JP3298235B2 - Joining method of ceramics and nickel - Google Patents

Joining method of ceramics and nickel

Info

Publication number
JP3298235B2
JP3298235B2 JP13277793A JP13277793A JP3298235B2 JP 3298235 B2 JP3298235 B2 JP 3298235B2 JP 13277793 A JP13277793 A JP 13277793A JP 13277793 A JP13277793 A JP 13277793A JP 3298235 B2 JP3298235 B2 JP 3298235B2
Authority
JP
Japan
Prior art keywords
ceramics
nickel
joining
brazing material
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13277793A
Other languages
Japanese (ja)
Other versions
JPH06321648A (en
Inventor
太 黒田
伸昭 新矢
強 山本
敏行 高島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP13277793A priority Critical patent/JP3298235B2/en
Publication of JPH06321648A publication Critical patent/JPH06321648A/en
Application granted granted Critical
Publication of JP3298235B2 publication Critical patent/JP3298235B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、セラミックスとニッケ
ル又はニッケルを多量に含む合金とを接合する方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for joining ceramics to nickel or an alloy containing a large amount of nickel.

【0002】[0002]

【従来の技術】従来、セラミックス等の粉末成形体と金
属とを接合するには、先ず、セラミックスの表面をMo
−Mn法(テレフケン法)で金属化し、その後にニッケ
ル(Ni)鍍金を施し、必要に応じて応力緩衝のための
中間材を用い、銀(Ag)ろう等で金属にろう接するよ
うにしている。上記のメタライズ法では、接合が2工程
となるので、メタライズなしに接合するため、Ag−C
u−Ti系、Cu−Al−Si−Ti系、Ag−Cu−
Ti−In系等の活性金属を含ませたろう材を使用し
て、セラミックスと直接反応させて接合するようにして
いる。Ag−Cu−Ti系ろう材では、活性金属である
Tiの含有量は、通常1〜2wt%としている。
2. Description of the Related Art Conventionally, in order to join a powder compact of ceramics or the like to a metal, first, the surface of the ceramic is made of Mo.
-Metallization by the Mn method (Telefken method), followed by nickel (Ni) plating, using an intermediate material for stress buffering as necessary, and brazing to the metal with silver (Ag) brazing or the like. . In the above metallization method, the bonding is performed in two steps.
u-Ti system, Cu-Al-Si-Ti system, Ag-Cu-
A brazing material containing an active metal such as a Ti-In system is used to directly react with ceramics and join. In the Ag-Cu-Ti-based brazing material, the content of Ti, which is an active metal, is usually set to 1 to 2 wt%.

【0003】特開昭59−232692号公報には、セ
ラミックスと金属とを接合するろう材として、Ti含有
量を3〜80wt%としたTi−Ag−Cu系ろう材が
記載されている。
JP-A-59-232692 discloses a Ti-Ag-Cu-based brazing filler metal having a Ti content of 3 to 80 wt% as a brazing filler metal for joining ceramics and metal.

【0004】セラミックスと金属を加熱接合する場合、
両者の熱膨張差により、冷却過程で接合部付近に残留応
力が働き、接合体の接合強度の低下やセラミックスに割
れが発生する。この残留応力を低減するため、両者の間
にMo,W,コバール合金等の低熱膨張金属を挿入して
接合したり、ニッケル、銅、アルミニウム等の軟質金属
板をセラミックスと金属間に介在させて接合するように
している。これらの軟質金属の中で、Cuは耐力が低い
ため、応力が掛かる接合体に使用するとCuの部分が変
形してしまう。Alも同様であり、また融点が低いため
高温中で使用する接合体には使用できない。Niは耐力
があり、耐酸化性、耐熱性の面で優れた特性を持ってい
るので、セラミックスと金属の接合用の緩衝材として適
している。
[0004] When heating and joining ceramics and metal,
Due to the difference in thermal expansion between the two, a residual stress acts near the joint during the cooling process, which lowers the joint strength of the joined body and cracks the ceramic. In order to reduce the residual stress, a low thermal expansion metal such as Mo, W, Kovar alloy or the like is inserted between the two to join them, or a soft metal plate such as nickel, copper, aluminum or the like is interposed between the ceramic and the metal. We are trying to join. Among these soft metals, Cu has a low proof stress, and therefore, when used in a joined body subjected to stress, the Cu portion is deformed. Al is the same, and cannot be used for a joined body used at high temperature because of its low melting point. Ni is suitable as a cushioning material for joining ceramics and metal because Ni has a proof stress and has excellent characteristics in terms of oxidation resistance and heat resistance.

【0005】セラミックスと金属又はセラミックス同士
の接合には、通常Ag−Cu−Ti系ろう材(Ti含有
量:1〜2wt%)が用いられる。このろう材を用い、
Ni板の緩衝材を使用してセラミックスと金属とを接合
した場合、充分な接合が行われない。その理由は、次の
ように推定される。Ag−Cu−Ti系ろう材2を用い
たセラミックスとNiとの接合は、図2に示すように、
窒化珪素セラミックスの界面Xに、TiN及びTi5S
i3の反応層が生成され、この層の形成により接合が行
われるものと考えられる。一方、Niとの界面Yからは
Niがろう材2中に溶解し、優先的にTiと反応し、N
i−Ti系合金を形成する。このため、窒化珪素セラミ
ックスの界面XではTiが不足し、TiN及びTi5S
i3が一部の界面にしか形成されなくなり、充分な接合
が得られなくなる。この接合体の接合部の断面組織の観
察を走査型電子顕微鏡(SEM)で行い、元素分布測定
を電子線マイクロアナライザー(EPMA)で行った。
[0005] For joining ceramics to metal or ceramics, an Ag-Cu-Ti brazing material (Ti content: 1-2 wt%) is usually used. Using this brazing material,
When a ceramic and a metal are joined using a buffer material of a Ni plate, sufficient joining is not performed. The reason is presumed as follows. The joining of the ceramics and Ni using the Ag-Cu-Ti-based brazing material 2 is as shown in FIG.
TiN and Ti5S at the interface X of the silicon nitride ceramic
It is considered that a reaction layer of i3 is generated, and bonding is performed by forming this layer. On the other hand, from the interface Y with Ni, Ni dissolves in the brazing material 2 and reacts preferentially with Ti,
An i-Ti alloy is formed. Therefore, Ti is insufficient at the interface X of the silicon nitride ceramic, and TiN and Ti5S
i3 is formed only at a part of the interface, and a sufficient junction cannot be obtained. The cross-sectional structure of the joint of the joined body was observed by a scanning electron microscope (SEM), and the element distribution was measured by an electron beam microanalyzer (EPMA).

【0006】上記の接合体の接合部を、マイクロアナラ
イザー(EPMA)で行ったTi元素の分布状態を示す
模式図である図5に示すように、Ti元素はろう材中に
まばらに分布している。また、Ni元素の分布状態を示
す模式図である図6に示すように、Ni元素はTi元素
と同様な分布でろう材中に拡散している。このことか
ら、ろう在中のTiがろう材中に溶融してきたNiと優
先的に結合してNi−Ti系合金を形成してしまい、窒
化珪素セラミックスの界面XではTiが不足し、TiN
及びTi5Si3の反応層が一部の界面にしか形成されな
くなったことがわかる。
[0006] As shown in Fig. 5, which is a schematic view showing the distribution state of Ti elements by a microanalyzer (EPMA), the Ti elements are sparsely distributed in the brazing material. I have. Further, as shown in FIG. 6 which is a schematic view showing the distribution state of the Ni element, the Ni element is diffused in the brazing material with the same distribution as the Ti element. From this, Ti in the brazing material is preferentially bonded to Ni melted in the brazing material to form a Ni—Ti alloy, and Ti is insufficient at the interface X of the silicon nitride ceramic, and TiN
It can be seen that a reaction layer of Ti5Si3 and Ti5Si3 was formed only at a part of the interface.

【0007】[0007]

【発明が解決しようとする課題】上記のように、ニッケ
ルはセラミックスと金属の接合に使用する緩衝材として
優れた特性を有するが、通常のAg−Cu−Ti系ろう
材を用いて接合した場合、その接合強度が低くバラツキ
も大きなものとなる。本発明は、セラミックスとニッケ
ルとを高接合強度で接合できるセラミックスとニッケル
との接合方法を提供することを目的とするものである。
As described above, nickel has excellent characteristics as a buffer material used for joining ceramics and metal, but when nickel is joined using a normal Ag-Cu-Ti brazing material. However, the bonding strength is low and the variation is large. An object of the present invention is to provide a method for bonding ceramics and nickel, which can bond ceramics and nickel with high bonding strength.

【0008】[0008]

【課題を解決するための手段】本発明は、セミックス
とニッケル又はニッケルを多量に含む合金との接合にお
いて、ニッケル側の接合面にカーボン層を形成し、Ag
−Cu−Ti系ろう材を用いて真空雰囲気中で加熱して
接合することを特徴とするセラミックスとニッケルとの
接合方法である。
Means for Solving the Problems The present invention, in the bonding between the alloy including ceramics and nickel or nickel in a large amount, to form a carbon layer on the bonding surface of the nickel side, Ag
This is a method of joining ceramics and nickel, characterized by heating and joining in a vacuum atmosphere using a Cu-Ti-based brazing material.

【0009】[0009]

【作用】ニッケル側の接合面に形成したカーボン層が、
Niのろう材中への拡散を防止する。そのためろう材中
のTiがNiと反応する量が減るので、セラミックスと
反応するTiの量が相対的に多くなり、セラミックスの
界面に接合に必要な反応層が充分形成される。
[Function] The carbon layer formed on the joining surface on the nickel side is
Prevents diffusion of Ni into brazing material. Therefore, the amount of Ti reacting with Ni in the brazing material is reduced, so that the amount of Ti reacting with ceramics is relatively increased, and a reaction layer necessary for bonding is sufficiently formed at the interface of ceramics.

【0010】[0010]

【実施例】本発明の実施例を図面を参照して説明する。
図1に示すように、円筒状の窒化珪素セラミックス(S
i3N4)1をニッケル(Ni)5とコバール合金6との
接合体のニッケル5面に接合する場合である。セラミッ
クス1(φ10mm,L20mm)側に、Ti箔3(φ
10mm,厚さ2μm)を挟み、Ag−Cu−Ti系ろ
う材2(Ag:63wt%,Cu:35.25wt%,
Ti:1.75wt%)を厚さ50μmで介在させ、ニ
ッケル5の表面には、蒸着により厚さ約5μmのカーボ
ン(C)層4を形成し、これらを真空雰囲気中で830
℃に加熱して10分間保持した。
An embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 1, cylindrical silicon nitride ceramics (S
In this case, i3N4) 1 is joined to the nickel 5 surface of the joined body of nickel (Ni) 5 and Kovar alloy 6. On the ceramics 1 (φ10 mm, L20 mm) side, a Ti foil 3 (φ
10 mm, thickness 2 μm), Ag—Cu—Ti based brazing material 2 (Ag: 63 wt%, Cu: 35.25 wt%,
Ti: 1.75 wt%) with a thickness of 50 μm, and a carbon (C) layer 4 having a thickness of about 5 μm is formed on the surface of the nickel 5 by vapor deposition.
C. and held for 10 minutes.

【0011】この接合体の接合部の破断強度は、四点曲
げ試験強度で420MPaと非常に高い強度が得られ
(表1の実施例1)、破断はセラミックスに起きた。比
較のためカーボン層4を設けないで接合した場合(表1
の比較例1)、その接合体の破断強度は、四点曲げ試験
強度で275MPaであり、破断は一部界面を含むセラ
ミックスに起きた。
With respect to the breaking strength of the joined portion of the joined body, a very high strength of 420 MPa was obtained in a four-point bending test strength (Example 1 in Table 1), and the breaking occurred in the ceramics. For comparison, the case where bonding was performed without providing the carbon layer 4 (Table 1)
Comparative Example 1), the rupture strength of the joined body was 275 MPa in a four-point bending test strength, and rupture occurred in ceramics partially including the interface.

【0012】前記実施例の接合体の接合部の断面をマイ
クロアナライザー(EPMA)で成分元素の面分析を行
った。そのTi元素分析の結果を図3に、Ni元素分析
の結果を図4に模式図で示す。図3に示すように、窒化
珪素セラミックスの界面にTiが濃厚に分布しており、
一方Niは、図4に示すように窒化珪素セラミックスの
界面側に存在しない。これは、図3に示すように、ニッ
ケル側の接合面に形成したカーボン層が、Niと反応し
てTi−C系化合物を作り、Niのろう材中への拡散を
防止しているものと推定される。したがって、窒化珪素
セラミックスの界面に純粋なTiN及びTi5Si3層が
充分形成され、接合強度が向上する。
The cross section of the joined portion of the joined body of the above embodiment was subjected to surface analysis of component elements by a microanalyzer (EPMA). The result of the Ti elemental analysis is shown in FIG. 3, and the result of the Ni elemental analysis is shown in FIG. As shown in FIG. 3, Ti is densely distributed at the interface of the silicon nitride ceramics,
On the other hand, Ni does not exist on the interface side of the silicon nitride ceramic as shown in FIG. This is because, as shown in FIG. 3, the carbon layer formed on the nickel-side bonding surface reacts with Ni to form a Ti—C-based compound, thereby preventing Ni from diffusing into the brazing material. Presumed. Therefore, pure TiN and Ti5Si3 layers are sufficiently formed at the interface of the silicon nitride ceramics, and the bonding strength is improved.

【0013】Niの代りに、ニッケルを多量に含み低熱
膨張合金であるコバ−ル(Ni 29%,Co 17%,M
n,Si,Mg,Zr,C,Al,Ti全て1%以下、残部F
e)をセラミックスに接合しても、同様に強固に接合す
る。次の表1に、実施例及び比較例の接合条件と四点曲
げ試験強度を示す。
In place of Ni, Kovar (Ni 29%, Co 17%, M
n, Si, Mg, Zr, C, Al, Ti are all 1% or less, and the balance F
Even if e) is joined to ceramics, it is also strongly joined. Table 1 below shows the joining conditions and the four-point bending test strengths of the examples and comparative examples.

【0014】 注1:実施例1及び比較例1〜3の接合金属は、Ni−
コバールの接合体。 注2:実施例2及び比較例4〜5の接合金属は、Ni。 注3:Ti箔及びC層欄の○印はそれらを使用し、空欄
は不使用を示す。
[0014] Note 1: The joining metal of Example 1 and Comparative Examples 1 to 3 was Ni-
Kovar conjugate. Note 2: The joining metal of Example 2 and Comparative Examples 4 and 5 is Ni. Note 3: The circles in the column of Ti foil and C layer use them, and the blanks indicate that they are not used.

【0015】[0015]

【発明の効果】本発明は、セラミックスとニッケル又は
ニッケルを多量に含む合金とを接合するのに、セラミッ
クスとニッケルを高接合強度で接合することができる。
According to the present invention, in joining ceramics and nickel or an alloy containing a large amount of nickel, ceramics and nickel can be joined with high joining strength.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法の実施例の説明図。FIG. 1 is an explanatory view of an embodiment of the method of the present invention.

【図2】接合部における反応層の説明図。FIG. 2 is an explanatory diagram of a reaction layer at a joint.

【図3】実施例の接合部の面分析のTi分布を示す模式
図。
FIG. 3 is a schematic diagram showing a Ti distribution in a surface analysis of a joint in an example.

【図4】実施例の接合部の面分析のNi分布を示す模式
図。
FIG. 4 is a schematic diagram showing a Ni distribution in a surface analysis of a joint portion in an example.

【図5】従来方法による接合部の面分析のTi分布を示
す模式図。
FIG. 5 is a schematic view showing a Ti distribution in a surface analysis of a joint according to a conventional method.

【図6】従来方法による接合部の面分析のNi分布を示
す模式図。
FIG. 6 is a schematic view showing a Ni distribution in a surface analysis of a joint according to a conventional method.

【符号の説明】[Explanation of symbols]

1 窒化珪素セラミックス 2 Ag−Cu−Ti系
ろう材 3 Ti箔 4 カーボン 5 ニッケル 6 コバール合金
DESCRIPTION OF SYMBOLS 1 Silicon nitride ceramics 2 Ag-Cu-Ti brazing material 3 Ti foil 4 Carbon 5 Nickel 6 Kovar alloy

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高島 敏行 北海道札幌市手稲区前田7条15丁目4番 1号 北海道工業大学内 (56)参考文献 特開 平1−286972(JP,A) 特開 平1−305871(JP,A) 特開 平1−239070(JP,A) (58)調査した分野(Int.Cl.7,DB名) C04B 37/02 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshiyuki Takashima 7-1, 15-1, Maeda, Teine-ku, Sapporo-shi, Hokkaido Inside the Hokkaido Institute of Technology (56) References JP 1-286972 (JP, A) JP JP-A-1-3055871 (JP, A) JP-A-1-239070 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C04B 37/02

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 セミックスとニッケル又はニッケルを
多量に含む合金との接合において、ニッケル側の接合面
にカーボン層を形成し、Ag−Cu−Ti系ろう材を用
いて真空雰囲気中で加熱して接合することを特徴とする
セラミックスとニッケルとの接合方法。
1. A joint between the ceramics and nickel or nickel containing a large amount of alloy to form a carbon layer on the bonding surface of the nickel side, heated in a vacuum atmosphere using Ag-Cu-Ti based brazing material And a method for joining ceramics and nickel.
JP13277793A 1993-05-10 1993-05-10 Joining method of ceramics and nickel Expired - Fee Related JP3298235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13277793A JP3298235B2 (en) 1993-05-10 1993-05-10 Joining method of ceramics and nickel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13277793A JP3298235B2 (en) 1993-05-10 1993-05-10 Joining method of ceramics and nickel

Publications (2)

Publication Number Publication Date
JPH06321648A JPH06321648A (en) 1994-11-22
JP3298235B2 true JP3298235B2 (en) 2002-07-02

Family

ID=15089312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13277793A Expired - Fee Related JP3298235B2 (en) 1993-05-10 1993-05-10 Joining method of ceramics and nickel

Country Status (1)

Country Link
JP (1) JP3298235B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109317810B (en) * 2018-09-11 2019-11-12 南京航空航天大学 A kind of raising Si3N4The surface treatment method of ceramics and titanium alloy welding performance
CN114211076B (en) * 2022-01-06 2022-09-13 哈尔滨工业大学 Connection method of silicon nitride ceramic/nickel-based high-temperature alloy

Also Published As

Publication number Publication date
JPH06321648A (en) 1994-11-22

Similar Documents

Publication Publication Date Title
US4448605A (en) Ductile brazing alloys containing reactive metals
US4624404A (en) Method for bonding ceramics and metals
JPWO2006016479A1 (en) Heat sink member and manufacturing method thereof
JP3095490B2 (en) Ceramic-metal joint
JP3298235B2 (en) Joining method of ceramics and nickel
JP3398203B2 (en) Aluminum alloy and copper brazing filler metal and composites joined by this brazing filler metal
JPS62289396A (en) Joining method for ceramics
JPH08148726A (en) Thermoelectric conversion element and its manufacture
JP3504716B2 (en) Ceramic bonded body with stress buffer metal layer
JP3302714B2 (en) Ceramic-metal joint
JP2021165227A (en) Copper/ceramic conjugate, and insulated circuit board
JPH10194860A (en) Brazing filler metal
JPH03205389A (en) Method for metallizing ceramics and method for joining ceramics to metal
JPH06321647A (en) Method for joining ceramic to nickel
JP3977875B2 (en) Brazing alloy and joined body for joining of alumina-based ceramics-aluminum alloy
JP2729751B2 (en) Joining method of alumina ceramics and aluminum
JPH0725677A (en) Method for joining ceramics to nickel or nickel-based alloy
JP3289860B2 (en) Joining method of ceramics and silicon
JP2001048670A (en) Ceramics-metal joined body
JP3153872B2 (en) Metal-nitride ceramic bonding structure
JPH01228697A (en) Brazing filler metal for joining ceramics and joining method
JP3316578B2 (en) Method for producing joined body of ceramic member and aluminum member
JP3365575B2 (en) Joint of ceramic and metal
JP3352823B2 (en) Joining method between silicon carbide ceramics and silicon
JPH07187839A (en) Nitride ceramics-metal joined body and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees