JP2906755B2 - Chemical purity evaluation method - Google Patents

Chemical purity evaluation method

Info

Publication number
JP2906755B2
JP2906755B2 JP3219729A JP21972991A JP2906755B2 JP 2906755 B2 JP2906755 B2 JP 2906755B2 JP 3219729 A JP3219729 A JP 3219729A JP 21972991 A JP21972991 A JP 21972991A JP 2906755 B2 JP2906755 B2 JP 2906755B2
Authority
JP
Japan
Prior art keywords
chemical solution
wafer
chemical
concentration
metal impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3219729A
Other languages
Japanese (ja)
Other versions
JPH0562958A (en
Inventor
次男 下野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16740063&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2906755(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP3219729A priority Critical patent/JP2906755B2/en
Publication of JPH0562958A publication Critical patent/JPH0562958A/en
Application granted granted Critical
Publication of JP2906755B2 publication Critical patent/JP2906755B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、薬液の純度評価法に関
し、特に薬液中の金属不純物を高感度に分析するための
薬液の純度評価法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for evaluating the purity of a chemical solution, and more particularly to a method for evaluating the purity of a chemical solution for analyzing metal impurities in the chemical solution with high sensitivity.

【0002】[0002]

【従来の技術】LSIの高集積化に伴い、製造プロセス
で使用される材料の高純度化が重要になってきている。
ウェハーのクリーニングを行う洗浄工程で使用される薬
液(純水を含む)の純度は、ウェハーの最終的な清浄度
を左右するため、特に高純度であることが要求される。
今後の超高集積デバイスの製造で使用される薬液中の金
属不純物濃度は、薬液の種類、あるいは元素によっては
1ppb,あるいは0.1ppb以下に抑える必要があ
る。従って、純度を管理するための評価技術には、管理
濃度よりもさらに1桁以上の感度が要求されるため、
0.1ppb、あるいは0.01ppb以下の感度が要
求されることになる。
2. Description of the Related Art As LSIs have become more highly integrated, it has become important to purify materials used in manufacturing processes.
The purity of the chemical solution (including pure water) used in the cleaning process for cleaning the wafer is required to be particularly high because the final cleanliness of the wafer is affected.
The concentration of metal impurities in a chemical used in the production of ultra-highly integrated devices in the future needs to be suppressed to 1 ppb or 0.1 ppb or less depending on the type of chemical or the element. Therefore, the evaluation technique for controlling the purity requires sensitivity that is at least one order of magnitude higher than the control concentration.
A sensitivity of 0.1 ppb or less is required.

【0003】従来、これらの薬液中の金属不純物の分析
は、薬液槽から薬液をサンプリング容器に採取し、原子
吸光、ICP−MSなどの高感度分析装置で分析を行っ
ていた。ほとんどの薬液については、マトリックスの影
響で、直接、分析装置に導入することは困難で、純水で
希釈するか、加熱濃縮によりマトリックス成分を除去す
るなどの前処理操作を行った後、分析を行っていた。
Heretofore, analysis of metal impurities in these chemicals has been performed by collecting a chemical from a chemical tank into a sampling vessel and analyzing it with a high-sensitivity analyzer such as atomic absorption or ICP-MS. It is difficult to introduce most chemicals directly into the analyzer due to the influence of the matrix.After performing pretreatment operations such as diluting with pure water or removing matrix components by heat concentration, the analysis is performed. I was going.

【0004】[0004]

【発明が解決しようとする課題】従来技術においては、
以下のような問題点があった。1)薬液槽からの薬液の
サンプリングは煩雑で、かつ危険を伴いやすいだけでな
く、コンタミネーションの原因になる、2)サンプリン
グ容器自体からの不純物の溶出の可能性がある、3)純
水希釈分析では高感度分析ができない、4)加熱濃縮操
作には、数時間を要し、操作中のかつコンタミネーショ
ンの可能性が高い。従って、従来技術においては、操作
が煩雑で、長時間を要するだけでなく、0.1ppb以
下の高感度分析を行うためにコンタミネーションコント
ロールを厳密に行う必要があり、分析者に高度な分析技
術と熟練が要求されるという問題があった。
In the prior art,
There were the following problems. 1) Sampling of a chemical solution from a chemical solution tank is not only complicated and liable to be dangerous, but also causes contamination. 2) There is a possibility of elution of impurities from the sampling container itself. 3) Pure water dilution The analysis cannot perform high-sensitivity analysis. 4) The heating and concentration operation requires several hours, and there is a high possibility of contamination during the operation. Therefore, in the prior art, the operation is complicated and not only takes a long time, but also it is necessary to strictly control the contamination in order to perform a high-sensitivity analysis of 0.1 ppb or less. There was a problem that skill was required.

【0005】本発明の目的は、従来技術の問題点を解決
し、薬液中の0.1ppb以下の金属不純物の分析が行
え、薬液のサンプリングが不用で、かつ前処理操作が短
時間にかつ簡便に行える薬液の純度評価法を提供するこ
とにある。
An object of the present invention is to solve the problems of the prior art, to analyze metal impurities of 0.1 ppb or less in a chemical solution, to eliminate the need for sampling of a chemical solution, and to perform a pretreatment operation in a short time and simply. It is an object of the present invention to provide a method for evaluating the purity of a chemical solution which can be performed in a short time.

【0006】[0006]

【課題を解決するための手段】前記目的を達成するた
め、本発明に係わる純度評価法においては、表面を清浄
化したシリコンウェハーを薬液に一定時間浸漬した後、
水洗・乾燥し、当該ウェハー表面に付着した金属不純物
を分析するものである。また、ウェハー表面に付着した
金属不純物をフッ酸蒸気で分解し、分解物を回収液で回
収し、当該回収液中の金属不純物を高感度分析装置で分
析するものである。
In order to achieve the above object, in the purity evaluation method according to the present invention, a silicon wafer whose surface has been cleaned is immersed in a chemical solution for a certain period of time.
It is washed and dried to analyze metal impurities attached to the wafer surface. Further, the metal impurities attached to the wafer surface are decomposed by hydrofluoric acid vapor, the decomposed product is collected by a recovery liquid, and the metal impurities in the recovery liquid are analyzed by a high-sensitivity analyzer.

【0007】[0007]

【作用】LSI製造用洗浄液として酸やアルカリと過酸
化水素との混合液、あるいはフッ酸などの薬液が使用さ
れる。シリコンウェハーをこれらの薬液に浸漬するとウ
ェハー表面に金属不純物が付着する。
A mixed solution of an acid or alkali and hydrogen peroxide, or a chemical such as hydrofluoric acid is used as a cleaning liquid for LSI production. When a silicon wafer is immersed in these chemicals, metal impurities adhere to the wafer surface.

【0008】例えば、アンモニア−過酸化水素混合液に
ウェハーを浸漬するとウェハー表面に自然酸化膜が生成
するが、シリコンよりも酸化物生成エンタルピーの大き
いAlやFeなどの元素は、自然酸化膜中に取り込まれ
る形で付着する。また、フッ酸にウェハーを浸漬する
と、表面の自然酸化膜が除去され、金属シリコン面が露
出するため、シリコンよりもイオン化傾向の小さいCu
やAuなどの金属は酸化還元反応によりウェハー表面に
析出し、付着する。
For example, when a wafer is immersed in a mixed solution of ammonia and hydrogen peroxide, a natural oxide film is formed on the wafer surface. Elements such as Al and Fe, which have a larger enthalpy of oxide formation than silicon, are contained in the natural oxide film. Attached in the form of being taken in. Further, when the wafer is immersed in hydrofluoric acid, the natural oxide film on the surface is removed and the metal silicon surface is exposed.
Metals such as Au and Au precipitate and adhere to the wafer surface by an oxidation-reduction reaction.

【0009】ウェハー表面への付着濃度は、薬液中濃度
に対応することがわかっている。従って、薬液中の不純
物濃度のウェハー表面への付着濃度の関係を求めておけ
ば、ウェハー表面の濃度を分析することにより薬液中の
濃度を求められる。
[0009] It has been found that the concentration attached to the wafer surface corresponds to the concentration in the chemical solution. Therefore, if the relationship between the impurity concentration in the chemical solution and the adhesion concentration on the wafer surface is determined, the concentration in the chemical solution can be determined by analyzing the concentration on the wafer surface.

【0010】[0010]

【実施例】次に、本発明について図面を参照して説明す
る。
Next, the present invention will be described with reference to the drawings.

【0011】(実施例1)図1は、本発明の実施例1を
示す評価操作のフローチャート図である。本実施例では
アンモニア−過酸化水素混合液の純度評価例を示す。表
面を清浄化したウェハーを図2に示すように薬液中に浸
漬する。図2において、シリコンウェハー1はウェハー
キャリア2にセットして、薬液槽3内のアンモニア−過
酸化水素混合液4に浸漬する。一定時間浸漬し、水洗・
乾燥後、ウェハー表面に付着した金属不純物濃度を分析
する。分析の前処理操作として、ウェハー表面に付着し
た金属不純物をフッ酸蒸気で分解し、分解物を回収液で
回収し、当該回収液中のAlとFeの濃度を黒鉛炉原子
吸光法(フッ酸蒸気分解−原子吸光法)で分析する。
(Embodiment 1) FIG. 1 is a flowchart of an evaluation operation according to Embodiment 1 of the present invention. In this embodiment, an example of evaluating the purity of an ammonia-hydrogen peroxide mixture will be described. The wafer whose surface has been cleaned is immersed in a chemical solution as shown in FIG. In FIG. 2, a silicon wafer 1 is set on a wafer carrier 2 and immersed in an ammonia-hydrogen peroxide mixed solution 4 in a chemical solution tank 3. Soak for a certain time,
After drying, the concentration of metal impurities attached to the wafer surface is analyzed. As a pre-processing operation of the analysis, metal impurities attached to the wafer surface are decomposed by hydrofluoric acid vapor, the decomposed product is recovered by a recovery solution, and the concentrations of Al and Fe in the recovery solution are measured by a graphite furnace atomic absorption method (hydrofluoric acid). (Vapor decomposition-atomic absorption method).

【0012】アンモニア−過酸化水素混合液中のAlと
Feの濃度のウェハー表面に付着した濃度の関係を図3
に示す。この場合、薬液組成は、NH40H:H20
2:H20=1:1:5で、薬液温度は70℃、浸漬時
間は10分である。両者の間に直線的な相関があり、ウ
ェハー表面濃度から薬液中濃度が簡単に求められる。
FIG. 3 shows the relationship between the concentration of Al and Fe in the ammonia-hydrogen peroxide mixture and the concentration attached to the wafer surface.
Shown in In this case, the chemical composition is NH40H: H20
2: H20 = 1: 1: 5, chemical temperature 70 ° C., immersion time 10 minutes. There is a linear correlation between the two, and the concentration in the chemical solution can be easily obtained from the wafer surface concentration.

【0013】フッ酸蒸気分解−原子吸光法でのAl,F
eの定量下限は各々、2x10の9乗,1×10の9乗
原子/平方センチメートルであることから、図3より本
法での薬液中のこれらの元素の定量下限は0.01pp
bであり、要求レベルを満足する分析感度が得られる。
Al, F by hydrofluoric acid vapor decomposition-atomic absorption method
Since the lower limit of quantification of e is 2 × 10 ninth power and 1 × 10 ninth atom / square centimeter, respectively, the lower limit of quantification of these elements in the chemical solution by this method is 0.01 pp from FIG.
b, an analytical sensitivity satisfying the required level can be obtained.

【0014】ウェハー表面への付着濃度は、浸漬時間に
より変化するが、浸漬時間を一定にすれば再現性があ
る。従って、浸漬時間は任意でよい。本法で分析できる
元素(ウェハー表面に付着する元素)は、上述したよう
にシリコンよりも酸化物生成エンタルピーの大きい元素
に限定されるが、LSI製造上、ウェハー表面に付着し
てデバイス特性を劣化させるのはこれらの元素であり、
薬液純度管理上、これらの元素が分析できればよい。
The adhesion concentration on the wafer surface changes depending on the immersion time, but reproducibility can be obtained by keeping the immersion time constant. Therefore, the immersion time may be arbitrary. The elements that can be analyzed by this method (elements adhering to the wafer surface) are limited to elements having a larger enthalpy of oxide formation than silicon, as described above. However, in LSI manufacturing, they adhere to the wafer surface and deteriorate device characteristics. It is these elements that make
It is sufficient that these elements can be analyzed in order to control the chemical purity.

【0015】本法においては、従来技術の薬液サンプリ
ングに該当するウェハー浸漬操作は通常作業であり、サ
ンプリングで従来問題となった点は解決できた。また、
分析の前処理操作(フッ酸蒸気分解)に要する時間は5
分/サンプル以内であり、前処理時間も数十分の1に短
縮でき、コンタミネーションも大幅に低減できた。
In the present method, the wafer immersion operation corresponding to the prior art chemical solution sampling is a normal operation, and the problems that have conventionally been encountered in sampling can be solved. Also,
The time required for the analysis pretreatment operation (hydrofluoric acid vapor decomposition) is 5
Within minutes / sample, the pretreatment time could be reduced to several tenths, and contamination could be significantly reduced.

【0016】(実施例2)図4は、本発明の実施例2を
示す評価操作のフローチャート図である。本実施例は、
フッ酸の純度評価例を示す。ウェハーを浸漬する薬液が
フッ酸に変わっている以外は、実施例1と同様である。
(Embodiment 2) FIG. 4 is a flowchart of an evaluation operation according to Embodiment 2 of the present invention. In this embodiment,
An example of evaluating the purity of hydrofluoric acid is shown. Example 1 is the same as Example 1 except that the chemical for immersing the wafer is changed to hydrofluoric acid.

【0017】フッ酸中のCu濃度とウェハー表面付着濃
度の関係を図5に示す。この場合、薬液組成は、HF:
H20=1:49、薬液温度は室温、ウェハー浸漬時間
は10分である。
FIG. 5 shows the relationship between the Cu concentration in hydrofluoric acid and the concentration on the wafer surface. In this case, the chemical composition is HF:
H20 = 1: 49, chemical temperature is room temperature, and wafer immersion time is 10 minutes.

【0018】フッ酸蒸気分解法でのCuの定量下限は5
×10の8乗原子/平方センチメートルであることか
ら、本法での薬液中Cuの定量下限は第5図から0.1
ppbであり、要求レベルを満足できる分析感度が得ら
れる。
The lower limit of quantification of Cu by hydrofluoric acid vapor decomposition is 5
Since it is × 10 8 atoms / square centimeter, the lower limit of quantification of Cu in the chemical solution in this method is 0.1 from FIG.
ppb, and an analysis sensitivity that satisfies the required level can be obtained.

【0019】[0019]

【発明の効果】以上説明したように本発明の薬液の純度
評価法によれば、従来問題となっていた薬液槽からの薬
液のサンプリングも不用になり、分析の前処理操作にお
いても、処理時間が5分/サンプル以内と、従来の数十
分の1に短縮でき、コンタミネーションも大幅に低減で
きた。
As described above, according to the method for evaluating the purity of a chemical solution of the present invention, sampling of a chemical solution from a chemical solution tank, which has been a problem in the past, becomes unnecessary, and the processing time can be reduced even in the pre-processing operation for analysis. Was less than 5 minutes / sample, which is one-tenth of the conventional value, and the contamination was significantly reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1を示す評価操作のフローチャ
ート図である。
FIG. 1 is a flowchart illustrating an evaluation operation according to a first embodiment of the present invention.

【図2】実施例1の説明図である。FIG. 2 is an explanatory diagram of the first embodiment.

【図3】実施例1の説明図である。FIG. 3 is an explanatory diagram of the first embodiment.

【図4】本発明の実施例2を示す評価操作のフローチャ
ート図である。
FIG. 4 is a flowchart illustrating an evaluation operation according to a second embodiment of the present invention.

【図5】実施例2の説明図である。FIG. 5 is an explanatory diagram of a second embodiment.

【符号の説明】[Explanation of symbols]

1 シリコンウェハー 2 ウェハーキャリア 3 薬液槽 4 アンモニア−過酸化水素混合液 DESCRIPTION OF SYMBOLS 1 Silicon wafer 2 Wafer carrier 3 Chemical tank 4 Ammonia-hydrogen peroxide mixture

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 表面を清浄化したシリコンウェハーを薬
液に一定時間浸漬した後、水洗・乾燥し、当該ウェハー
表面に付着した金属不純物を分析することを特徴とする
薬液の純度評価法。
1. A method for evaluating the purity of a chemical solution, comprising immersing a silicon wafer having a cleaned surface in a chemical solution for a certain period of time, washing and drying, and analyzing metal impurities attached to the wafer surface.
【請求項2】 ウェハー表面に付着した金属不純物をフ
ッ酸蒸気で分解し、分解物を回収液で回収し、当該回収
液中の金属不純物を高感度分析装置で分析することを特
徴とする請求項1記載の薬液の純度評価法。
2. The method according to claim 1, wherein metal impurities adhering to the wafer surface are decomposed by hydrofluoric acid vapor, the decomposed product is collected by a recovery liquid, and the metal impurities in the recovery liquid are analyzed by a high-sensitivity analyzer. Item 4. A method for evaluating the purity of a drug solution according to Item 1.
JP3219729A 1991-08-30 1991-08-30 Chemical purity evaluation method Expired - Lifetime JP2906755B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3219729A JP2906755B2 (en) 1991-08-30 1991-08-30 Chemical purity evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3219729A JP2906755B2 (en) 1991-08-30 1991-08-30 Chemical purity evaluation method

Publications (2)

Publication Number Publication Date
JPH0562958A JPH0562958A (en) 1993-03-12
JP2906755B2 true JP2906755B2 (en) 1999-06-21

Family

ID=16740063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3219729A Expired - Lifetime JP2906755B2 (en) 1991-08-30 1991-08-30 Chemical purity evaluation method

Country Status (1)

Country Link
JP (1) JP2906755B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8192994B2 (en) 1998-02-10 2012-06-05 Angros Lee H Method of applying a biological specimen to an analytic plate
US6713304B2 (en) 1998-02-10 2004-03-30 Lee H. Angros Method of forming a containment border on an analytic plate
WO2006113523A2 (en) 2005-04-15 2006-10-26 Angros Lee H Analytic substrate coating apparatus and method
CN112713103B (en) * 2021-03-29 2021-06-25 西安奕斯伟硅片技术有限公司 Method for measuring metal content in silicon wafer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5642344A (en) * 1979-09-14 1981-04-20 Fujitsu Ltd Evaluation for wafer washing
JPH01241131A (en) * 1988-03-23 1989-09-26 Oki Electric Ind Co Ltd Removal of resist residue

Also Published As

Publication number Publication date
JPH0562958A (en) 1993-03-12

Similar Documents

Publication Publication Date Title
US5851303A (en) Method for removing metal surface contaminants from silicon
JP4554435B2 (en) Polycrystalline silicon cleaning method
JP3494102B2 (en) Evaluation method of metal impurity concentration in silicon wafer
KR20010052580A (en) Process for monitoring the concentration of metallic impurities in a wafer cleaning solution
JP2906755B2 (en) Chemical purity evaluation method
Prange et al. Determination of trace element impurities in ultrapure reagents by total reflection X-ray spectrometry
JP4857973B2 (en) Method for analyzing polishing slurry of silicon wafer
JP3436123B2 (en) Method for analyzing metal impurities on silicon wafer surface and method for pretreatment thereof
JP3755586B2 (en) Silicon desorption method and silicon wafer impurity analysis method
JP3933090B2 (en) Method for recovering metal impurities from silicon substrate
KR100254015B1 (en) Method for analysis of impurity of semiconductor substrate
JP3331106B2 (en) Method for analyzing impurities in semiconductor thin film or semiconductor substrate
JP2001242052A (en) Method for analyzing impurity in semiconductor substrate or chemicals
JP2004109072A (en) Analysis method for metal impurity in solution
JP3688593B2 (en) Method for analyzing impurities in silicon materials
JP5083089B2 (en) Method for analyzing metal impurities in the surface layer of silicon material
JP2009294091A (en) Analyzing method of contaminant in silicon wafer
JP2006032859A (en) Removal method and analysis method of impurity in silicon wafer
JP4760458B2 (en) Method for analyzing metal contamination of semiconductor wafer storage container
JPH06249764A (en) Preparation of standard sample for analysis of metal contamination on surface of silicon wafer
JP2888957B2 (en) Water evaluation method, pure water production method and its apparatus
JP2002200463A (en) Method for cleaning fluororesin-made instrument
JPH05218164A (en) Method for analyzing impurity on surface of semiconductor silicon substrate
KR20240020124A (en) Metal contamination analysis method of silicon carbide powder
KR100999358B1 (en) Method of estimating the concentration of metal contamination in wafer

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990302