JPH0320829Y2 - - Google Patents

Info

Publication number
JPH0320829Y2
JPH0320829Y2 JP1984003921U JP392184U JPH0320829Y2 JP H0320829 Y2 JPH0320829 Y2 JP H0320829Y2 JP 1984003921 U JP1984003921 U JP 1984003921U JP 392184 U JP392184 U JP 392184U JP H0320829 Y2 JPH0320829 Y2 JP H0320829Y2
Authority
JP
Japan
Prior art keywords
mixer
silver halide
aqueous solution
stirring blade
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1984003921U
Other languages
Japanese (ja)
Other versions
JPS60117834U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP392184U priority Critical patent/JPS60117834U/en
Publication of JPS60117834U publication Critical patent/JPS60117834U/en
Application granted granted Critical
Publication of JPH0320829Y2 publication Critical patent/JPH0320829Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】[Detailed explanation of the idea]

本考案はハロゲン化銀写真乳剤の製造装置に関
し、更に詳細には粒径分布が狭く、粒子晶癖の均
一なハロゲン化銀粒子を製造することができるハ
ロゲン化銀写真乳剤の製造装置に関するものであ
る。粒径分布の狭い、均一晶癖のハロゲン化銀写
真乳剤の製造装置として、米国特許第3145650号
明細書、英国特許第1323464号明細書、米国特許
第3692283号明細書、特公昭55−10545号公報等に
開示された技術が知られている。 これらの装置は、水溶性銀塩及び水溶性ハロゲ
ン塩の均一な反応条件を生みだすために、さらに
は、ハロゲン化銀写真乳剤の製造工程の簡易化を
図るために考案され、混合器の形状、撹拌装置の
形状、ハロゲン塩水溶液および銀塩水溶液の供給
方式等に改良を加えたものである。しかしながら
これらの技術では反応容器内全体における液の循
還流の均一性に欠ける等の欠点により充分に粒径
分布が狭く粒子晶癖の均一なハロゲン化銀粒子を
製造することは困難である。一方、特開昭57−
92524号公報には反応容器内全体における液の循
環流の均一化を改善する技術が開示されている。
この技術にもとずくハロゲン化銀写真乳剤製造装
置を第1図、第2図及び第3図に示す。保護コロ
イド水溶液が満たされている反応容器1中に、そ
の内部に該保護コロイド水溶液が満たされる如く
設けられた混合器2を有し、該混合器にその下端
部開放端21からハロゲン塩水溶液と銀塩水溶液
とを供給管3,3′を通じて別々に供給し、該両
反応液を混合器2中の保護コロイド水溶液により
各々稀釈し、前記混合器2に設けられた撹拌翼4
によつて両反応液を急激に撹拌混合して反応せし
め、ハロゲン化銀粒子を生成させ、ただちに前記
混合器2の上方開放端22、さらに上方開放端2
2上に設けられた放射状平版6及び回転軸々受部
7よりなる液流規制部を通して、前記混合器2外
上方の反応容器中の保護コロイド水溶液の中に排
出させるものである。この技術によれば、従来技
術が有する欠点を解決し、さらに、反応容器内全
体における液の循環流の均一性を向上させ粒子晶
癖の均一なハロゲン化銀粒子を製造することがで
きる。しかしながら、この技術によれば、撹拌翼
4によつて混合器上方開放部から排出される吐出
流には、液流規制部に沿つた撹拌翼回転軸方向の
鉛直流と共に、液流規制部を構成する放射状平板
6の水平方向、すなわち上方開放端22に沿う撹
拌翼回転軸に対する放射流が含まれているため、
反応容器内全体における液の循環性は未だ充分で
はなく、粒径分布の充分に狭いハロゲン化銀粒子
を製造することができなかつた。 本考案の目的は、前記第1図、第2図及び第3
図に示される従来技術を改良し、より粒径分布が
狭く、粒子晶癖の均一なハロゲン化銀粒子を製造
することができるハロゲン化銀写真乳剤の製造装
置を提供することにある。 本考案の上記目的は、反応容器中に、撹拌翼と
その周囲に固定されたケーシングからなる混合器
を有し、該ケーシングは、下端部にハロゲン塩水
溶液、銀塩水溶液および保護コロイド水溶液を該
混合器に導入する開口部を有し、上端部に該混合
器にて生成されたハロゲン化銀粒子を排出する開
口部を有し、該上端部開口部は排出される液流が
撹拌翼回転軸方向の鉛直流となるに充分な撹拌翼
回転軸方向長さをもち撹拌翼回転軸方向に開口す
る複数の導通路よりなるハロゲン化銀写真乳剤の
製造装置によつて達成される。 以下、添付図面に基き、本考案の実施態様につ
いて説明する。第4図は本考案の一実施態様を示
すハロゲン化銀写真乳剤製造装置の概略縦断面図
であり、第5図は混合器部分の拡大縦断面図であ
り、第6図は第5図の平面図である。ハロゲン塩
水溶液と銀塩水溶液とはそれぞれ供給管3,3′
を通して反応容器1内に設けられた混合器2の下
端部へ連続的に供給される。反応容器1には保護
コロイド水溶液が満たされており、混合器2は該
保護コロイド水溶液の液面下に設けられ、混合器
2内部は該保護コロイド水溶液によつて満たされ
る。反応容器1中の保護コロイド水溶液は該混合
器2内の作用により該混合器2内を下方から上方
へ横切るように常に対流せしめられる。混合器2
は円筒形ケーシング下端部21に横断面円形の開
口部を有しており、前記円筒形ケーシング上端部
32に、該上端部32と撹拌翼回転軸々受部7と
仕切材8によつて囲まれた撹拌翼回転軸5方向に
のみ開口する導通路9を混合器2内に有してい
る。導通路9は吐出流を鉛直流にするための充分
な撹拌翼回転軸5方向長を有している。導通路長
さは装置の諸元によつて変化するものであるが、
導通路開口部面積値(mm2)に対する導通路長さ値
(mm)の比として0.01以上の範囲にあるのが好ま
しく、又、導通路9の上方端32と下方端33と
は同一形状でかつ同一面積で構成される。混合器
2には鉛直方向の回転軸5に取付けられたピツチ
ドパドル型撹拌翼4が設けられている。撹拌翼4
は供給管3,3′を通じて円筒形ケーシング下端
部21の開口部に供給される両反応液が混合器2
中のコロイド水溶液により稀釈されたのち、この
両反応液を急激に撹拌混合して反応せしめ、ハロ
ゲン化銀粒子を生成させるとともに、生成したハ
ロゲン化銀粒子を直ちに混合器2外上方に導通路
9から反応容器1中の保護コロイド水溶液へ排出
せしめるものである。 本考案に用いられる混合器2は第5図および第
6図に示す構成のものに限定されず、第7図およ
び第8図に示すような、ケイシング、撹拌翼回転
軸軸受および仕切材により円筒状の導通路を有す
る構成としてもよい。即ち、保護コロイド水溶液
が満たされている反応容器中に、その内部に該保
護コロイド水溶液が満たされる如く設けられた混
合器に、その下端部からハロゲン塩水溶液と銀塩
水溶液とを別々に供給し、該両反応液を前記コロ
イド水溶液により各々稀釈し、前記混合器に設け
られた撹拌翼により両反応液を急激に撹拌混合し
て反応せしめ、ハロゲン化銀粒子を生成させ、た
だちに該ハロゲン化銀粒子を該混合器外上方の前
記反応容器中に排出せしめ成長させるハロゲン化
銀写真乳剤の製造装置に用いられる混合器であつ
て、混合器上端部開口部から排出される液流が鉛
直流となるに充分な鉛直方向にのみ開口する複数
の導通路より構成されているものであればよい。 本考案は、混合器内で生成したハロゲン化銀粒
子を撹拌翼の吐出流にのせて混合器外へ排出させ
た後、反応容器内を循還させ、再び混合器へリサ
イクルさせる。このリサイクル運動の繰り返しの
中でハロゲン化銀粒子を成長させる過程におい
て、個々のハロゲン化銀粒子のリサイクル運動の
周期の差を少なくして、ハロゲン化銀粒子粒径分
布の縮少化を混合器上端部開口部が鉛直流となる
に充分な鉛直方向長さをもつた鉛直方向にのみ開
口する複数の導通路からなる混合器を有するハロ
ゲン化銀写真乳剤の製造装置によつて実現したも
のである。 本考案は、いわゆるシングルジエツト法、ダブ
ルジエツト法、コントロールドダブルジエツト法
等各種のハロゲン化銀乳剤の製造方法に対し広汎
に適用しうるが、とくにコントロールドダブルジ
エツト法に適用する場合には、混合器における反
応が迅速かつ完全に行なわれうるということか
ら、銀塩水溶液とハロゲン塩水溶液との添加量を
ほぼ等量に維持することによつて分散液(懸濁し
たハロゲン化銀粒子を含む保護コロイド水溶液)
中の銀イオン濃度を比較的容易に、予め設定した
値に維持することが可能であり、ハロゲン化銀写
真乳剤製造上極めて大きな利点を有している。 以下、本考案の効果を具体的な実験例により例
証する。 実験例 次の3種類の溶液を調製した。 溶液〔A〕 ゼラチン 120g NaCl 0.5g 水を加えて3000c.c.に仕上げる 溶液〔B〕 NaCl 234g 水を加えて2000c.c.に仕上げる 溶液〔C〕 AgNO3 680g 水を加えて2000c.c.に仕上げる 製造装置としては第4図〜第6図に示す構成の
ものを用いた。すなわち、溶液〔A〕を半球底円
筒形反応容器1(直径180mm)に満たし、溶液
〔B〕および〔C〕を管3,3′を通して反応温度
60℃で90分間にわたつて、定速(22.2c.c./分)で
別々に且つ連続的に添加した。 混合器は、ケーシングが直径60mm、高さ45mmの
円筒形で、下端部21は直径20mmで開口してお
り、上端部導通路9は鉛直方向に15mmの長さであ
り回転軸々受部7は直径20mmである。撹拌翼4は
直径30mmの角度45゜ピツチドパドルを用い、回転
数1000rpmで回転させた。 一方、上記本考案の実験例において、第1図〜
第3図に示す従来技術にもとずく製造装置を使用
した場合について比較実験を行なつた。導通路部
ケーシング外筒を除去した以外は上記実験例と同
じ条件である。 このようにして得られた各ハロゲン化銀粒子を
電子顕微鏡写真により、平均粒径及び標準偏差に
ついて測定した。その結果は表−1の通りであつ
た。
The present invention relates to an apparatus for producing a silver halide photographic emulsion, and more specifically to an apparatus for producing a silver halide photographic emulsion that can produce silver halide grains with a narrow grain size distribution and uniform grain crystal habit. be. As an apparatus for producing silver halide photographic emulsions with narrow grain size distribution and uniform crystal habit, US Pat. No. 3,145,650, British Patent No. 1,323,464, US Pat. Techniques disclosed in publications and the like are known. These devices were devised to create uniform reaction conditions for water-soluble silver salts and water-soluble halogen salts, and to simplify the manufacturing process of silver halide photographic emulsions. The shape of the stirring device, the supply method of the halogen salt aqueous solution and the silver salt aqueous solution, etc. have been improved. However, with these techniques, it is difficult to produce silver halide grains with a sufficiently narrow grain size distribution and uniform grain crystal habit due to drawbacks such as lack of uniformity in liquid circulation throughout the reaction vessel. On the other hand, JP-A-57-
No. 92524 discloses a technique for improving the uniformity of the circulation flow of liquid throughout the reaction vessel.
A silver halide photographic emulsion manufacturing apparatus based on this technique is shown in FIGS. 1, 2, and 3. A reaction vessel 1 filled with a protective colloid aqueous solution has a mixer 2 installed so that the interior thereof is filled with the protective colloid aqueous solution, and a halogen salt aqueous solution is introduced into the mixer from its lower open end 21. A silver salt aqueous solution is separately supplied through supply pipes 3 and 3', and both reaction solutions are each diluted with a protective colloid aqueous solution in a mixer 2.
The two reaction solutions are rapidly stirred and mixed to react to produce silver halide particles, which are immediately transferred to the upper open end 22 of the mixer 2, and further to the upper open end 2 of the mixer 2.
The liquid is discharged into the protective colloid aqueous solution in the reaction vessel above the outside of the mixer 2 through a liquid flow regulating section consisting of a radial flat plate 6 and a rotary shaft support 7 provided on the mixer 2. According to this technique, it is possible to solve the drawbacks of the conventional techniques, improve the uniformity of the circulation flow of the liquid throughout the reaction vessel, and produce silver halide grains with uniform grain crystal habit. However, according to this technique, the discharge flow discharged from the upper opening part of the mixer by the stirring blade 4 includes a vertical flow in the direction of the rotation axis of the stirring blade along the liquid flow restriction part, and a liquid flow restriction part. Since the radial flow is included in the horizontal direction of the constituent radial flat plate 6, that is, with respect to the stirring blade rotation axis along the upper open end 22,
The circulation of the liquid throughout the reaction vessel was still insufficient, and it was not possible to produce silver halide grains with a sufficiently narrow particle size distribution. The purpose of the present invention is to
The object of the present invention is to provide an apparatus for producing a silver halide photographic emulsion that can produce silver halide grains having a narrower grain size distribution and a uniform grain crystal habit by improving the conventional technique shown in the figure. The above-mentioned object of the present invention is to have a mixer consisting of a stirring blade and a casing fixed around it in a reaction vessel, and the casing has a lower end containing a halogen salt aqueous solution, a silver salt aqueous solution and a protective colloid aqueous solution. It has an opening for introducing it into the mixer, and an opening for discharging the silver halide particles generated in the mixer at the upper end, and the upper end opening allows the discharged liquid flow to rotate through the rotation of the stirring blade. This is achieved by a silver halide photographic emulsion producing apparatus comprising a plurality of conductive passages that have a sufficient length in the direction of the rotational axis of the stirring blade and open in the direction of the rotational axis of the stirring blade to generate a vertical flow in the axial direction. Hereinafter, embodiments of the present invention will be described based on the accompanying drawings. FIG. 4 is a schematic longitudinal sectional view of a silver halide photographic emulsion manufacturing apparatus showing one embodiment of the present invention, FIG. 5 is an enlarged longitudinal sectional view of a mixer portion, and FIG. FIG. The halogen salt aqueous solution and silver salt aqueous solution are supplied to supply pipes 3 and 3', respectively.
It is continuously supplied to the lower end of the mixer 2 provided in the reaction vessel 1 through the reaction vessel 1. A reaction vessel 1 is filled with an aqueous protective colloid solution, a mixer 2 is provided below the surface of the aqueous protective colloid solution, and the inside of the mixer 2 is filled with the aqueous protective colloid solution. The protective colloid aqueous solution in the reaction vessel 1 is always caused to convect by the action within the mixer 2 so as to cross the mixer 2 from the bottom to the top. mixer 2
has an opening with a circular cross section at the lower end 21 of the cylindrical casing, and is surrounded by the upper end 32, the stirring blade rotating shaft support 7, and the partition member 8. The mixer 2 has a conductive passage 9 that opens only in the direction of the rotating shaft 5 of the stirring blade. The conduction path 9 has a sufficient length in the direction of the stirring blade rotating shaft 5 to make the discharge flow vertical. The length of the conductive path varies depending on the specifications of the device, but
It is preferable that the ratio of the conductive path length value (mm) to the conductive path opening area value (mm 2 ) is in a range of 0.01 or more, and the upper end 32 and lower end 33 of the conductive path 9 have the same shape. and consist of the same area. The mixer 2 is provided with pitched paddle type stirring blades 4 attached to a vertical rotating shaft 5. Stirring blade 4
Both reaction liquids are supplied to the opening of the lower end 21 of the cylindrical casing through the supply pipes 3 and 3', and are then transferred to the mixer 2.
After being diluted with the aqueous colloid solution in the mixer, both reaction solutions are rapidly stirred and mixed to cause a reaction, producing silver halide particles, and immediately passing the produced silver halide particles upwardly outside the mixer 2 through a conduit 9. The protective colloid is discharged from the aqueous solution into the protective colloid aqueous solution in the reaction vessel 1. The mixer 2 used in the present invention is not limited to the configuration shown in FIGS. 5 and 6, but has a cylindrical shape with a casing, a stirring blade rotating shaft bearing, and a partition material as shown in FIGS. 7 and 8. It is also possible to have a configuration having a conductive path in the form of a shape. That is, a halogen salt aqueous solution and a silver salt aqueous solution are separately supplied from the lower end of a reaction vessel filled with a protective colloid aqueous solution to a mixer provided so that the interior thereof is filled with the protective colloid aqueous solution. , both reaction solutions are diluted with the colloid aqueous solution, and both reaction solutions are rapidly stirred and mixed using a stirring blade installed in the mixer to cause a reaction, producing silver halide particles, and immediately dissolving the silver halide. A mixer used in an apparatus for producing a silver halide photographic emulsion in which grains are discharged and grown into the reaction vessel above the outside of the mixer, wherein the liquid flow discharged from an opening at the upper end of the mixer is a vertical flow. It is sufficient that the conductive path is constituted by a plurality of conductive paths that are sufficiently opened only in the vertical direction. In the present invention, the silver halide particles generated in the mixer are discharged outside the mixer along with the discharge flow of the stirring blade, and then circulated within the reaction vessel and recycled back to the mixer. In the process of growing silver halide grains through repetition of this recycling movement, the difference in the cycle of the recycling movement of individual silver halide grains is reduced, and the reduction of the silver halide grain size distribution is prevented by mixing. This was realized by a silver halide photographic emulsion manufacturing apparatus having a mixer consisting of a plurality of conductive paths that open only in the vertical direction and whose upper end opening has a sufficient vertical length to create a vertical flow. be. The present invention can be widely applied to various silver halide emulsion manufacturing methods such as the so-called single-jet method, double-jet method, and controlled double-jet method, but is especially applicable to the controlled double-jet method. Because the reaction in the mixer can be carried out quickly and completely, the dispersion (suspended silver halide particles) is protective colloid aqueous solution)
It is possible to maintain the silver ion concentration therein relatively easily at a preset value, which has an extremely large advantage in producing silver halide photographic emulsions. The effects of the present invention will be illustrated below using specific experimental examples. Experimental Example The following three types of solutions were prepared. Solution [A] Gelatin 120g NaCl 0.5g Add water to make 3000c.c. Solution [B] NaCl 234g Add water to make 2000c.c. Solution [C] AgNO 3 680g Add water to make 2000c.c. The manufacturing apparatus used had the configuration shown in FIGS. 4 to 6. That is, the solution [A] is filled in a hemispherical bottom cylindrical reaction vessel 1 (diameter 180 mm), and the solutions [B] and [C] are passed through the tubes 3 and 3' to maintain the reaction temperature.
Additions were made separately and continuously at a constant rate (22.2 cc/min) over 90 minutes at 60°C. The mixer has a cylindrical casing with a diameter of 60 mm and a height of 45 mm, the lower end part 21 is open with a diameter of 20 mm, the upper end conduction path 9 has a length of 15 mm in the vertical direction, and the rotating shaft bearing part 7 is 20mm in diameter. The stirring blade 4 was a 45° pitched paddle with a diameter of 30 mm, and was rotated at a rotation speed of 1000 rpm. On the other hand, in the above experimental example of the present invention, FIGS.
A comparative experiment was conducted using a manufacturing apparatus based on the prior art shown in FIG. The conditions were the same as in the above experimental example except that the outer cylinder of the conductive passage part casing was removed. The average grain size and standard deviation of each of the silver halide grains thus obtained were measured using electron micrographs. The results were as shown in Table-1.

【表】 表−1から本考案により粒径分布のより狭い均
一なハロゲン化銀写真乳剤の製造ができることが
明らかである。 以上の記載から明らかなように本考案により次
のような効果が得られる。 (1) 混合器から排出される吐出循環流が混合器導
通路により均一な鉛直流とされるので、個々の
ハロゲン化銀粒子の成長プロセスが均一化さ
れ、粒径分布の狭いハロゲン化銀写真乳剤が製
造できる。 (2) 粒径分布の狭いハロゲン化銀が製造できるの
で、写真性能の向上、とくに省銀量化が可能で
ある。
[Table] It is clear from Table 1 that a silver halide photographic emulsion with a narrower and more uniform grain size distribution can be produced according to the present invention. As is clear from the above description, the following effects can be obtained by the present invention. (1) The discharge circulating flow discharged from the mixer is made into a uniform vertical flow by the mixer conduit, so the growth process of individual silver halide grains is made uniform, and silver halide photographs with a narrow grain size distribution are produced. Emulsions can be produced. (2) Since silver halide with a narrow particle size distribution can be produced, it is possible to improve photographic performance, and in particular to save silver.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の技術にもとずく装置を示す概略
縦断面図、第2図は第1図の混合器部分の拡大縦
断面図、第3図は第2図の平面図、第4図は本考
案による装置の一例を示す概略縦断面図、第5図
は第4図の混合器部分の拡大縦断面図、第6図は
第5図の平面図、第7図は本考案による装置の他
例を示す混合器部分の拡大縦断面図、第8図は第
7図の平面図である。 図中、1は反応容器、2は混合器、21は下方
開放端、22は上方開放端、3,3′は反応液供
給管、4は撹拌翼、5は回転軸、6は液流規制
板、7は回転軸々受部、8は仕切板、9は導通
路、32は導通路上方端、33は導通路下方端を
示す。
Fig. 1 is a schematic vertical sectional view showing a device based on the conventional technology, Fig. 2 is an enlarged longitudinal sectional view of the mixer portion of Fig. 1, Fig. 3 is a plan view of Fig. 2, and Fig. 4 5 is an enlarged vertical sectional view of the mixer portion of FIG. 4, FIG. 6 is a plan view of FIG. 5, and FIG. 7 is a schematic longitudinal sectional view showing an example of the device according to the present invention. FIG. 8 is an enlarged vertical sectional view of a mixer portion showing another example, and FIG. 8 is a plan view of FIG. 7. In the figure, 1 is a reaction container, 2 is a mixer, 21 is a lower open end, 22 is an upper open end, 3 and 3' are reaction liquid supply pipes, 4 is a stirring blade, 5 is a rotating shaft, and 6 is a liquid flow regulation The plate includes a rotary shaft support portion 7, a partition plate 8, a conduction path 9, an upper end of the conduction path 32, and a lower end of the conduction path 33.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 反応容器中に、撹拌翼とその周囲に固定された
ケーシングからなる混合器を有し、該ケーシング
は、下端部にハロゲン塩水溶液、銀塩水溶液およ
び保護コロイド水溶液を該混合器に導入する開口
部を有し、上端部に該混合器にて生成されたハロ
ゲン化銀粒子を排出する開口部を有し、該上端部
開口部は、ケイシング、撹拌翼回転軸軸受および
仕切材によつて囲まれた撹拌翼回転軸方向にのみ
開口する複数の導通路よりなり、導通路の撹拌翼
回転軸方向長さが導通路開口部面積値(mm2)に対
する導通路長さ値(mm)の比として0.01以上で、
かつ、該導通路長さが15mm以上であることを特徴
とするハロゲン化銀写真乳剤の製造装置。
A mixer consisting of a stirring blade and a casing fixed around the stirring blade is provided in the reaction vessel, and the casing has an opening at the lower end for introducing the halogen salt aqueous solution, the silver salt aqueous solution, and the protective colloid aqueous solution into the mixer. and has an opening at the upper end for discharging the silver halide particles produced in the mixer, and the upper end opening is surrounded by a casing, a stirring blade rotation shaft bearing, and a partition material. The length of the conductive passage in the direction of the stirring blade rotation axis is expressed as the ratio of the conductive passage length value (mm) to the conductive passage opening area value (mm 2 ). 0.01 or more,
An apparatus for producing a silver halide photographic emulsion, characterized in that the length of the conductive path is 15 mm or more.
JP392184U 1984-01-14 1984-01-14 Silver halide photographic emulsion manufacturing equipment Granted JPS60117834U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP392184U JPS60117834U (en) 1984-01-14 1984-01-14 Silver halide photographic emulsion manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP392184U JPS60117834U (en) 1984-01-14 1984-01-14 Silver halide photographic emulsion manufacturing equipment

Publications (2)

Publication Number Publication Date
JPS60117834U JPS60117834U (en) 1985-08-09
JPH0320829Y2 true JPH0320829Y2 (en) 1991-05-07

Family

ID=30479000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP392184U Granted JPS60117834U (en) 1984-01-14 1984-01-14 Silver halide photographic emulsion manufacturing equipment

Country Status (1)

Country Link
JP (1) JPS60117834U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0822739B2 (en) * 1986-05-22 1996-03-06 富士写真フイルム株式会社 Method and apparatus for producing silver halide grains

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5792524A (en) * 1980-11-29 1982-06-09 Konishiroku Photo Ind Co Ltd Preparation of silver halide particles and its device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5792524A (en) * 1980-11-29 1982-06-09 Konishiroku Photo Ind Co Ltd Preparation of silver halide particles and its device

Also Published As

Publication number Publication date
JPS60117834U (en) 1985-08-09

Similar Documents

Publication Publication Date Title
US4386895A (en) Apparatus for producing capsules
US6422736B1 (en) Scalable impeller apparatus for preparing silver halide grains
US4289733A (en) Apparatus for making silver halide grains
JPS5858288B2 (en) Method and apparatus for producing silver halide grains
DE2114223A1 (en) Process for the preparation of dispersions
JPS6351928A (en) Impeller
US5096690A (en) Method and apparatus for manufacturing silver halide grains
JP2003103152A (en) Method and device for mixing liquid or solution
US3782954A (en) Method for the uniform preparation of silver halide grains
CN105478039A (en) Stirring device and container for preparing colloid class plasma solubilizer
JPH0320829Y2 (en)
US5334359A (en) Apparatus for production of sparingly water-soluble salt crystal grains
US3785777A (en) Apparatus for the uniform preparation of silver halide grains
JPS5858289B2 (en) Method and apparatus for producing silver halide grains
US6443611B1 (en) Apparatus for manufacturing photographic emulsions
US5213772A (en) Apparatus for forming silver halide grains
JPH0254932B2 (en)
JPH0128084B2 (en)
JPH053340B2 (en)
JPS61113056A (en) Production of photographic emulsion
JP2001286745A (en) Method for mixing liquid or solution and device therefor
JPH02164719A (en) Formation of silver halide particle
EP0408752A1 (en) Process for producing silver halide grains
CN205288225U (en) A agitating unit and container for preparing colloid class plasma solubilizer
JPH05107668A (en) Apparatus for producing silver halide photographic emulsion