposition method is used, and conventionally an alkaline melting method has been used to decompose it using boric acid and soda carbonate, but in order to decompose it, it is necessary to This method is not suitable for quantifying metal impurities in high-purity AlF3 because a large amount of the above-mentioned reagents are required, and there are no high-purity reagents that can be used for this purpose, resulting in high analytical limits. There wasn't. As described above, with regard to the analysis of metal impurities in AlF3, the current situation is that almost no suitable method for analyzing metal impurities on the order of PPb has been developed. [1,000 Steps to Solving the Problem In this current situation, the inventors have developed an A that is difficult to disassemble.
When we investigated a method for converting IF3 into an oxide and dissolving it, we discovered that a sample could be dissolved without contamination by subjecting alumina produced by high-temperature hydrolysis to wet high-pressure decomposition, which led us to the present invention. .

すなわち本発明は、AIF3を900〜1000℃で高
温加水分解し、生成したアルミナを鉱酸により湿式高圧
分解することを特徴とするAlF3中の金属不純物の分
析方法を提供するものである.本発明において、ρpb
オーダーより濃度の高い金属不純物の分析についてはよ
り簡単に実施することができるのは言うまでもないので
、本発明においては、ρpbオーダーの金属不純物の分
析について詳述する. すなわち、本発明を実施するためには、環境からの汚染
、分析容器からの汚染、試薬からの汚染を十分考慮にい
れ、これらを極力防ぐ必要がある.本発明の場合、最終
的には加熱気化装買付の誘導結合プラズマ源質量分析装
置(以後はETViCP−MSと略す。)を使用して溶
液中の金属の定量を行うわけであるが、装!自体の能力
としては1ρpb以下の測定が十分可能であるので、上
記の汚染を定置下限の十分の一以下、すなわち数1)P
bの分析を行うためにはその十分の一以下に汚染を抑え
る必要がある。
That is, the present invention provides a method for analyzing metal impurities in AlF3, which is characterized by subjecting AIF3 to high-temperature hydrolysis at 900 to 1000°C and subjecting the produced alumina to wet high-pressure decomposition using mineral acid. In the present invention, ρpb
It goes without saying that analysis of metal impurities with a concentration higher than that of the ρpb order can be carried out more easily, so in the present invention, analysis of metal impurities of the ρpb order will be described in detail. In other words, in order to carry out the present invention, it is necessary to fully take into account contamination from the environment, contamination from analysis containers, and contamination from reagents, and to prevent these as much as possible. In the case of the present invention, metals in a solution are ultimately determined using an inductively coupled plasma source mass spectrometer (hereinafter abbreviated as ETViCP-MS) equipped with a thermal vaporization device. ! Since its own ability is sufficient to measure 1ρpb or less, the above contamination can be reduced to less than one-tenth of the lower limit of emplacement, that is, equation 1) P
In order to conduct the analysis of b., it is necessary to suppress contamination to less than one-tenth of that level.

まず、環境からの汚染を抑えるためには、分析をクリー
ンルーム内やクリーンベンチを用いることはもちろん、
ETV−ICP−MS装置も上記設備内で使用する必要
がある. 次に試薬からの汚染については、試薬を精製することに
よって、試薬ブランク値を極力低下させた条件下で分析
する必要があり、そのためには精密分析用の試薬を更に
精製して使用するのがよ《、クエン酸ソーダ、ピロリジ
ンジチオカルバミン酸アンモニウム(以後、APDCと
略記する.)等の場合は、メチルイソプチルケトン(以
後MIBKと略記する.)等の有機溶媒による洗浄を行
うことにより、硫酸や硝酸等の鉱酸は非沸騰式薫留等に
より試薬の精製ができる.とのような方法で、トータル
の各金属不純物の量をQ. lppb以下程度にまで低
下できる.容器からの混入については、十分な酸洗浄、
超純水での洗浄を長時間、または繰り返し行うことによ
り分析に影響しない程度まで除去できる. このように、様々な汚染を極力抑えることにより、数P
Pbの金属不純物の分析は十分行えるものであるが、さ
らに環境からの汚染、試薬からの汚染をより厳密にシャ
ノトアウトすれば、PPb以下の分析も可能となる. 本発明に係る分析方法は、試料の高温加水分解、湿式高
圧分解処理による試料の溶解、溶媒抽出、逆抽出、ET
V−TCP−MSによる測定の各項目に分けられるが、
以下それぞれの各項目に従って詳細に説明する. まず試料の高温加水分解であるが、この場合第1図に示
すような装置を用いて行う.第1図において、1はヒー
ター 2は水莫気を発生させるためのボイラー 3は電
気炉、4ば試料を入れるための白金ボート、5は白金管
、6は冷却器である.5の白金管は図面では省略してあ
るが、白金管だけでは形を保持することが難しいので、
石英管の中に白金管を入れて二重構造とし、異形ジョイ
ントで白金管を固定している.また、白金管と冷却器の
連結は、バイトン製の栓を用いて行っているが、テフロ
ン製異形ジョイントによって連結してもよい。
First of all, in order to suppress contamination from the environment, analysis must be conducted in a clean room or on a clean bench.
ETV-ICP-MS equipment must also be used within the above facility. Next, regarding contamination from reagents, it is necessary to purify the reagents and analyze them under conditions that reduce the reagent blank value as much as possible.To do this, it is necessary to further purify reagents for precision analysis before using them. In the case of sodium citrate, ammonium pyrrolidine dithiocarbamate (hereinafter abbreviated as APDC), etc., sulfuric acid or Mineral acids such as nitric acid can be purified into reagents by non-boiling fumigation. Calculate the total amount of each metal impurity using a method such as Q. It can be reduced to less than lppb. For contamination from containers, thoroughly wash with acid,
By washing with ultrapure water for a long time or repeatedly, it can be removed to the extent that it does not affect analysis. In this way, by suppressing various types of pollution as much as possible, we can reduce the number of P
Although the analysis of metal impurities in Pb can be carried out satisfactorily, if contamination from the environment and contamination from reagents is more strictly excluded, analysis of PPb and lower levels will become possible. The analysis method according to the present invention includes high-temperature hydrolysis of a sample, dissolution of the sample by wet high-pressure decomposition treatment, solvent extraction, back extraction, and ET.
It can be divided into each item measured by V-TCP-MS,
Each item will be explained in detail below. First, the sample is subjected to high-temperature hydrolysis, which is carried out using an apparatus such as the one shown in Figure 1. In Figure 1, 1 is a heater, 2 is a boiler for generating water vapor, 3 is an electric furnace, 4 is a platinum boat for holding the sample, 5 is a platinum tube, and 6 is a cooler. The platinum tube shown in No. 5 is omitted in the drawing, but it is difficult to maintain the shape with just a platinum tube, so
A platinum tube is placed inside a quartz tube to create a double structure, and the platinum tube is fixed with a deformed joint. Further, although the platinum tube and the cooler are connected using a plug made of Viton, they may be connected by a deformed joint made of Teflon.

加水分解は下記の化学式により進行する.2 AIF,
 +3 H20  → AhOa + 6 8Fここで
、試料を入れるボートおよび5の管に白金を用いたのは
、高温で発生する}IFに対して金属が溶出しないよう
な耐食性を有する材質でなければならないからである。
Hydrolysis proceeds according to the chemical formula below. 2 AIF,
+3 H20 → AhOa + 6 8F Here, platinum was used for the boat containing the sample and the tube in step 5 because the material must have corrosion resistance so that the metal does not elute against IF, which occurs at high temperatures. It is.

加水分解を行う温度は900〜1000゜Cであり、こ
の温度で5〜6時間加熱を続けることにより約98%の
分解率でα−アルミナとなり、前記化合物は後述するよ
うに鉱酸による湿式高圧処理で容易に溶解する.加水分
解温度が900゜Cより低い場合、一部に未分解のAI
F3が存在して酸に溶解しにくくなるため好ましくない
.一方、1000゜Cより高い温度では、高温のため白
金管が軟化してくるため好ましくない.発生するHFは
、水、またはアルカリ等に吸収すればよい。
The temperature for hydrolysis is 900 to 1000°C, and by continuing heating at this temperature for 5 to 6 hours, α-alumina is obtained with a decomposition rate of about 98%. Easily dissolved by processing. When the hydrolysis temperature is lower than 900°C, some undecomposed AI
This is not preferred because the presence of F3 makes it difficult to dissolve in acids. On the other hand, temperatures higher than 1000°C are undesirable because the platinum tube becomes soft due to the high temperature. The generated HF may be absorbed into water, alkali, or the like.

反応が終了した後、生成したα−アルミナの一部を分取
して、次の湿式高圧分解用の試料とする。
After the reaction is completed, a portion of the produced α-alumina is separated and used as a sample for the next wet high-pressure decomposition.

湿式高圧分解の工程においては、前工程の試料に塩酸、
硝酸、硫酸等の絋酸を加えた後、湿式高圧分解を行い、
固体の試料を溶液化させる操作を行う。加える鉱酸とし
ては、硫酸が最も好ましい. 分解後のα−アルミナの採取量としては、金属不純物量
がpPbオーダーの場合0.6g程度でよく、不純物濃
度が高い場合は、採取量もさらに少なくしてよい.湿式
高圧分解の工程としては、まず試料を正確に秤量し、テ
フロン製の湿式高圧分解ルツボ(内容積70−)にとり
、硫酸<1”3) 10−を加えた後蓋をして密閉し、
200〜230℃で15〜16時間保つ.このような条
件により試料の粒径が大きく、砂状のものでも溶解する
ことができる.また、耐圧容器は金属等の溶出による汚
染を避けるため、少なくとも液に接触する部分はテフロ
ン、その他溶出の心配のない材質を使用する必要がある
. 上記の操作により溶解した液は、水を添加しつつl00
−のテフロン製分液ロートに移し、0.5Mのクエン酸
ソーダおよび1 w/v%のAPDCの混合溶液を加え
、さらにアンモニア等の試薬が必要な場合にはそれらを
用いてPHを4〜5に調節した後全量を501+7とす
る.その際メチルオレンジ等の指示薬によりPHを調整
すればPHメーター等の計測器なしでも簡単にできる. 上記操作で、キレート試薬であるAPDCを添加しその
後PH調節を行ったのは、溶液中の不純物金属を選択的
にキレート化し、後工程の抽出により遺沢的にMIBK
中に不純物金属を抽出するためであり、上記条件下で主
成分のアルミニウムはキレート化されずに水溶液中に残
り、Fe, CoNi, Cu等の金属が完全にMIB
K層中に移行することを確認した. 次に有機溶媒による溶媒抽出においては、使用する溶媒
としては、MIBK,ジイソブチルケトン、クロロホル
ム、その他溶媒抽出に普通使用される溶媒は何でも使用
できるが、使用する溶媒量が少なくても効率よく抽出で
きること、および後で述べる逆抽出操作において蒸発し
やすいこと等の条件を考えると、MI BKが好ましい
In the wet high-pressure decomposition process, hydrochloric acid,
After adding nitric acid, sulfuric acid, etc., wet high pressure decomposition is performed.
Perform an operation to turn a solid sample into a solution. The most preferable mineral acid to be added is sulfuric acid. The amount of α-alumina to be collected after decomposition may be about 0.6 g if the amount of metal impurities is on the order of pPb, and if the impurity concentration is high, the amount to be collected may be even smaller. The wet high-pressure decomposition process involves first weighing the sample accurately, placing it in a Teflon wet high-pressure decomposition crucible (inner volume 70-), adding sulfuric acid <1"3) 10-, and then sealing it with a lid.
Keep at 200-230℃ for 15-16 hours. Under these conditions, the particle size of the sample is large and even sand-like particles can be dissolved. In addition, in order to avoid contamination due to the elution of metals, etc., pressure-resistant containers must be made of Teflon or other materials that do not have to worry about elution, at least in the parts that come into contact with the liquid. The solution dissolved by the above operation is mixed with 100% water while adding water.
- Transfer to a Teflon separatory funnel, add a mixed solution of 0.5M sodium citrate and 1 w/v% APDC, and if necessary, use reagents such as ammonia to adjust the pH to 4-4. After adjusting to 5, make the total amount 501+7. At this time, you can easily adjust the pH using an indicator such as methyl orange without using a measuring device such as a PH meter. In the above operation, the chelating reagent APDC was added and the pH was adjusted afterward to selectively chelate the impurity metals in the solution and remove the remaining MIBK from the post-process extraction.
Under the above conditions, the main component aluminum remains in the aqueous solution without being chelated, and metals such as Fe, CoNi, and Cu are completely removed from the MIB.
We confirmed that it migrated into the K layer. Next, in solvent extraction using an organic solvent, MIBK, diisobutyl ketone, chloroform, and any other solvent commonly used for solvent extraction can be used, but extraction can be performed efficiently even if the amount of solvent used is small. MI BK is preferable in consideration of conditions such as , and ease of evaporation in the back extraction operation described later.

MIBKを用いた場合、その使用量は3 d程度で十分
であり、このミクロ抽出により金属不純物をマトリソク
スから分離すると同時に、金属不純物の濃縮効果もある
.この操作によって抽出される金属はFe, Ni, 
Co, Cu, Mn, Cr, Pb等である. 次に、有機溶媒中の金属不純物の逆抽出であるが、ET
V−ICP−MSによる分析時において直接MIBK溶
液を用いると、原子蒸気化およびプラズマ化の過程で不
安定要素が多く、金属不純物の分析精度が水溶液に比べ
て悪くなる.そこで、本発明においては抽出した有機層
に鉱酸を加えて加熱することにより有機層を完全に揮散
させ、金属不純物を鉱酸中に移行させる.MIBKを使
用した場合は、100〜120゜Cで加熱することによ
り完全に揮散させることができ、この際キレート剤の分
解もみられるので、この逆抽出液をETVICP−MS
で測定することにより、金属不純物を精度よく分析する
ことができる.この際、添加する0.7Nの希硝酸は2
−でよく、その後水で5−の定容とすればよい.これら
の操作中に使用する水は、超純水であることは言うまで
もない.次にETV−ICP−MSによる測定であるが
、加熱気化装置とは試料中の水分、有機物、Feと同質
量のArOを除去し原子無気の状態で試料をプラズマイ
オン化工程に送り込む装置であり、これにより水(主と
して酸素)や有機物による妨害を著し《低減することが
でき、ETV−ICP−MSでの高感度の分析が可能と
なる.ETV−ICP−MSにおいては、測定する金属
をイオン化した後、質量分析部に導いて質量分析を行う
もので、これによりFe, Ni, Co, Cu等の
PPbオーダーの分析を行うことができる. [実施例] 以下、実施例により本発明を具体的に説明するが、本発
明は係る実施例に限定されるものではない. 実施例 1−1.本発明の実施例で使用する試薬、器具、装置. ■金属標準溶液:原子吸光用試薬を希硝#(約0. I
N)で希釈して用いる。
When MIBK is used, the amount used is about 3 d, and this micro-extraction not only separates metal impurities from the matrix, but also has the effect of concentrating the metal impurities. The metals extracted by this operation are Fe, Ni,
These include Co, Cu, Mn, Cr, and Pb. Next, for back extraction of metal impurities in organic solvent, ET
If a MIBK solution is used directly during analysis by V-ICP-MS, there are many unstable elements in the atomic vaporization and plasma formation processes, and the accuracy of metal impurity analysis becomes worse than when using an aqueous solution. Therefore, in the present invention, mineral acid is added to the extracted organic layer and heated to completely volatilize the organic layer and transfer the metal impurities into the mineral acid. When MIBK is used, it can be completely volatilized by heating at 100 to 120°C, and at this time, decomposition of the chelating agent is also observed, so this back extract was subjected to ETVICP-MS.
Metal impurities can be analyzed with high precision by measuring with . At this time, the 0.7N dilute nitric acid added is 2
- and then adjust the volume to 5- with water. It goes without saying that the water used during these operations is ultrapure water. Next, we will measure by ETV-ICP-MS, and the heating vaporization device is a device that removes moisture, organic matter, and ArO with the same mass as Fe in the sample, and sends the sample in an atomic state to the plasma ionization process. As a result, interference caused by water (mainly oxygen) and organic substances can be significantly reduced, making highly sensitive analysis possible with ETV-ICP-MS. In ETV-ICP-MS, the metal to be measured is ionized and then guided to a mass spectrometry section for mass spectrometry. This allows analysis of PPb-order metals such as Fe, Ni, Co, and Cu. [Examples] The present invention will be specifically explained below with reference to Examples, but the present invention is not limited to these Examples. Example 1-1. Reagents, instruments, and devices used in the examples of the present invention. ■Metal standard solution: Add the atomic absorption reagent to diluted nitric acid # (approximately 0.I
Use by diluting with N).

■クエン酸ソーダ(0.5M ) 一APDC(lii
t%)溶液(試薬Aとする.):全容1000−とじ、
これを精製するためにMIBK200 a(を加えて振
盪し、MIBK層を除去する.この操作を3回繰り返す
.■硫酸、硝酸:非沸騰方式の蒸留法により精製したも
のを使用. ■湿式高圧分解容器:テフロン製内容積70*1、ステ
ンレス製ジャケット、最高耐圧(350kg/ cd)
■超純水:本発明の実施例においては比抵抗値が18M
Ω/C■(25℃)以上の超純水を総て使用.■分液ロ
一ト:テフロン製全容100 mf、流水口の先端より
約1鶴φ×50鶴のポリエチレン製管を装着したものを
使用. ■溶媒揮散容器:テフロン製全容10■!ビーカー■メ
スアノブ容器:標線付きポリエチレン製管(10fiφ
)全容10.l ■加熱気化装置付ICP−MS装置:セイコー電子工業
■製SPQ−6100型 [相]クリーンベンチ、クリーンルーム:クリーンベン
チ(クラス100以下)、クリーンルーム(クラス10
00〜10000 )の設備を使用.l−2、操作 (11  A I F 3の高温加水分解第1図に示す
ような装置を用い、AIF3の高温加水分解を行った.
ここで、1はヒーター2は水蒸気を導入するためのボイ
ラー、3は電気炉、4は試料を入れるための白金ボート
、5は試料から発生するフン酸(HF)により不純物金
属が溶出するのを防ぐための白金製の管であり、6は発
生したHFを凝縮させるための冷却器である.発生した
HFは、冷却器で凝縮するが一部蒸気で排出される場合
もあり、これらを水または低濃度のアルカリで吸収し、
フッ素電極等でその量を測定することにより、AIF3
の分解率を測定することができる. まず、白金ボートに試料を約2g秤りとり、第1図のよ
うな位置に置き、バイトン栓で図のように密閉する.次
に、電気炉3を通電して昇温し、所定の温度とした後、
ヒーターlにより加熱してボイラー2の水蒸気を試料に
導入することにより、高温加水分解を行う. この操作により試料のAlhは、フッ酸とアルミナに分
解されるわけであるが、この高温加水分解反応を行う際
の温度により AIF3の分解率が異なることがわかっ
たので、加水分解を行う温度を変化させて発生した}I
Fを低濃度のアルカリ(KO}!)に吸収させ、フッ素
電極によりフッ素濃度を測定し、この値より排出された
フッ素量を求め、さらにAIFzの分解率を計算した.
結果を第1表に記す. 第 1 表 この表より、900〜1000℃で高温加水分解すれば
、ほとんど分解されα−アルミナとなることがわかる. (2)  分解後のα−アルミナ約0.6gを秤量して
湿式高圧分解容器にとり、硫酸(1÷3) 10a(を
加えて蓋をして密閉後、恒温槽に入れて230℃で16
時間保持する.放冷後、水を用いて内容液をテフロン製
100dの分液ロートに移し入れ、試薬Aを10一加え
、メチルオレンジ指示薬(0.1w/v%)2〜3滴を
加え、微黄色を呈するまでアンモニア水(1+9)を滴
下した後、全容を50−とする. 約lO分間静置後、この溶液にMIBK3−を加えて3
分間振盪し、約1時間静置する.水層は除去し、MIB
K層を溶媒揮散容器に移し入れて0.7Nの硝#2−を
加え、約100〜120゜Cに加温してMILKを揮散
させる.残液をメスアップ容器に移し入れ水で全容5−
に合わす.この溶液20μlを加熱気化装置に導入し、
ETV−ICP−MSにより各イオン強度を測定する.
予め作成した検量線より各金属の量を求め、下記のfi
l式より各金属含有量を夏出する。
■Sodium citrate (0.5M) - APDC (lii
t%) solution (referred to as reagent A): total volume 1000-bound,
To purify this, add MIBK200 a and shake to remove the MIBK layer. Repeat this operation three times. ■ Sulfuric acid, nitric acid: Use those purified by non-boiling distillation method. ■ Wet high-pressure decomposition Container: Teflon inner volume 70*1, stainless steel jacket, maximum pressure resistance (350 kg/cd)
■Ultra pure water: In the example of the present invention, the specific resistance value is 18M
Use ultrapure water with a temperature of Ω/C■ (25℃) or higher. ■Separating funnel: A Teflon funnel with a total volume of 100 mf and a polyethylene pipe of approximately 1 mm diameter x 50 mm attached from the tip of the water outlet. ■Solvent volatilization container: Teflon total 10■! Beaker ■ Female knob container: Polyethylene tube with marked line (10fiφ
) Full details 10. ■ ICP-MS device with heating vaporization device: Seiko Electronics Industry ■ SPQ-6100 model [phase] Clean bench, clean room: Clean bench (class 100 or less), clean room (class 10)
00-10000) equipment is used. 1-2. Operation (11 High-temperature hydrolysis of AIF3 AIF3 was subjected to high-temperature hydrolysis using the apparatus shown in Figure 1.
Here, 1 is a heater 2 is a boiler for introducing steam, 3 is an electric furnace, 4 is a platinum boat for putting the sample, and 5 is a heater for preventing impurity metals from being eluted by hydrofluoric acid (HF) generated from the sample. This is a platinum tube to prevent this, and 6 is a cooler to condense the generated HF. The generated HF is condensed in a cooler, but some of it may also be emitted as steam, which is absorbed with water or a low concentration of alkali.
By measuring the amount with a fluorine electrode etc., AIF3
The decomposition rate of can be measured. First, weigh approximately 2 g of the sample into a platinum boat, place it in the position shown in Figure 1, and seal it with a Viton stopper as shown. Next, after energizing the electric furnace 3 to raise the temperature to a predetermined temperature,
High-temperature hydrolysis is performed by heating with heater 1 and introducing steam from boiler 2 into the sample. Through this operation, Alh in the sample is decomposed into hydrofluoric acid and alumina, but it was found that the decomposition rate of AIF3 differs depending on the temperature at which this high-temperature hydrolysis reaction is performed, so the temperature at which the hydrolysis is performed is Generated by changing}I
F was absorbed into a low concentration of alkali (KO}!), the fluorine concentration was measured using a fluorine electrode, the amount of fluorine discharged was determined from this value, and the decomposition rate of AIFz was calculated.
The results are shown in Table 1. Table 1 From this table, it can be seen that if high temperature hydrolysis is carried out at 900 to 1000°C, most of the material will be decomposed into α-alumina. (2) Weigh out approximately 0.6 g of α-alumina after decomposition, put it in a wet high-pressure decomposition container, add 10a of sulfuric acid (1÷3), seal it with a lid, and put it in a constant temperature bath at 230℃ for 16 hours.
Keep time. After cooling, the contents were transferred to a 100 d Teflon separating funnel using water, 10 parts of reagent A was added, 2 to 3 drops of methyl orange indicator (0.1 w/v%) were added, and the mixture turned slightly yellow. Add aqueous ammonia (1+9) dropwise until the mixture becomes 50-. After standing for about 10 minutes, MIBK3- was added to this solution.
Shake for a minute and let stand for about 1 hour. Remove the aqueous layer and MIB
Transfer the K layer to a solvent volatilization container, add 0.7N nitrate #2, and heat to approximately 100-120°C to volatilize MILK. Transfer the remaining liquid to a volumetric container and fill with water 5-
Match. Introducing 20 μl of this solution into a heating vaporizer,
Measure each ion intensity by ETV-ICP-MS.
Determine the amount of each metal from the calibration curve prepared in advance, and use the following fi
Calculate the content of each metal using the l formula.

各金属の含有量(ppb>をXとすると、X (ppb
)= [各金属量(ng/d ) x 5 ]/[(α
−アルミナ採取量> X 2 X84(AIF3)/1
02(AI203)]・・・(1)式(11において2
 X84(AIF3)/102(AI203 )はAl
203を分解前のAIF3に換夏したもので、α−アル
ミナ採取量はgである. 上記の操作を試料だけでなく、試料にFe,Ni,Cu
,Coの金属標準溶液をそれぞれ50ng添加したもの
、試料にFe,Ni,Cu,Coの金属標準溶液をそれ
ぞれ100ng添加したものについても同様な操作を行
い、その時の分析値より回収率を求めた.その結果、試
料の回収率が95%以上であることを確認し、十分PP
bオーダーの分析ができることがわかった.上記操作は
すべてクリーンベンチ内で行い、クリーンルーム内でE
TV−ICP−MSによる測定も行った. [発明の効果コ 本発明の分析法によれば、AlF3中の金属不純物につ
き、%、pp■オーダーの分析が簡単にできることは勿
論、PPbオーダーまで正確に分析できるので、超高純
度のAIFzの製造研究を進める上で、極めて有益な分
析方法である.
If the content of each metal (ppb> is X, then
) = [Amount of each metal (ng/d) x 5 ]/[(α
- Amount of alumina collected > X 2 X84 (AIF3)/1
02(AI203)]...(1) In formula (11, 2
X84 (AIF3)/102 (AI203) is Al
203 was cooled to AIF3 before decomposition, and the amount of α-alumina collected was gram. The above operation is applied not only to the sample but also to the sample containing Fe, Ni, Cu.
, Co and 50 ng of each of the standard metal solutions of Fe, Ni, Cu, and Co were added to the sample, and 100 ng of each of the metal standard solutions of Fe, Ni, Cu, and Co were added to the sample.The same operation was performed, and the recovery rate was determined from the analytical values at that time. .. As a result, it was confirmed that the sample recovery rate was over 95%, and sufficient PP
It turns out that b-order analysis is possible. All the above operations are performed in a clean bench, and the E
Measurements by TV-ICP-MS were also performed. [Effects of the Invention] According to the analytical method of the present invention, it is possible to easily analyze metal impurities in AlF3 on the order of % and pp. This is an extremely useful analytical method for manufacturing research.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の高温加水分解を行うための装置の一
例を示したものである.
FIG. 1 shows an example of an apparatus for performing high-temperature hydrolysis according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] (1)AlF_3を900〜1000℃で高温加水分解
し、生成したアルミナを鉱酸により湿式高圧分解するこ
とを特徴とするAlF_3中の金属不純物の分析方法。
(1) A method for analyzing metal impurities in AlF_3, which is characterized by subjecting AlF_3 to high-temperature hydrolysis at 900 to 1000°C and subjecting the produced alumina to wet high-pressure decomposition using mineral acid.
JP1000390A 1990-01-19 1990-01-19 A1F Method for separating metallic impurities in bottom 3 Expired - Lifetime JP2667920B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1000390A JP2667920B2 (en) 1990-01-19 1990-01-19 A1F Method for separating metallic impurities in bottom 3

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1000390A JP2667920B2 (en) 1990-01-19 1990-01-19 A1F Method for separating metallic impurities in bottom 3

Publications (2)

Publication Number Publication Date
JPH03215743A true JPH03215743A (en) 1991-09-20
JP2667920B2 JP2667920B2 (en) 1997-10-27

Family

ID=11738244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1000390A Expired - Lifetime JP2667920B2 (en) 1990-01-19 1990-01-19 A1F Method for separating metallic impurities in bottom 3

Country Status (1)

Country Link
JP (1) JP2667920B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019109053A1 (en) * 2019-04-05 2020-10-08 Rwe Power Ag Method and device for determining chemical element contents and bond forms in a material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019109053A1 (en) * 2019-04-05 2020-10-08 Rwe Power Ag Method and device for determining chemical element contents and bond forms in a material

Also Published As

Publication number Publication date
JP2667920B2 (en) 1997-10-27

Similar Documents

Publication Publication Date Title
JP3051023B2 (en) Processing method and apparatus for high-precision analysis of impurities in siliconaceous analysis sample
KR100225832B1 (en) Method and apparatus for etching the silicon material
JP3768442B2 (en) Analytical sample preparation method and element quantification method
JPH09257669A (en) Method for analyzing amount of impurity in silicon dioxide
Luke et al. Photometric Determination of Traces of Boron in Silicon. After Separation by Hydrothermal Refining Technique
Venkaji et al. Determination of tin, bismuth, antimony, indium, gallium and arsenic by solvent extraction cum atomic absorption spectrophotometry
JPH03215743A (en) Analysis of metallic impurity in alf3
Knapp Decomposition methods in elemental trace analysis
JP2010197183A (en) Analysis method of trace element in alloy
JP4877897B2 (en) Method for removing impurities from silicon wafer and analysis method
JP3477216B2 (en) Etching method for ultra-trace metal analysis on silicon wafer surface
JPH0291570A (en) Analysis of transition metal in fluoride
JP2906755B2 (en) Chemical purity evaluation method
Phelan et al. Combined reagent purification and sample dissolution (CORPAD) applied to the trace analysis of silicon, silica and quartz
JP2018009981A (en) Method for quantifying amount of silicon in metal material, method for dissolving metal material including silicon component, and metal material dissolution liquid
JPS622259B2 (en)
JPH0534288A (en) Inorganic substance treatment
JP2001141721A (en) Analytical method of trace metallic impurity
JP2008216178A (en) Analytic method of hydrofluoric acid in aqueous solution containing hydrofluoric acid and silicon compound
Yonehara et al. The photometric determination of minute amounts of iodine in silicate rocks
JPH061265B2 (en) Method for analyzing transition metal in ZrF 2) or HfF 4)
JPH0317552A (en) Method and device for analyzing trace silicon in iron oxide for ferrite
JPS63154945A (en) Analysis of glass
JPH1164318A (en) Method for determining element contained in liquid chemical
Waterbury et al. THE COLORIMETRIC DETERMINATION OF BORON IN ZIRCONIUM HYDRIDE