JPH0128084B2 - - Google Patents

Info

Publication number
JPH0128084B2
JPH0128084B2 JP18978681A JP18978681A JPH0128084B2 JP H0128084 B2 JPH0128084 B2 JP H0128084B2 JP 18978681 A JP18978681 A JP 18978681A JP 18978681 A JP18978681 A JP 18978681A JP H0128084 B2 JPH0128084 B2 JP H0128084B2
Authority
JP
Japan
Prior art keywords
mixer
silver
present
silver halide
stirring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18978681A
Other languages
Japanese (ja)
Other versions
JPS5891103A (en
Inventor
Hiroshi Menjo
Kenji Michigami
Fumio Hamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP18978681A priority Critical patent/JPS5891103A/en
Publication of JPS5891103A publication Critical patent/JPS5891103A/en
Publication of JPH0128084B2 publication Critical patent/JPH0128084B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0004Preparation of sols
    • B01J13/0043Preparation of sols containing elemental metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons

Description

【発明の詳細な説明】 本発明は、写真感光材料に用いるコロイド銀粒
子分散物の製法に関する。さらに詳しくは、カラ
ー写真感光材料用の黄色フイルター層及びハレー
シヨン防止層に用いるコロイド銀粒子分散物の製
法に関する。 カラー写真感光材料に用いられる黄色フイルタ
ー層は青色光を効率よく吸収し、緑色光、赤色光
は透過させることが望ましいが、公知の方法では
青色光の吸収を大きくすると、緑色光の吸収を伴
い、緑感層の分光感度に影響を及ぼしカラー写真
の色再現性を向上させることが困難である。そこ
で、青色光の吸収が大きく緑色光の吸収の小さい
黄色フイルター層が望まれている。 黄色フイルター層用の銀分散物は従来主として
銀塩をハイドロキノンあるいはピロガロールのよ
うなフエノール類によつて、またはこれに代えて
タンニンによつて還元することによりつくられて
いた。また、還元剤として水素化硼素、水素化硼
素アルミニウム、アミノボランまたはヒドラジン
を用いる方法やアスコルビン酸系の化合物を用い
る方法が知られている。しかし、公知のいずれの
方法を用いても通常のプロペラ撹拌では十分な性
能が得られない。 本発明の目的は、青色光の吸収が大きく、緑色
光の吸収の小さい黄色フイルター層に用いるコロ
イド銀粒子分散物の製法を提供することにある。
本発明の別の目的は、被覆率の高いハレーシヨン
防止層に用いるコロイド銀粒子分散物の製法を提
供することにある。 本発明の上記目的は、還元剤を含む水溶液と銀
塩水溶液とを1.0×104(sec-1)以上の剪断速度を
伴う撹拌下で混合することにより達成された。 本発明に用いられる撹拌装置は還元剤を含む水
溶液と銀塩水溶液とを混合する際に、剪断速度と
して1.0×104(sec-1)以上の剪断力を伴えば、ど
のような装置でもよいが、好ましくはケーシング
を設けた撹拌装置が用いられる。その装置の例は
特開昭57−92523号公報、特開昭57−92524号公報
に記載されている。これらの装置の剪断速度は(1)
式で表わされる。 τ=πdN/σ (1) 〔τ:剪断速度、π:円周率、d:回転翼の直
径、N:回転翼の回転数、σ:回転翼とケーシン
グの間隙 剪断速度は好ましくは、1.0×105(sec-1)以上
である。 本発明に用いられる還元剤は、コロイド銀分散
物の製造用として知られている還元剤なら何でも
よく、例えば、ハイドロキノン、ピロガロール、
ピロカテキン、パラフエニレンジアミン、1,4
−ジヒドロナフタレン等のフエノール類、1−フ
エニル−3−ピラゾリドン、1−(p−アミノフ
エノール)−3−アミノ−2−ピラゾリドン等の
5員環化合物等が挙げられる。これらの還元剤の
例は「ザ・セオリー・オブ・ザ・フオトグラフイ
ツク・プロセス」第3版、C・E・Kミース、
T・H・ジエームズ著 278頁〜306頁に数多く記
載されている。又、デキストリン、ブドウ糖等の
還元性糖類でも良く、又、更に本発明に有効に用
いられる還元剤としては上記の如き有機化合物の
他、蓚酸第一鉄、ヒドロ亜硫酸ナトリウム、ヒド
ロキシルアミン、ヒドラジン等の化合物やチタ
ン、バナジウム、錫など多価イオン金属塩等の無
機化合物がある。 本発明に用いられる還元剤量は、好ましくは、
銀塩と当モル以上である。 本発明に用いられる銀塩としては硝酸銀、銀ア
ンモニウム錯塩等の如き水溶性銀塩でもよく、又
は塩化銀、臭化銀、沃化銀、塩臭化銀等、ハロゲ
ン化銀の如き銀塩の微粒子分散物であつてもよ
い。 本発明の製法に於ては、混合時に保護コロイド
はあつてもなくてもよく、分散物を洗滌する以前
に保護コロイドが添加されていればよい。保護コ
ロイドとしては、例えば澱粉又はデキストランあ
るいはデキストリン等の澱粉の分解生成物ならび
にプロテイン、殊にゼラチンのような天然の重合
体等、又はポリビニルアルコール、ポリビニルピ
ロリドンのような合成重合体等が用いられる。 本発明の製法に於て、コロイド銀粒子分散物を
生成する際の溶液温度は、20℃以上90℃以下が好
ましく、さらに好ましくは40℃以上80℃以下が適
当である。還元剤を含む水溶液と銀塩水溶液とを
混合する時間は、30分以内が好ましく、さらに好
ましくは10分以内が適当である。上記両該水溶液
が混合された後は、撹拌は公知のどの方法によつ
てもよく、本発明の方法でもよい。又、上記両該
水溶液が混合された後の撹拌時間には特に制限は
ないが、60分以内が好ましい。 次に本発明の製造方法に使用される装置の一例
を図面に示す実施態様に基づいて説明する。 以下、添付図面に基き、本発明の実施態様につ
いて説明する。第1図〜第3図は本発明の一実施
態様を示すハロゲン化銀粒子製造装置の概略縦断
面図であり、第2図、第4図は第1図、第3図に
おける混合器部分の拡大縦断面図であり、第5図
は第4図の平面図である。各図において、ハロゲ
ン塩水溶液と銀塩水溶液とはそれぞれ供給管3,
3′を通して反応容器1内に設けられた混合器2
の下端部へ連続的に供給される。反応容器1には
コロイド水溶液が満たされて排出せしめるもので
ある。 本発明の混合器2は、その上方開放端22に、
液流の旋回流を軸流に変換する液流規制板7を有
する。この液流規制板7は、第4図および第5図
に示す如く、混合器2の上方開放端22に取付け
てもよいし、また本発明の他の実施例を示す第6
図および第7図に示す如く、回転軸6の固定外被
カバー61に取付けてもよく、その他の固定部材
〔例えば混合器2の支持杆(図示せず)など。〕に
取付けてもよい。また、この液流規制板7の構造
は旋回流を軸流に変換できる構成であればよく、
例えば第4図〜第7図に示す如く、鉛直方向(軸
6の方向)へ延伸する多数枚の放射状平板71か
ら構成されてよい。 本発明に用いられる混合器2は、第2図および
第4図に示す構成のものに限定されず、また第6
図および第7図に示すような構成としてもよい。
即ち、コロイド水溶液が満たされている反応容器
中にその内部に該コロイド水溶液が満たされる如
く設けられた混合器に、その下端部からハロゲン
塩水溶液と銀塩水溶液とを別々に供給し、該両反
応液を前記コロイド水溶液により各々希釈し、前
記混合器に設けられた撹拌翼により両反応液を急
激に撹拌混合して反応せしめ、ハロゲン化銀粒子
を生成させ、ただちに該ハロゲン化銀粒子を該混
合器外上方の前記反応容器中に排出せしめ、成長
させるハロゲン化銀粒子の製造装置に用いられる
混合器であれば、いずれの構成であつてもよい。
具体的には、その下方開放端21から両反応液が
供給され、この両反応液がコロイド水溶液によつ
て希釈されたのち、少なくとも1つの撹拌翼(第
4図および第5図における下部撹拌翼4、または
第6図および第7図における混合且つ上方吐出流
形成用撹拌翼4′)によつて、両反応液を撹拌混
合してハロゲン化銀粒子を生成せしめ、ただちに
該ハロゲン化銀粒子を上方開放端22から、上方
へ吐出させる構成のものであればよい。 なお、本発明に用いられる下部撹拌翼4には、
第4図に仮想線で示す如く、両反応液が該撹拌翼
4の各翼片間の間〓を通過するのを防止する遮蔽
板41を取付けてもよい。この遮蔽板41は、そ
の外周縁とこの板41の水平方向にある混合器2
内周壁(第4図および第5図に示す実施例の場
合、下方開放端21の内周壁である。)との間に、
均一巾の円環状の間〓部を形成すべく、円形板と
することが好ましい。なおまた、本発明において
は、第4図に示す如く、撹拌翼5に逆流防止板8
を取付けてもよい。 下方開放端21に向けて開口している供給管
3,3から別々に且つ連続的に供給されるハロゲ
ン塩水溶液および銀塩水溶液は、混合器2内へ循
環運動せしめられているコロイド水溶液により
各々希釈されながら、コロイド水溶液の循環流に
のつて混合器2内を下方から上方へ運ばれ、撹拌
翼4(第6図及び第7図の場合は、撹拌翼4′)
の回転により混合作用を受け、両反応液は急速に
混合され、ハロゲン化銀粒子が生成する。 このようにして生成されたハロゲン化銀粒子は
すみやかに撹拌翼5(第6図および第7図の場合
は撹拌翼4′)の回転作用による吐出流れにのつ
て混合器2の上方開放端22に設けられた液流規
制板7の間の開口から該混合器2の外へ排出され
る。このとき撹拌翼5または4′の回転作用によ
る吐出流として旋回流と軸流とが形成されるが、
液流規制板7により旋回流は流れの方向を転換さ
れて、軸流とされ、吐出流全体が軸流となつて混
合器2外上方へ排出される。従つてハロゲン化銀
粒子は前記軸流にのつて排出される。さらにハロ
ゲン化銀粒子、混合器2から軸流にのつて排出さ
れた後、反応容器1を循環して、混合器2へリサ
イクルせしめられ、このリサイクル運動を繰り返
しながらハロゲン化銀粒子は成長する。 前記リサイクル運動を繰り返しながらハロゲン
化銀粒子が成長していく過程で、混合器2内の銀
イオン濃度あるいは混合器2内でハロゲン塩水溶
液と銀塩水溶液とが反応して生成したハロゲン化
銀クラスター(核粒子とはならない微小なハロゲ
ン化銀を言う。これが核粒子と結合して、核粒子
の成長が行われると考えられる。)密度が混合器
2内では均一であつても、混合器2外のバルク循
環流とは異なり、混合器2内の方が銀イオン濃度
は高く、クラスター密度は大きくなつている。つ
まり混合器2内外ではハロゲン化銀粒子の成長速
度が異なるので均一なハロゲン化銀粒子を製造す
るためには、撹拌翼の吐出量を多くして混合器2
内でのハロゲン化銀粒子の滞留時間を短かくする
ことが必要であると同時に、撹拌翼の吐出流にの
つてハロゲン化銀粒子が混合器2外へ排出され、
反応容器1内を循環して再び、混合器2に戻るま
での時間の分布(循環時間分布)が狭いこと、即
ち1個1個のハロゲン化銀粒子のリサイクル運動
の周期の差が小さく、個々のハロゲン化銀粒子の
成長の過程に差がないことが必要である。本発明
においてはこれを混合器の上方開放端に設けた液
流規制板により撹拌翼の吐出流の方向を規制して
均一な軸流として混合器外上方へ排出することで
実現したものである。 以下、実施例を挙げるが、本発明の技術的範囲
は以下の実施例によつて何等制限されるものでは
なく、種々多様の実施態様が可能である。 実施例 下記処方に従つて溶液から溶液までを調製
した。 溶液 ゼラチン 120g デキストリン 240g 水酸化ナトリウム 120g 水 20 溶液 硝酸銀 240g 水 2 溶液 クエン酸 100g 水 560ml 次に溶液を60℃に加熱し、表1に示す種々の
方法・剪断速度で撹拌している中へ溶液を5分
かけて添加した。溶液の添加終了後、撹拌装置
を表1のNo.3に取り換え、液温を60℃に保ちなが
ら15分間撹拌した後、溶液を添加して液を中和
した。中和した液にゼラチンを600g加えて、更
に20分間撹拌を続けて、添加したゼラチンを溶解
した。次に液を冷却、固化し、ヌードル状化し且
つ洗滌した。このヌードルを40℃に加熱、融解
し、三酢酸セルロース支持体に塗布して試料を作
製した。 次いで上記試料の可視吸収スペクトルを日立自
記分光光度計EPS 323型により測定した。試料No.
7及び8の結果を第8図に示す。表1に、最高濃
度に対する500nmでの濃度の比(D500/Dλmax)
を示した。 表1から明らかなように、本発明の方法によれ
ば、緑色光の吸収(500nm近辺)が著しく軽減
されていることがわかる。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a colloidal silver particle dispersion for use in photographic materials. More specifically, the present invention relates to a method for producing a colloidal silver particle dispersion for use in yellow filter layers and antihalation layers for color photographic materials. It is desirable that the yellow filter layer used in color photographic light-sensitive materials efficiently absorb blue light and transmit green and red light. This affects the spectral sensitivity of the green-sensitive layer, making it difficult to improve the color reproducibility of color photographs. Therefore, a yellow filter layer that absorbs a large amount of blue light and a small amount of green light is desired. Silver dispersions for yellow filter layers have traditionally been prepared primarily by reducing silver salts with phenols such as hydroquinone or pyrogallol, or alternatively with tannins. Also known are methods using boron hydride, aluminum boron hydride, aminoborane or hydrazine as reducing agents, and methods using ascorbic acid compounds. However, no matter which known methods are used, sufficient performance cannot be obtained with ordinary propeller stirring. An object of the present invention is to provide a method for producing a colloidal silver particle dispersion for use in a yellow filter layer, which has a large absorption of blue light and a small absorption of green light.
Another object of the present invention is to provide a method for producing a colloidal silver particle dispersion for use in an antihalation layer with high coverage. The above object of the present invention was achieved by mixing an aqueous solution containing a reducing agent and an aqueous silver salt solution under stirring with a shear rate of 1.0×10 4 (sec −1 ) or more. The stirring device used in the present invention may be any device as long as it produces a shearing force of 1.0×10 4 (sec -1 ) or more as a shear rate when mixing the aqueous solution containing the reducing agent and the aqueous silver salt solution. However, preferably a stirring device provided with a casing is used. Examples of such devices are described in JP-A-57-92523 and JP-A-57-92524. The shear rate of these devices is (1)
It is expressed by the formula. τ=πdN/σ (1) [τ: shear rate, π: pi, d: diameter of rotor blade, N: rotation speed of rotor blade, σ: gap between rotor blade and casing The shear rate is preferably 1.0 ×10 5 (sec -1 ) or more. The reducing agent used in the present invention may be any reducing agent known for producing colloidal silver dispersions, such as hydroquinone, pyrogallol,
Pyrocatechin, paraphenylenediamine, 1,4
Examples include phenols such as -dihydronaphthalene, and 5-membered ring compounds such as 1-phenyl-3-pyrazolidone and 1-(p-aminophenol)-3-amino-2-pyrazolidone. Examples of these reducing agents can be found in The Theory of the Photographic Process, 3rd edition, C.E.K. Mies,
Many are described in T.H. James, pages 278 to 306. Further, reducing sugars such as dextrin and glucose may be used. In addition to the organic compounds mentioned above, reducing agents that can be effectively used in the present invention include ferrous oxalate, sodium hydrosulfite, hydroxylamine, hydrazine, etc. There are inorganic compounds such as compounds and polyvalent ion metal salts such as titanium, vanadium, and tin. The amount of reducing agent used in the present invention is preferably:
The molar amount is more than that of silver salt. The silver salt used in the present invention may be a water-soluble silver salt such as silver nitrate, silver ammonium complex salt, etc., or silver salt such as silver chloride, silver bromide, silver iodide, silver chlorobromide, etc., or silver halide. It may also be a fine particle dispersion. In the production method of the present invention, the protective colloid may or may not be present during mixing, as long as the protective colloid is added before washing the dispersion. As protective colloids, for example starch or decomposition products of starch such as dextran or dextrin, proteins, in particular natural polymers such as gelatin, etc., or synthetic polymers such as polyvinyl alcohol, polyvinylpyrrolidone, etc. are used. In the production method of the present invention, the solution temperature when producing the colloidal silver particle dispersion is preferably 20°C or more and 90°C or less, more preferably 40°C or more and 80°C or less. The time for mixing the aqueous solution containing the reducing agent and the aqueous silver salt solution is preferably within 30 minutes, more preferably within 10 minutes. After both of the above aqueous solutions are mixed, stirring may be performed by any known method or the method of the present invention. Further, the stirring time after the above two aqueous solutions are mixed is not particularly limited, but is preferably within 60 minutes. Next, an example of an apparatus used in the manufacturing method of the present invention will be described based on an embodiment shown in the drawings. Embodiments of the present invention will be described below based on the accompanying drawings. 1 to 3 are schematic vertical cross-sectional views of a silver halide grain manufacturing apparatus showing one embodiment of the present invention, and FIGS. 2 and 4 show the mixer portion in FIGS. 1 and 3. 5 is an enlarged longitudinal sectional view, and FIG. 5 is a plan view of FIG. 4. In each figure, the halogen salt aqueous solution and the silver salt aqueous solution are supplied through the supply pipe 3,
A mixer 2 provided in the reaction vessel 1 through 3'
is continuously supplied to the lower end of the The reaction vessel 1 is filled with an aqueous colloid solution and discharged. The mixer 2 of the present invention has, at its upper open end 22,
It has a liquid flow regulating plate 7 that converts the swirling flow of the liquid flow into an axial flow. This liquid flow regulating plate 7 may be attached to the upper open end 22 of the mixer 2 as shown in FIGS.
As shown in FIG. 7 and FIG. 7, it may be attached to the fixed outer cover 61 of the rotating shaft 6, and may be attached to other fixed members such as the support rod (not shown) of the mixer 2. ] may be installed. Further, the structure of the liquid flow regulating plate 7 may be any structure as long as it can convert the swirling flow into an axial flow.
For example, as shown in FIGS. 4 to 7, it may be composed of a large number of radial flat plates 71 extending in the vertical direction (direction of the axis 6). The mixer 2 used in the present invention is not limited to the configuration shown in FIGS. 2 and 4, and
A structure as shown in FIG. 7 and FIG. 7 may be used.
That is, a halogen salt aqueous solution and a silver salt aqueous solution are separately supplied from the lower end of a reaction vessel filled with the colloidal aqueous solution to a mixer provided so that the interior thereof is filled with the colloidal aqueous solution. Each of the reaction solutions is diluted with the aqueous colloid solution, and both reaction solutions are rapidly stirred and mixed using a stirring blade installed in the mixer to react, producing silver halide particles, and immediately converting the silver halide particles into The mixer may have any configuration as long as it is used in an apparatus for producing silver halide grains that are discharged into the reaction vessel above the outside of the mixer and grown.
Specifically, both reaction liquids are supplied from the lower open end 21, and after both reaction liquids are diluted with the colloid aqueous solution, at least one stirring blade (lower stirring blade in FIGS. 4 and 5) is supplied. 4 or stirring blades 4' for mixing and upward discharge flow formation in FIGS. Any structure may be used as long as it is configured to discharge upward from the upper open end 22. Note that the lower stirring blade 4 used in the present invention includes:
As shown in phantom lines in FIG. 4, a shielding plate 41 may be installed to prevent both reaction solutions from passing between the blades of the stirring blades 4. This shielding plate 41 has an outer peripheral edge and a mixer 2 in the horizontal direction of this plate 41.
between the inner circumferential wall (in the case of the embodiment shown in FIGS. 4 and 5, this is the inner circumferential wall of the lower open end 21),
It is preferable to use a circular plate in order to form an annular space having a uniform width. Furthermore, in the present invention, as shown in FIG. 4, a backflow prevention plate 8 is provided on the stirring blade 5.
may be installed. The aqueous halogen salt solution and the aqueous silver salt solution, which are supplied separately and continuously from the supply pipes 3, 3, which are open toward the lower open end 21, are each absorbed by the aqueous colloid solution that is circulated into the mixer 2. While being diluted, the aqueous colloid solution is carried from the bottom to the top inside the mixer 2 along with the circulating flow, and is passed through the stirring blade 4 (in the case of FIGS. 6 and 7, the stirring blade 4').
Due to the mixing action caused by the rotation of the two reaction solutions, both reaction solutions are rapidly mixed and silver halide grains are produced. The silver halide grains thus produced are quickly transported to the upper open end 22 of the mixer 2 along with the discharge flow caused by the rotating action of the stirring blade 5 (in the case of FIGS. 6 and 7, the stirring blade 4'). The liquid is discharged out of the mixer 2 from the opening between the liquid flow regulating plates 7 provided in the mixer 2 . At this time, a swirling flow and an axial flow are formed as discharge flows due to the rotational action of the stirring blades 5 or 4'.
The direction of the swirling flow is changed by the liquid flow regulating plate 7 to become an axial flow, and the entire discharge flow becomes an axial flow and is discharged upwardly outside the mixer 2. Therefore, the silver halide grains are discharged along the axial flow. Furthermore, after being discharged from the mixer 2 in an axial flow, the silver halide particles are circulated through the reaction vessel 1 and recycled to the mixer 2, and as this recycling movement is repeated, the silver halide particles grow. In the process of silver halide grains growing while repeating the recycling movement, the silver ion concentration in the mixer 2 or the silver halide clusters generated by the reaction between the halide aqueous solution and the silver salt aqueous solution in the mixer 2 increases. (It refers to minute silver halide that does not become a core particle. It is thought that this combines with the core particle and the growth of the core particle occurs.) Even if the density is uniform in the mixer 2, the mixer 2 Unlike the outside bulk circulating flow, the silver ion concentration is higher in the mixer 2 and the cluster density is larger. In other words, the growth rate of silver halide grains is different inside and outside the mixer 2, so in order to produce uniform silver halide grains, the discharge rate of the stirring blades should be increased to
It is necessary to shorten the residence time of the silver halide particles within the mixer 2, and at the same time, the silver halide particles are discharged to the outside of the mixer 2 along with the discharge flow of the stirring blade.
The time distribution (circulation time distribution) for circulating in the reaction vessel 1 and returning to the mixer 2 is narrow, that is, the difference in the cycle of the recycling movement of each individual silver halide grain is small, and the individual It is necessary that there be no difference in the growth process of the silver halide grains. In the present invention, this is achieved by regulating the direction of the discharge flow from the stirring blades using a liquid flow regulating plate provided at the upper open end of the mixer and discharging it upward outside the mixer as a uniform axial flow. . Examples will be given below, but the technical scope of the present invention is not limited in any way by the following examples, and various embodiments are possible. Example Solutions were prepared according to the following formulations. Solution Gelatin 120g Dextrin 240g Sodium hydroxide 120g Water 20 Solution Silver nitrate 240g Water 2 Solution Citric acid 100g Water 560ml The solution was then heated to 60°C and stirred at various methods and shear rates as shown in Table 1. was added over 5 minutes. After the addition of the solution was completed, the stirring device was replaced with No. 3 in Table 1, and the mixture was stirred for 15 minutes while maintaining the liquid temperature at 60°C, and then the solution was added to neutralize the liquid. 600 g of gelatin was added to the neutralized liquid, and stirring was continued for an additional 20 minutes to dissolve the added gelatin. The liquid was then cooled, solidified, shaped into noodles and washed. This noodle was heated to 40°C to melt it and applied to a cellulose triacetate support to prepare a sample. Next, the visible absorption spectrum of the sample was measured using a Hitachi self-recording spectrophotometer model EPS 323. Sample No.
The results of 7 and 8 are shown in FIG. Table 1 shows the ratio of the concentration at 500 nm to the maximum concentration (D 500 /Dλmax).
showed that. As is clear from Table 1, according to the method of the present invention, absorption of green light (near 500 nm) is significantly reduced. 【table】

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に用いられる装置を示す概略縦
断面図、第2図は同上図の混合器部分の拡大縦断
面図、第3図は本発明に用いられる装置の他例を
示す概略縦断面図、第4図は同上図の混合器部分
の拡大縦断面図、第5図は第4図の平面図、第6
図は本発明に用いられる装置の別の他例を示す混
合器部分の拡大縦断面図、第7図は同上図の平面
図、第8図は可視吸収スペクトルを示すグラフで
ある。 図中、1は反応容器、2は混合器、21は下方
開放端、22は上方開放端、3,3′は反応液供
給管、4は下部撹拌翼、5は上部撹拌翼、4′は
撹拌翼、6は回転軸、7は液流規制板を示す。
FIG. 1 is a schematic vertical cross-sectional view showing the device used in the present invention, FIG. 2 is an enlarged vertical cross-sectional view of the mixer portion of the same figure, and FIG. 3 is a schematic vertical cross-sectional view showing another example of the device used in the present invention. 4 is an enlarged longitudinal cross-sectional view of the mixer portion in the same figure as above; FIG. 5 is a plan view of FIG. 4;
The figure is an enlarged vertical sectional view of a mixer portion showing another example of the apparatus used in the present invention, FIG. 7 is a plan view of the same figure, and FIG. 8 is a graph showing a visible absorption spectrum. In the figure, 1 is a reaction vessel, 2 is a mixer, 21 is a lower open end, 22 is an upper open end, 3 and 3' are reaction liquid supply pipes, 4 is a lower stirring blade, 5 is an upper stirring blade, and 4' is a A stirring blade, 6 a rotating shaft, and 7 a liquid flow regulating plate.

Claims (1)

【特許請求の範囲】[Claims] 1 還元剤を含む水溶液と銀塩水溶液とを1.0×
104(sec-1)以上の剪断速度を伴う撹拌下で混合
することによりコロイド銀粒子分散物を製造する
方法。
1. Mix the aqueous solution containing the reducing agent and the silver salt aqueous solution 1.0×
A method of producing a colloidal silver particle dispersion by mixing under stirring with a shear rate of 10 4 (sec -1 ) or more.
JP18978681A 1981-11-25 1981-11-25 Production of dispersion of colloidal silver particles Granted JPS5891103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18978681A JPS5891103A (en) 1981-11-25 1981-11-25 Production of dispersion of colloidal silver particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18978681A JPS5891103A (en) 1981-11-25 1981-11-25 Production of dispersion of colloidal silver particles

Publications (2)

Publication Number Publication Date
JPS5891103A JPS5891103A (en) 1983-05-31
JPH0128084B2 true JPH0128084B2 (en) 1989-06-01

Family

ID=16247177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18978681A Granted JPS5891103A (en) 1981-11-25 1981-11-25 Production of dispersion of colloidal silver particles

Country Status (1)

Country Link
JP (1) JPS5891103A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2652155B2 (en) * 1986-05-02 1997-09-10 富士写真フイルム株式会社 Method and apparatus for continuously melting gel material
JPS6415309A (en) * 1987-07-08 1989-01-19 Agency Ind Science Techn Production of metal fine powder
JP4368855B2 (en) 2003-08-28 2009-11-18 タマティーエルオー株式会社 Noble metal colloid, noble metal fine particles, composition and method for producing noble metal fine particles
JP5139860B2 (en) * 2008-03-31 2013-02-06 三菱製紙株式会社 Method for producing silver ultrafine particles
JP5053902B2 (en) * 2008-03-31 2012-10-24 三菱製紙株式会社 Method for producing silver ultrafine particles
JP2009299162A (en) * 2008-06-16 2009-12-24 Fujifilm Corp Silver nanowire, method for producing the same, water base dispersion product and transparent conductor
JP5532199B2 (en) * 2008-11-07 2014-06-25 株式会社豊田中央研究所 Colloidal solution of metal compound and method for producing the same
JP5672754B2 (en) * 2010-04-13 2015-02-18 トヨタ自動車株式会社 Method for producing colloidal solution of cobalt hydroxide
CN105665748B (en) * 2016-04-25 2018-01-19 辽宁石化职业技术学院 A kind of preparation method of high pure and ultra-fine silver powder

Also Published As

Publication number Publication date
JPS5891103A (en) 1983-05-31

Similar Documents

Publication Publication Date Title
US4474872A (en) Method for producing photographic emulsion
US3415650A (en) Method of making fine, uniform silver halide grains
JPH0128084B2 (en)
DE3402873A1 (en) PHOTOTHERMOGRAPHIC RECORDING MATERIAL
JP2003103152A (en) Method and device for mixing liquid or solution
US5017469A (en) Twinned emulsions made from silver iodide seed crystals having an aspect ratio of at least 2:1
JP2000029164A (en) Photothermographic element having desired color
US3773516A (en) Process for preparing silver halide emulsions
JPS5858289B2 (en) Method and apparatus for producing silver halide grains
DE2322096A1 (en) METHOD FOR PRODUCING ORGANIC SILVER CARBOXYLATES
JPH08332364A (en) Solution mixing device
JP2700676B2 (en) Method for producing silver halide grains
CN108746603A (en) A kind of monodisperse Au-Ag alloy@SiO2The preparation method of composite nanometer particle
US4419442A (en) Photosensitive silver halide emulsion
US2921914A (en) Preparation of blue colloidal silver dispersions for antihalo layer
US3576641A (en) Sensitizing dyes
US3300460A (en) Process for mixing polyvinyl acetate with saponification catalyst
JPH0895179A (en) Photosensitive silver halide emulsion and preparation of dispersion solution of photographically useful compound
US3650753A (en) Filamentary silver suspensions and elements containing same
US5180651A (en) Method for the addition of powders to photographic systems
US3850643A (en) Process for making coupler dispersions
CN213050222U (en) Agitating unit is used in compound fertilizer production
JP2534121B2 (en) Silver halide photographic material
JPH0782208B2 (en) Method for producing silver halide
CN219441599U (en) Uniform feeding device for metaldehyde microcapsule suspending agent