JPH03205389A - Method for metallizing ceramics and method for joining ceramics to metal - Google Patents

Method for metallizing ceramics and method for joining ceramics to metal

Info

Publication number
JPH03205389A
JPH03205389A JP34474589A JP34474589A JPH03205389A JP H03205389 A JPH03205389 A JP H03205389A JP 34474589 A JP34474589 A JP 34474589A JP 34474589 A JP34474589 A JP 34474589A JP H03205389 A JPH03205389 A JP H03205389A
Authority
JP
Japan
Prior art keywords
metal
ceramic
ceramics
base material
fine powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34474589A
Other languages
Japanese (ja)
Inventor
Tsuneo Enokido
榎戸 恒夫
Naoki Hirai
直樹 平井
Akira Okamoto
晃 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP34474589A priority Critical patent/JPH03205389A/en
Publication of JPH03205389A publication Critical patent/JPH03205389A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To form a metalized layer having an improved joining strength and an excellent thermal stress-buffering effect on the surface of a ceramic base material and simply join the ceramics to a metal by adding prescribed ceramic fine powder to an active metal paste. CONSTITUTION:Ag-Cu metal powder containing an active metal is compounded with ceramic fine powder 3 having a particle size of <=20mum and having a thermal expansion coefficient similar to that of a ceramic base material 1, and further kneaded with an organic binder to prepare a paste. The paste is coated on the surface of the ceramic base material 1 and subsequently heated under conditions comprising a pressure of <=10<-5>Torr and a temperature of 780-890 deg.C to metalize the ceramics. A metal 4 is disposed on the surface of the metalized layer 2 through a brazing material 5 and subsequently brazing- joined to the ceramic base material 1.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はセラミックスのメタライズ方法、並びに前記メ
タライズされたセラもツクスの金属との接合方法に関し
、特に熱応力の緩和に優れた前記メタライズ方法及び接
合方法に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for metallizing ceramics, and a method for joining the metallized ceramic to metal, and in particular, the present invention relates to a method for metallizing ceramics and a method for bonding the metallized ceramic to metal, and in particular, the metallizing method and method are particularly excellent in alleviating thermal stress. Regarding the joining method.

〔従来の技術〕[Conventional technology]

セラミックス材料の耐摩耗性、耐熱性等に優れた特性を
積極的に利用する試みが活発に行われるようになってき
た。しかしながらセラ箋ツクスは前記優れた特性を持つ
反面、靭性に乏しいという欠点を有しているため、前記
セラミックスを構造材として使用する場合、高い靭性を
持つ金属材料と複合化させて使用することが多く行われ
ている。
BACKGROUND ART Active attempts have been made to utilize the excellent properties of ceramic materials, such as wear resistance and heat resistance. However, although ceramics have the above-mentioned excellent properties, they have the disadvantage of poor toughness. Therefore, when using the above-mentioned ceramics as a structural material, it is difficult to combine them with metal materials that have high toughness. It's being done a lot.

前記複合化の方法としては、セラミックスと金属材料を
ろう付けすることが多く行われ、従来より種々の方法が
開発されている。
As a method for making the composite, brazing ceramics and metal materials is often performed, and various methods have been developed in the past.

一般に、セラミックスと金属材料は熱膨張率が大きく異
なる。そのため、セラミックスと金属材料をろう付けす
る場合、ろう材が凝固し接合が完了した後の冷却過程で
両者の熱膨張率の違いに起因する熱応力が発生し、セラ
ミックスを破壊したり、破壊に至らない迄も接合界面近
傍のセラミックスに大きな熱歪を残すことになる。接合
界面に力がかかると極端に小さい力でもセラミックスが
破壊してしまうことがしばしば見られるのは、このため
である。このように、セラミックスと金属材料のろう付
けにおける最大の課題は、前述したセラミックスと金属
材料の接合界面に発生、残留する熱応力をいかに緩和す
るかにあり、この課題を解決する多くの技術が従来より
開発され、提案されている。
Generally, ceramics and metal materials have significantly different coefficients of thermal expansion. Therefore, when brazing ceramics and metal materials, thermal stress due to the difference in thermal expansion coefficient between the two is generated during the cooling process after the brazing material has solidified and the bonding has been completed, which can destroy the ceramic or cause it to break. Even if this is not the case, large thermal distortions will remain in the ceramics near the bonding interface. This is why it is often observed that when force is applied to the bonding interface, ceramics often break even with an extremely small force. In this way, the biggest challenge in brazing ceramics and metal materials is how to alleviate the thermal stress that occurs and remains at the bonding interface between ceramics and metal materials, as described above, and many technologies have been developed to solve this problem. It has been developed and proposed in the past.

セラもツクスと金属材料の接合面に発生する応力を緩和
する方法の主なものとして、例えば、特開昭60 − 
24276号公報には、セラくツクスと金属材料の間に
セラミックスと金属材料との中間的な熱膨張率を持つ金
属を介装する方法が開示されている。また特開昭56 
− 41879号公報には軟らかく、延性、展性に冨む
金属を熱応力緩衝材としてセラミックスと金属材料の間
に挾み、発生する熱応力を延性、展性に冨む金属の塑性
変形で吸収する方法が、さらに特開昭62−36079
号公報、及び特開昭62 − 1.30843号公報に
は前記両熱応力緩衝法を併用する方法も開示されている
For example, Japanese Patent Laid-Open No. 1983-1980 is the main method for alleviating the stress generated at the bonding surface between Ceramics and metal materials.
Japanese Patent No. 24276 discloses a method of interposing a metal having a coefficient of thermal expansion intermediate between ceramics and metal materials between ceramics and metal materials. Also, JP-A-56
- Publication No. 41879 describes a method in which a soft, ductile, malleable metal is sandwiched between ceramics and metal materials as a thermal stress buffer, and the generated thermal stress is absorbed by the plastic deformation of the ductile, malleable metal. A method for
JP-A No. 62-1.30843 also discloses a method of using both of the above-mentioned thermal stress buffering methods in combination.

前述した熱応力緩衝方法では、接合すべきセラ主ツクス
と金属材料の間に1枚或いは数枚の熱応力緩衝材を介装
しその緩衝材を挟み込むように板ろう材を挿入し、熱応
力緩衝材並びにろう材をセラミックスと金属材料の間に
正確に配置する必要がある。接合面においてこれらの熱
応力緩衝材がずれて接合された場合、セラミックス接合
面に局所的に応力の集中する部位を形成してセラ逅ツク
スに破壊が生じ、良好な接合体が製造出来ない問題があ
った。更に、高価な金属板を積層して使用する必要が生
じた場合、セラ逅ツクスと金属接合体は高価なものとな
り、接合体の製造コストの面からも問題であった。
In the thermal stress buffering method described above, one or several sheets of thermal stress buffering material are interposed between the ceramic material and the metal material to be joined, and a plate of brazing material is inserted to sandwich the buffering material, thereby reducing the thermal stress. It is necessary to accurately place the buffer material and the brazing material between the ceramic and the metal material. If these thermal stress buffer materials are misaligned and bonded at the bonding surface, a region where stress is locally concentrated will be formed on the ceramic bonding surface, causing damage to the ceramics and making it impossible to produce a good bonded body. was there. Furthermore, if it becomes necessary to use expensive metal plates in a laminated manner, the ceramic and metal bonded body becomes expensive, which poses a problem in terms of the manufacturing cost of the bonded body.

また、前述した各種の熱応力緩衝法の中から最適な熱応
力緩衝法を選定しても、接合するセラミックスの形状が
大きくなったり、BNの様にセラミックス自体の強度が
低い場合、十分に緩衝効果が発揮されず、メタライズ層
近傍のセラミックスから破壊してしまい、実用に耐え得
る接合体を製造することが難しいと言う問題があった。
In addition, even if you select the most suitable thermal stress buffering method from among the various thermal stress buffering methods mentioned above, if the shape of the ceramics to be bonded is large or the strength of the ceramic itself is low like BN, it may not be possible to buffer the stress sufficiently. There was a problem in that the effect was not exhibited and the ceramic near the metallized layer was destroyed, making it difficult to manufacture a bonded body that could withstand practical use.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、セラミックスと金属の接合方法において、前
述したセラミックスと金属の熱膨張率の違いに起因する
熱応力の緩和方法における問題点の抜本的な解決を図り
、安価で、実用に耐える接合強度を持つ大形のセラごツ
クスと金属の接合体を提供することをその課題とするも
のである。
The present invention aims to fundamentally solve the problems in the method of alleviating thermal stress caused by the difference in thermal expansion coefficient between ceramics and metals in a method for joining ceramics and metals, and achieves a bonding strength that is inexpensive and that can withstand practical use. The object of the present invention is to provide a large-sized ceramic-metal bonded body having the following characteristics.

〔課題を解決するための手段〕[Means to solve the problem]

前記課題を解決するため本発明は、セラミックスをメタ
ライズするにあたり、セラミックス母材の表面に、活性
金属を含むAg  Cu系金属粉末に20μm以下に粒
度調整された前記セラミックス母材と近似する熱膨張係
数を有するセラごツクス微粉末を配合し有機バインダー
で混練してなるペーストを塗布したのち、1 0 ””
Torr以上の真空中で、かつ、780〜890℃の温
度で加熱することを特徴とするものである。
In order to solve the above-mentioned problems, the present invention, when metallizing ceramics, coats the surface of the ceramic base material with a thermal expansion coefficient similar to that of the ceramic base material, the particle size of which is adjusted to 20 μm or less, in Ag Cu-based metal powder containing an active metal. After applying a paste made by blending a fine powder of Ceragox with an organic binder and kneading it with an organic binder,
It is characterized by heating in a vacuum of Torr or higher and at a temperature of 780 to 890°C.

また前記セラ嵩ツクス微粉末をセラミックス母材と同材
質とすること、及び前記セラミックス微粉末をAg −
 Cu系金属粉末に体積比で4〜10%配合したことを
他の特徴とするものである。
Further, the ceramic bulk fine powder is made of the same material as the ceramic base material, and the ceramic fine powder is Ag -
Another feature is that it is blended in a volume ratio of 4 to 10% with the Cu-based metal powder.

さらにまた、前述した方法に基づいて形成されたメタラ
イズ層を有するセラ柔ツクスと金属を接合するにあたり
、前記メタライズ層の表面にろう材を介して金属を配し
てろう付け接合すること、及びメタライズ層と金属との
間に、熱応力緩衝板を介在せしめてろう付け接合するこ
とを他の特徴?するものである。
Furthermore, when joining a metal to a ceramic material having a metallized layer formed based on the method described above, the metallized layer may be joined by brazing by placing a metal on the surface of the metallized layer via a brazing material. Another feature is that the layer and metal are joined by brazing with a thermal stress buffer plate interposed between them. It is something to do.

以下、本発明をさらに詳細に説明する。The present invention will be explained in more detail below.

第1図は、本発明の基本構威を説明するための断面構造
図である。図において、1はセラミックス母材であり、
2は前記セラミックス母材1の表面に形戒されたメタラ
イズ層である。3はメタライズ層2中に形骸を残して存
在するセラ逅ツクス微粉末である。
FIG. 1 is a cross-sectional structural diagram for explaining the basic structure of the present invention. In the figure, 1 is a ceramic base material,
Reference numeral 2 denotes a metallized layer formed on the surface of the ceramic base material 1. 3 is a ceramic fine powder that remains in the metallized layer 2 and remains therein.

本発明において、メタライズ層2は、八g−CuTi系
、例えばAg71wt%、Cu27wt%、Ti 2 
wt%の配合組威の金属微粉末に、2oIIm以下に微
粉砕して粒度調整したセラトノクス微粉末3を配合し、
有機バインダーで混練してペースト状としたもの(以下
単にペーストと云う)をセラ逅ツクス母材1の表面に塗
布した後、780〜890″Cの温度域、1 0 ”5
Torr以上の真空に制御された雰囲気中で所定時間、
加熱処理して形成される。
In the present invention, the metallized layer 2 is made of 8g-CuTi system, for example, Ag71wt%, Cu27wt%, Ti2
A fine metal powder with a composition of wt% is blended with fine Ceratonox powder 3 whose particle size has been adjusted by finely pulverizing it to 2oIIm or less,
After applying a paste made by kneading with an organic binder (hereinafter simply referred to as paste) to the surface of the ceramic base material 1, it was heated in a temperature range of 780 to 890"C, 10"5
for a predetermined period of time in a vacuum-controlled atmosphere of Torr or higher.
Formed by heat treatment.

本発明で適用できるセラ逅ツクス母材lは、従来の活性
金属メタライズ法と同様に、^2.0,、ZrO■等の
酸化物系セラミックスやSi.N.、^j2N,BN等
の窒化物系セラミックスやSiC等の炭化物系セラミッ
クスが適用可能である。
Ceramic base materials that can be used in the present invention include oxide ceramics such as ^2.0, ZrO, and Si. N. , ^j2N, BN, and other nitride-based ceramics, and SiC and other carbide-based ceramics are applicable.

セラミックス微粉末3は、セラミックス母材1に近似す
る熱膨張係数を有し、しかも前述した加熱処理過程にお
いて活性金属と反応してメタライズ層2中に形骸を残す
ことのできるものであればどんな物質でも使用可能であ
り、セラ逅ツクス母材lと同材質のものは勿論、例えば
Aj!t(hセラ逅・ンクスに対してはべりリア、スビ
ネルを、SilN.セラaツクスに対してはコージェラ
イ1・等を用いることもできる。しかしながらセラ逅ツ
クス微粉末3としてセラ逅ツクス母材1と同材質のセラ
くックスを20μm以下に微粉砕したものを用いた場合
、後述するようにセラミックス母材lと熱膨張係数が全
く同一であり、しかも活性金属の反応もセラミックス母
材1と同等に行われることから前記機能を充分に発揮で
き、特に効果的である。
The ceramic fine powder 3 may be any material as long as it has a coefficient of thermal expansion similar to that of the ceramic base material 1 and can react with the active metal during the heat treatment process described above to leave a trace in the metallized layer 2. However, it is possible to use not only those made of the same material as the Ceramics base material, but also those made of the same material as Aj! It is also possible to use Berria or Subinel for Ceramics, and Corjelai 1, etc. for SilN. Ceramics. When using the same material, Cerax, which has been finely ground to a size of 20 μm or less, the coefficient of thermal expansion is exactly the same as that of ceramic base material 1, and the reaction of the active metal is also the same as that of ceramic base material 1, as described later. Since it is carried out, the above-mentioned function can be fully exhibited and it is particularly effective.

即ち、前記メタライズ層2は、従来の活性金属メタライ
ズ方法と同様の機構によってセラl ツクス表面に強固
に接合されるが、更にメタライズ層2中に混在するセラ
ミックス微粉末3の外表面も活性金属であるTiと反応
し、マトリックスを形或するAg−Cu系合金相と強固
に結合される。このようにセラ主ツクス微粉末3は金属
粉末の融体より比重が低くても金属粉末の融体中のTi
とよく反応しているためメタライズ層2の表面に浮上す
ることなくメタライズ層中に均一に分散、懸濁している
。そのため、形成されたメタライズ層の表面にはろう付
け工程でなんら支障の無い良好な金属面が形成される。
That is, the metallized layer 2 is firmly bonded to the ceramic surface by a mechanism similar to the conventional active metal metallization method, but the outer surface of the ceramic fine powder 3 mixed in the metallized layer 2 is also made of active metal. It reacts with some Ti and is strongly bonded to the Ag-Cu alloy phase forming the matrix. In this way, even though the ceramic-based fine powder 3 has a lower specific gravity than the molten metal powder,
Because it reacts well with the metallized layer 2, it is uniformly dispersed and suspended in the metallized layer 2 without floating to the surface of the metallized layer 2. Therefore, a good metal surface is formed on the surface of the formed metallized layer without any problems during the brazing process.

尚、セラミックス微粉末3は、20l!m超の大きな粒
子となるとセラ逅シクス微粉末3がメタライズ層2を貫
通してメタライズ層表面に露出し、良好な金属面が得ら
れない。本発明においてセラミックス微粉末3を20μ
m以下に粒度調整したものに限定したのはかかる理由か
らである。
In addition, ceramic fine powder 3 is 20 liters! If the particles are larger than m, the Ceramics fine powder 3 will penetrate the metallized layer 2 and be exposed on the surface of the metallized layer, making it impossible to obtain a good metal surface. In the present invention, the ceramic fine powder 3 is 20μ
It is for this reason that the particle size is limited to those whose particle size is adjusted to be less than m.

セラミックス微粉末3の配合割合は、後述するようにA
g−Cu−Ti系の金属微粉末に対して体積比で4〜1
0%の範囲が好ましい。
The blending ratio of the ceramic fine powder 3 is A as described later.
4 to 1 in volume ratio to g-Cu-Ti metal fine powder
A range of 0% is preferred.

メタライズ処理温度については、セラミックス9 微粉末3を配合することによって特に処理条件を変更す
る必要はなく、従来の活性金属メタライズ法と同様に7
80〜890℃の範囲で処理すれば良い。
Regarding the metallization treatment temperature, there is no need to change the treatment conditions by blending Ceramics 9 Fine Powder 3, and it is the same as the conventional active metal metallization method.
What is necessary is just to process in the range of 80-890 degreeC.

こうして形成された本発明のメタライズ層2は、セラa
ツクス母材1と同じ熱膨張係数を有するセラaツクス微
粉末3が混在している結果、セラξックス微粉末3の混
在していない、つまりAg − Cu−Ti系金属微粉
末のみで形成されたメタライズ層の熱膨張係数と比較し
、セラミックス母材1により近い見掛けの熱膨張係数を
持つことになる。加えてメタライズ層2に混在するセラ
ミックス微粉末3は、八g−Cu−Ti系メタライズ層
に完全に固定さており所定の配合量まではメタライズ層
の強度には殆ど変化を与えない。
The metallized layer 2 of the present invention thus formed is
As a result of the presence of the ceramic fine powder 3 having the same coefficient of thermal expansion as that of the ceramic base material 1, the ceramic material ξ is not mixed with the ceramic fine powder 3, that is, it is formed only of the Ag-Cu-Ti metal fine powder. Compared to the coefficient of thermal expansion of the metallized layer, it has an apparent coefficient of thermal expansion closer to that of the ceramic base material 1. In addition, the ceramic fine powder 3 mixed in the metallized layer 2 is completely fixed to the 8g-Cu-Ti metallized layer and hardly changes the strength of the metallized layer up to a predetermined amount.

第2図は、前述した本発明に基づく方法でメタライズさ
れたセラミックス10を金属母材4に接合した接合体の
一実施例を示す断面構造図である。
FIG. 2 is a cross-sectional structural diagram showing an example of a joined body in which a ceramic 10 metallized by the method based on the present invention described above is joined to a metal base material 4.

本実施例においては、セラミックス10の前記メタライ
ズ層2表面にろう材5を介装して金属母材10 4を配し、Arガス雰囲気炉で840℃130分間、加
熱処理してろう付け接合し、接合体を構威したものであ
る。メタライズ層2は前述したようにセラ逅ツクス母材
1と熱膨張係数が近似しているためセラミックス母材1
のメタライズ層界面に発生する応力は減少し、接合界面
に発生する応力はセラミックス母材1より高い強度を持
つメタライズ層2と金属母材4の間で発生することとな
る。この結果、最も破壊の生じ易いセラミックス母材1
には殆ど応力がかからず、熱応力の発生の少ない、良好
な熱応力の緩衝がなされた接合体となる。
In this example, a metal base material 104 is placed on the surface of the metallized layer 2 of the ceramic 10 with a brazing filler metal 5 interposed therein, and the metal base material 104 is heat-treated at 840° C. for 130 minutes in an Ar gas atmosphere furnace to join by brazing. , which is a zygote. As mentioned above, the metallized layer 2 has a thermal expansion coefficient similar to that of the ceramic base material 1.
The stress generated at the interface of the metallized layer decreases, and the stress generated at the bonding interface occurs between the metallized layer 2 and the metal base material 4, which have higher strength than the ceramic base material 1. As a result, ceramic base material 1, which is the most prone to fracture,
Almost no stress is applied to the bonded body, resulting in a bonded body with little thermal stress generation and good thermal stress buffering.

第3図は、前記メタライズされたセラミックス10と金
属母材4の接合体の他の実施例を示す断面構造図である
。本実施例においては前記メタライズ層2と金属母材4
の間に、熱応力緩衝材5を介在せしめてろう付け接合し
たものである。熱応力緩衝材5としては従来より用いら
れている軟らかく、延性に冨む、例えば銅、ニッケル等
の金属で構威すればよく、前述した本発明のメタライズ
層2の機能と相俟ってさらに優れた熱応力の緩衝11 効果を発揮する。
FIG. 3 is a cross-sectional structural diagram showing another embodiment of the joined body of the metallized ceramic 10 and the metal base material 4. As shown in FIG. In this embodiment, the metallized layer 2 and the metal base material 4
A thermal stress buffering material 5 is interposed between the parts and the parts are joined by brazing. The thermal stress buffering material 5 may be made of conventionally used soft and highly ductile metals such as copper and nickel. Demonstrates excellent thermal stress buffering effect.

次に、第4図は、セラミックス微粉末3のAgCu系金
属粉末に対する配合割合の調査結果の一例を示すもので
ある。本調査は、前述した第2図に示す接合体(Aj2
zCh系セラミックス母材にSS41鋼板を接合)にお
いて、前述したペースト中のセラごツクス微粉末3(セ
ラミックス母材と同じAfzOs系で20μm以下に粒
度調整されたもの)の配合割合を変化させ、接合強度と
接合界面の変化状況を調査したものである。本例では接
合強度を剪断強度で、熱応力の緩衝効果を接合部のクラ
ック発生の有無で評価し、またセラミックス微粉末3の
配合割合を体積比で現している。この第4図から判るよ
うに接合強度は、セラミックス微粉末3の配合割合が1
0%まではセラ藁ツクス微粉末3を配合しない場合と殆
ど変わらないが、10%を越えると急激に低下している
。これはメタライズ層中のセラ藁ツクス微粉末3の配合
割合が過多になるとメタライズ層自身の強度が低下する
ためであると推察される。
Next, FIG. 4 shows an example of the results of an investigation on the blending ratio of the ceramic fine powder 3 to the AgCu-based metal powder. This investigation was carried out using the zygote (Aj2) shown in Figure 2 mentioned above.
In bonding SS41 steel plate to zCh ceramic base material), the blending ratio of Ceragos fine powder 3 (the same AfzOs system as the ceramic base material, particle size adjusted to 20 μm or less) in the paste was changed, and the bonding This study investigated changes in strength and bonding interface. In this example, the joint strength is evaluated by shear strength, the thermal stress buffering effect is evaluated by the presence or absence of cracks in the joint, and the blending ratio of the ceramic fine powder 3 is expressed by volume ratio. As can be seen from Fig. 4, the bonding strength is increased when the blending ratio of ceramic fine powder 3 is 1.
Up to 0%, there is almost no difference from the case where Serawarusu Fine Powder 3 is not blended, but when it exceeds 10%, it decreases rapidly. This is presumably because the strength of the metallized layer itself decreases when the blending ratio of the ceramic straw fine powder 3 in the metallized layer becomes too large.

12 一方、セラミックス微粉末3の配合割合が高くなると、
熱応力緩衝効果も高まり、3%以下ではクラックの発生
が高かったものが、4%以上ではクラックの発生は殆ど
無くなった。
12 On the other hand, when the blending ratio of ceramic fine powder 3 increases,
The thermal stress buffering effect also increased, and cracks were more likely to occur at 3% or less, but almost no cracks occurred at 4% or more.

而してセラ逅ツクス微粉末3の配合割合が4〜10%の
範囲では、熱応力緩衝効果が著しく改善されるにかかわ
らず、接合強度もセラミックス微粉末3を配合しない場
合と殆ど変わらず本発明の優れた効果が確認された。勿
論接合体の接合強度が実用上問題なければ、セラ壽ツク
ス微粉末3の配合割合を10%超としても支障はない。
When the blending ratio of Ceramic Fine Powder 3 is in the range of 4 to 10%, although the thermal stress buffering effect is significantly improved, the bonding strength remains almost the same as when Ceramic Fine Powder 3 is not blended. The excellent effects of the invention were confirmed. Of course, if there is no practical problem in the bonding strength of the bonded body, there is no problem even if the blending ratio of the ceramic fine powder 3 exceeds 10%.

〔作 用〕[For production]

本発明は、従来より活性金属メタライズ法として用いら
れている処理工程でペーストに微粉末粒子を配合する工
程を追加するだけで、従来の活性金属メタライズ法の接
合強度を確保しつつ、熱応力緩衝効果に優れたメタライ
ズ層を同時に形戒することに或功したものである。
By simply adding a step of blending fine powder particles into the paste in the treatment process conventionally used as an active metal metallization method, the present invention achieves thermal stress buffering while ensuring the bonding strength of the conventional active metal metallization method. This method has been successful in simultaneously providing a highly effective metallized layer.

〔実施例〕〔Example〕

実施例1 13 Ag/Cu/Ti : 7 0 / 2 6 / 4の
配合組威の金属粉末(一3 2 5mesh)に、^1
!.zo:+セラモツクス微粉末(−20μm)を体積
割合で4%配合してスクリーンオイルで混練調製してペ
ーストを製造した。このペーストを純度92%のAjl
!z03セラミックス(50X50X5mm厚)の表面
に、塗布量が40mg/c+fiになるようスクリーン
で印刷塗布し、真空乾燥した後、1 0−5Torr、
840℃の真空炉中で30分間加熱処理してメタライズ
した。
Example 1 13Ag/Cu/Ti: Metal powder (1325mesh) with a combination of 70/26/4 was mixed with ^1
! .. A paste was prepared by blending 4% by volume of zo:+ceramox fine powder (-20 μm) and kneading with screen oil. Add this paste to Ajl with a purity of 92%.
! The surface of z03 ceramics (50 x 50 x 5 mm thick) was coated by screen printing so that the coating amount was 40 mg/c+fi, and after vacuum drying, 10-5 Torr,
Metallization was performed by heat treatment in a vacuum furnace at 840° C. for 30 minutes.

このメタライズ処理したセラミックスをSS41鋼板(
100X100X12n+m厚)にBAg− 8板ろう
材を挟んで840℃のArガス気流の炉中に挿入して3
0分間加熱してセラミックスと鋼板をろう付けした。並
行して、同じ条件で、前記セラ≧ツクス微粉末を配合し
ていないペーストでメタライズしたAI2zo3セラ亀
ツクスをろう付けした比較材は、接合面近傍のセラミッ
クスに大きなクラックが発生し、炉外でセラ壽ツクスは
全面に亙って剥離した。しかし、本発明のセラ逅ツクス
と鋼板の接合体にはクランクの発生は全く認められず、
耐14 摩耗材として使用するに十分な接合強度を持つ接合体が
製造出来た。
This metallized ceramic is coated with SS41 steel plate (
100X100X12n+m thick) with BAg-8 brazing filler metal sandwiched between them and inserted into a furnace with Ar gas flow at 840℃.
The ceramics and the steel plate were brazed together by heating for 0 minutes. In parallel, under the same conditions, a comparison material in which AI2ZO3 Ceramics metallized with a paste that did not contain the Cera≧Tx fine powder was brazed had large cracks in the ceramic near the bonding surface, and it failed outside the furnace. Therajutsu peeled off over the entire surface. However, no cranking was observed in the joint of the ceramics and steel plate of the present invention.
Resistance: 14 A bonded body with sufficient bonding strength to be used as a wear material was manufactured.

実施例2 セラミックス母材であるBNセラミックスの破片を15
μm以下に微粉砕したBNセラミックスの微粉末を、A
g/Cu/Ti : 7 0 / 2 6 / 4の配
合組威の金属粉末に体積配合率で7%になるよう配合し
、混練して調製したペーストを、BNセラ果ックス母材
(75X75X10nu++厚)の表面に451Ilg
/cIilの塗布量になるようスクリーン印刷を施した
。このBNセラミックスを真空乾燥した後、Cu板(7
5X75X10mm厚)に積層させ、io−5Torr
、840℃の真空炉中で30分間加熱してメタライズと
ろう付けを同時に行った。
Example 2 15 fragments of BN ceramics, which is a ceramic base material
A fine powder of BN ceramics that has been pulverized to less than μm is
g/Cu/Ti: 70/26/4 metal powder is blended to a volumetric ratio of 7%, and the paste prepared is mixed into a BN Cerafruit base material (75X75X10nu++ thickness). ) on the surface of 451Ilg
Screen printing was performed so that the coating amount was /cIil. After vacuum drying this BN ceramic, a Cu plate (7
5 x 75 x 10 mm thick) and io-5 Torr
, metallization and brazing were performed simultaneously by heating in a vacuum furnace at 840° C. for 30 minutes.

本発明によりろう付けされたBNセラミックス/Cu接
合体は、セラミックスや接合部に亀裂の発生は見られず
良好な接合体が得られた。比較材として前述のペースト
にBNセラミックス微粉末を添加していない従来の活性
金属ペーストを用いて同じ条件でメタライズ、ろう付け
したBNセラξ15 ックス/Cu接合体は、BNセラミックスの接合部近傍
に亀裂の発生が見られ、非常に弱い力でセラaツクス面
より剥離し、接合体が製造出来なかった。
In the BN ceramic/Cu bonded body brazed according to the present invention, a good bonded body was obtained, with no cracks observed in the ceramics or the joint. As a comparative material, a BN ceramic ξ15 x/Cu joint was metalized and brazed under the same conditions using a conventional active metal paste without the addition of BN ceramic fine powder to the above-mentioned paste, with cracks near the BN ceramic joint. Occurrence was observed, and it peeled off from the ceramic surface with a very weak force, making it impossible to manufacture a bonded body.

〔発明の効果〕〔Effect of the invention〕

本発明は、従来から用いられている活性金属ペーストに
セラミックス母材と近似した熱膨張係数を持つセラミッ
クスの微粉末を所定量添加する工程を追加するだけで、
高い接合強度を確保しつつ、熱応力緩衝効果に優れたメ
タライズ層を形成させ、セラミックスと金属の接合体を
簡便に製造する方法を提供するもので工業上有益である
The present invention can be achieved by simply adding a predetermined amount of ceramic fine powder having a thermal expansion coefficient similar to that of the ceramic base material to the conventionally used active metal paste.
The present invention provides a method for easily manufacturing a ceramic-metal bonded body by forming a metallized layer that has an excellent thermal stress buffering effect while ensuring high bonding strength, and is industrially useful.

【図面の簡単な説明】[Brief explanation of drawings]

第工図は本発明の基本構或を説明するための断面構造図
であり、第2図及び第3図は本発明に基づく方法でメタ
ライズされたセラくツクスを金属部材に接合した接合体
のそれぞれ異なった実施例を示す断面構造図、第4図は
本発明によるセラ藁ックス金属接合体の接合強度と接合
界面の調査結果の一例を示す図である。 16
The construction drawing is a cross-sectional structural diagram for explaining the basic structure of the present invention, and FIGS. 2 and 3 are diagrams of a joined body in which ceramics metallized by the method based on the present invention are bonded to a metal member. FIG. 4 is a cross-sectional structure diagram showing different embodiments, and FIG. 4 is a diagram showing an example of the results of an investigation of the bonding strength and bonding interface of the ceramic-straw metal bonded body according to the present invention. 16

Claims (5)

【特許請求の範囲】[Claims] (1)セラミックス母材の表面に、活性金属を含むAg
−Cu系金属粉末に20μm以下に粒度調整された前記
セラミックス母材と近似する熱膨張係数を有するセラミ
ックス微粉末を配合し有機バインダーで混練してなるペ
ーストを塗布したのち、10^−^5Torr以上の真
空中で、かつ、780〜890℃の温度で加熱すること
を特徴とするセラミックスのメタライズ方法。
(1) Ag containing active metals on the surface of the ceramic base material
- After applying a paste made by blending Cu-based metal powder with fine ceramic powder having a thermal expansion coefficient similar to that of the ceramic base material whose particle size is adjusted to 20 μm or less and kneading with an organic binder, A method for metallizing ceramics, which comprises heating in a vacuum at a temperature of 780 to 890°C.
(2)セラミックス微粉末が、セラミックス母材と同材
質であることを特徴とする請求項1記載のセラミックス
のメタライズ方法。
(2) The method for metallizing ceramics according to claim 1, wherein the ceramic fine powder is made of the same material as the ceramic base material.
(3)活性金属を含むAg−Cu系金属粉末に20μm
以下に粒度調整されたセラミックス微粉末を体積比で4
〜10%配合したことを特徴とする請求項1または2記
載のセラミックスのメタライズ方法。
(3) Ag-Cu metal powder containing active metals with a thickness of 20 μm
The volume ratio of fine ceramic powder with particle size adjustment is as follows:
3. The method for metallizing ceramics according to claim 1 or 2, wherein the content is 10% to 10%.
(4)請求項1〜3記載の方法に基づいて形成されたメ
タライズ層の表面にろう材を介して金属を配し、ろう付
け接合することを特徴とするセラミックスと金属の接合
方法。
(4) A method for joining ceramics and metal, which comprises disposing a metal via a brazing material on the surface of a metallized layer formed according to the method according to any one of claims 1 to 3, and joining by brazing.
(5)メタライズ層と金属との間に、熱応力緩衝板を介
在せしめてろう付け接合することを特徴とする請求項4
記載のセラミックスと金属の接合方法。
(5) Claim 4 characterized in that the metallized layer and the metal are joined by brazing with a thermal stress buffer plate interposed between them.
The described method for joining ceramics and metal.
JP34474589A 1989-12-30 1989-12-30 Method for metallizing ceramics and method for joining ceramics to metal Pending JPH03205389A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34474589A JPH03205389A (en) 1989-12-30 1989-12-30 Method for metallizing ceramics and method for joining ceramics to metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34474589A JPH03205389A (en) 1989-12-30 1989-12-30 Method for metallizing ceramics and method for joining ceramics to metal

Publications (1)

Publication Number Publication Date
JPH03205389A true JPH03205389A (en) 1991-09-06

Family

ID=18371653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34474589A Pending JPH03205389A (en) 1989-12-30 1989-12-30 Method for metallizing ceramics and method for joining ceramics to metal

Country Status (1)

Country Link
JP (1) JPH03205389A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999015478A1 (en) * 1997-09-19 1999-04-01 Japan Science And Technology Corporation Brazing structure and metallized structure
KR100420243B1 (en) * 2001-04-30 2004-03-04 김태우 Joining method of silicon nitride and metal using in-situ buffer-layer
JP2010215419A (en) * 2009-03-13 2010-09-30 Taiheiyo Cement Corp SiC JOINED BODY
JP2012067998A (en) * 2010-09-27 2012-04-05 Japan Steel Works Ltd:The Bulletproof plate
JP2017065935A (en) * 2015-09-28 2017-04-06 デンカ株式会社 Ceramic circuit board
CN110524079A (en) * 2019-07-31 2019-12-03 常熟市银洋陶瓷器件有限公司 The silver-copper brazing alloy layer preparation method being brazed for metallized ceramic and metal parts

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999015478A1 (en) * 1997-09-19 1999-04-01 Japan Science And Technology Corporation Brazing structure and metallized structure
US6440590B1 (en) 1997-09-19 2002-08-27 Japan Science And Technology Corporation Brazing structure and metallized structure
KR100420243B1 (en) * 2001-04-30 2004-03-04 김태우 Joining method of silicon nitride and metal using in-situ buffer-layer
JP2010215419A (en) * 2009-03-13 2010-09-30 Taiheiyo Cement Corp SiC JOINED BODY
JP2012067998A (en) * 2010-09-27 2012-04-05 Japan Steel Works Ltd:The Bulletproof plate
JP2017065935A (en) * 2015-09-28 2017-04-06 デンカ株式会社 Ceramic circuit board
CN110524079A (en) * 2019-07-31 2019-12-03 常熟市银洋陶瓷器件有限公司 The silver-copper brazing alloy layer preparation method being brazed for metallized ceramic and metal parts

Similar Documents

Publication Publication Date Title
JP4375730B2 (en) Brazing material for joining copper and ceramics or carbon-based copper composite material and joining method therefor
WO1996009266A1 (en) Bonded body of aluminum and silicon nitride and production method thereof
JPH0367985B2 (en)
US4598025A (en) Ductile composite interlayer for joining by brazing
JP4104253B2 (en) Board integrated structure
JP3095490B2 (en) Ceramic-metal joint
JP3495051B2 (en) Ceramic-metal joint
JPH03205389A (en) Method for metallizing ceramics and method for joining ceramics to metal
US20080131724A1 (en) Ceramic armor, methods of joining a carbide with a metal-comprising piece, and methods of metallizing carbide-comprising surfaces
JPS59137373A (en) Ceramic bonding method
JPS62289396A (en) Joining method for ceramics
JP3302714B2 (en) Ceramic-metal joint
JPH0930870A (en) Bonded material of ceramic metal and accelerating duct
JP2729751B2 (en) Joining method of alumina ceramics and aluminum
JP3370060B2 (en) Ceramic-metal joint
JPH10194860A (en) Brazing filler metal
JP3081256B2 (en) Alloy for metallizing ceramics and metallizing method
JP3977875B2 (en) Brazing alloy and joined body for joining of alumina-based ceramics-aluminum alloy
JP3505212B2 (en) Joint and method of manufacturing joint
JPS6338244A (en) Manufacture of ceramic substrate for semiconductor device and clad material used for the same
JP3298235B2 (en) Joining method of ceramics and nickel
JPS59184778A (en) Pressure welding of ceramic member to metal member
JPH04300259A (en) Joining member and joining
JPH0215874A (en) Method and material for joining metal and ceramics
JPH0142914B2 (en)