JPH04300259A - Joining member and joining - Google Patents

Joining member and joining

Info

Publication number
JPH04300259A
JPH04300259A JP3087915A JP8791591A JPH04300259A JP H04300259 A JPH04300259 A JP H04300259A JP 3087915 A JP3087915 A JP 3087915A JP 8791591 A JP8791591 A JP 8791591A JP H04300259 A JPH04300259 A JP H04300259A
Authority
JP
Japan
Prior art keywords
metal
members
joining
metal powder
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3087915A
Other languages
Japanese (ja)
Inventor
Mitsuru Kawamura
河村 満
Shozo Otomo
大友 省三
Susumu Nishigaki
進 西垣
Minoru Umemoto
実 梅本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Narumi China Corp
Original Assignee
Narumi China Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Narumi China Corp filed Critical Narumi China Corp
Priority to JP3087915A priority Critical patent/JPH04300259A/en
Publication of JPH04300259A publication Critical patent/JPH04300259A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To providing a joining member having a relatively low joining temperature and excellent joining strength. CONSTITUTION:A ceramic member 2 is joined to a metallic member 21 through a solid-phase sintered layer 1 composed of metal powder 11 formed between both the members. The metallic powder 11 is a ceramic substrate comprising mixed powder of borosilicate-based glass and alumina. The metallic member is made of covar alloy (54 % Fe, 29 % Ni and 17 % Co).

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は,接合強度に優れた,接
合部材及び接合方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a joining member and a joining method that have excellent joining strength.

【0002】0002

【従来技術】図9に示すごとく,例えばアルミナ回路基
板,低温焼成回路基板等のセラミックス基板9上には,
リードフレーム(図示略),導体ピン等の金属部材8が
接合されている。該金属部材8としては,セラミックス
材料との熱膨張差を考慮してコバール,42アロイ合金
(Fe−42%Ni,6%Cr)等が用いられている。 しかし,上記金属部材8は,一般に直接セラミックス基
板9上に接合することが極めて困難である。そのため,
該金属部材8をセラミックス基板9上に接合するに当た
り,例えば下記の処理が行われている。まず,上記セラ
ミックス基板9には,図9に示すごとく,予めW,Ag
等からなる金属部材7bを内設しておき,その上の金属
と接合したい部位に,W,Ag等からなる金属部材7a
を厚膜印刷,スパッタ,メッキ法等により形成しておく
。次いで,該金属部材7a上にNi等のメタライズ層6
1を形成する。そして,該メタライズ層61上にコバー
ル等からなる導体ピン,またはリードフレーム等の金属
部材8を接合する。その後,全体にAuメッキ(図示し
ない)が施される。
[Prior Art] As shown in FIG. 9, on a ceramic substrate 9 such as an alumina circuit board or a low-temperature fired circuit board,
Metal members 8 such as a lead frame (not shown) and conductor pins are joined. As the metal member 8, Kovar, 42 alloy alloy (Fe-42% Ni, 6% Cr), etc. are used in consideration of the difference in thermal expansion with the ceramic material. However, it is generally extremely difficult to bond the metal member 8 directly onto the ceramic substrate 9. Therefore,
In bonding the metal member 8 onto the ceramic substrate 9, for example, the following process is performed. First, as shown in FIG. 9, the ceramic substrate 9 is coated with W and Ag in advance.
A metal member 7b made of W, Ag, etc. is installed inside the metal member 7b, and a metal member 7a made of W, Ag, etc. is installed at the part where it is desired to be joined to the metal above it.
is formed by thick film printing, sputtering, plating, etc. Next, a metallized layer 6 such as Ni is formed on the metal member 7a.
form 1. Then, a metal member 8 such as a conductor pin made of Kovar or the like or a lead frame is bonded onto the metallized layer 61. Thereafter, the entire structure is plated with Au (not shown).

【0003】上記金属部材7aを形成するに当たっては
,金属部材7bとの同時焼成法(W,Ag,Ag−Pd
,Au),厚膜印刷焼成法(Au,Ag,Ag−Pd,
Cu)スパッタ(Ti,Cr),無電解メッキ法(Ni
,Cu)等によりセラミックス基板上に形成される。ま
た,上記メタライズ層61を形成するに当たっては,メ
ッキにより,セラミックス基板9上の金属部材7a上に
Ni等からなる金属膜が形成される。また,上記金属部
材8を上記メタライズ層61上に立設接合するにあった
ては,例えば,ロウ材63を用いたロウ付け,あるいは
ハンダ材を用いたハンダ付けを用いる。ロウ材は,Ag
−Cu,Au−Sn,Au−Si等から,あるいはハン
ダ材は,Sn−Pb,Ag−Snハンダ等から必要に応
じて選ばれる。
[0003] In forming the metal member 7a, a co-firing method (W, Ag, Ag-Pd) with the metal member 7b is used.
, Au), thick film printing and firing method (Au, Ag, Ag-Pd,
Cu) sputtering (Ti, Cr), electroless plating method (Ni
, Cu) or the like on a ceramic substrate. Furthermore, in forming the metallized layer 61, a metal film made of Ni or the like is formed on the metal member 7a on the ceramic substrate 9 by plating. Further, when the metal member 8 is erected and joined on the metallized layer 61, brazing using a brazing material 63 or soldering using a solder material is used, for example. The brazing material is Ag
-Cu, Au-Sn, Au-Si, etc., or the solder material is selected from Sn-Pb, Ag-Sn solder, etc. as necessary.

【0004】0004

【解決しようとする課題】しかしながら,上記従来技術
には,次の問題点がある。即ち,上記Ag−Cuは,約
790℃の共晶点を有する。そこで,ロウ付け時に,そ
のロウ付け作業温度の約850℃で,Ag系メタライズ
層61やAg,Cu系の上記回路配線の金属部材7aに
拡散し易く,最悪の場合には,異種金属接合部が,融解
し,セラミックス基板とメタライズ層61との密着性が
低下したり,また上記金属部材の回路配線が断線を生じ
る場合がある。
[Problem to be Solved] However, the above-mentioned conventional technology has the following problems. That is, the Ag-Cu has a eutectic point of about 790°C. Therefore, during brazing, at the brazing temperature of about 850° C., it is easy to diffuse into the Ag-based metallized layer 61 and the metal member 7a of the circuit wiring made of Ag and Cu-based materials, and in the worst case, the dissimilar metal joints However, the metallized layer 61 may melt and the adhesion between the ceramic substrate and the metallized layer 61 may deteriorate, or the circuit wiring of the metal member may be disconnected.

【0005】また,上記Au−Sn,Au−Siは,溶
融温度が低く,後工程で約500℃以上の温度に曝され
ると,導体ピン,リードフレームの配線位置がずれてし
まう場合がある。また,工業的にはコストが比較的高い
という欠点もある。また,上記ハンダ付においては,後
工程で,該ハンダが溶融する温度,例えば,200〜4
00℃以上の温度に曝されると,導体ピン,リードフレ
ームの配設位置がずれる場合がある。更には,ハンダ中
のSnがCu等の金属部材7bに拡散し,脆いCu−S
n合金等を生成して,上記金属部材7bの回路配線が破
断してしまう場合がある。
[0005] Furthermore, the above-mentioned Au-Sn and Au-Si have a low melting temperature, and if they are exposed to temperatures of about 500°C or higher in the subsequent process, the wiring positions of the conductor pins and lead frame may shift. . Another disadvantage from an industrial perspective is that it is relatively expensive. In addition, in the above soldering, the temperature at which the solder melts in the subsequent process, for example, 200 to 4
When exposed to temperatures of 00°C or higher, the positions of the conductor pins and lead frame may shift. Furthermore, Sn in the solder diffuses into the metal member 7b such as Cu, and the brittle Cu-S
There are cases where n-alloy or the like is generated and the circuit wiring of the metal member 7b is broken.

【0006】一方,セラミックスと金属との間では,熱
膨張係数が異なるため,両者を接合するに当たっては,
なるべく低い温度で接合することが強く望まれている。 また,セラミックスとセラミックス又は金属と金属の部
材の接合についても,同様の要望がある。本発明は,か
かる従来の問題点に鑑みてなされたもので,比較的低温
で接合でき,接合強度に優れた,接合部材及び接合方法
を提供しようとするものである。
On the other hand, since the thermal expansion coefficients of ceramics and metals are different, when joining them, it is necessary to
It is strongly desired to bond at as low a temperature as possible. Furthermore, there are similar demands regarding the joining of ceramic-to-ceramic or metal-to-metal members. The present invention has been made in view of these conventional problems, and it is an object of the present invention to provide a joining member and a joining method that can be joined at a relatively low temperature and have excellent joining strength.

【0007】[0007]

【課題の解決手段】本発明は,金属又はセラミックスか
らなる部材を金属粉末の固相焼結層を介して接合してな
り,上記金属粉末は,0.1〜10μmのCu又はNi
を主成分とする粉末であることを特徴とする接合部材に
ある。上記金属としては,コバール,42アロイ,Cu
,Ni等の金属板がある。上記セラミックスとしては,
例えば,アルミナ磁器,低温焼成セラミック,窒化アル
ミニウム磁器等の材料を焼結した基板がある。上記金属
粉末としては,0.1〜10μmのCu又はNiを主成
分とし金属粉末を用いる。0.1μm未満であると,卑
金属粉末表面の酸化量が増加し,焼結性が低下する。1
0μmを越えると,活性な表面が減少し,低温焼結性が
低下する。更に均一充填が難しくなる。また,上記金属
粉末は,上記金属又はセラミックスからなる両部材間に
おいて,固相焼結層を形成するために用いるものである
。また,上記部材の接合形態としては,セラミックスと
セラミックス(実施例1),セラミックスと金属(実施
例1,2),金属と金属(実施例3)がある。
[Means for Solving the Problems] The present invention is made by joining members made of metal or ceramics through a solid-phase sintered layer of metal powder, and the metal powder has a thickness of 0.1 to 10 μm of Cu or Ni.
A bonding member characterized in that it is a powder containing as a main component. The above metals include Kovar, 42 alloy, Cu
There are metal plates such as , Ni, etc. The above ceramics include:
For example, there are substrates made of sintered materials such as alumina porcelain, low-temperature fired ceramics, and aluminum nitride porcelain. As the metal powder, a metal powder containing Cu or Ni as a main component and having a diameter of 0.1 to 10 μm is used. If it is less than 0.1 μm, the amount of oxidation on the surface of the base metal powder increases and sinterability decreases. 1
When the thickness exceeds 0 μm, the active surface area decreases and low-temperature sinterability deteriorates. Furthermore, uniform filling becomes difficult. Further, the metal powder is used to form a solid phase sintered layer between the two members made of the metal or ceramic. In addition, the joining forms of the above-mentioned members include ceramics and ceramics (Example 1), ceramics and metals (Examples 1 and 2), and metals and metals (Example 3).

【0008】また,上記金属又はセラミックスの両部材
を接合する方法としては,次の方法がある。即ち,金属
又はセラミックスからなる部材を互いに接合するに当た
り,両部材の表面にCu又はNiを主成分とする被覆金
属をコーティングし,その後,両部材の間にCu又はN
iを主成分とする金属粉末を介在させ,これらを加圧下
で300〜700℃において加熱して上記金属粉末を固
相焼結すると共に,両部材を接合することを特徴とする
金属又はセラミックスからなる部材の接合方法である。
[0008] Furthermore, as a method for joining the metal or ceramic members, there are the following methods. That is, when joining members made of metal or ceramics to each other, the surfaces of both members are coated with a coating metal mainly composed of Cu or Ni, and then Cu or N is applied between the two members.
A metal or ceramic material characterized by interposing a metal powder containing i as a main component and heating the metal powder under pressure at 300 to 700°C to solid-phase sinter the metal powder and bond the two members. This is a method for joining members.

【0009】ここで最も注目すべきことは,上記両部材
の間にCu又はNiを主成分とする金属粉末を介在させ
,これらを加圧下で300〜700℃の比較的低温で固
相焼結することである。300℃未満では焼結速度が遅
く,高い接合強度が得られない。700℃を越えると,
接合部材間の熱膨張差が大きいものは応力が大きく冷却
工程で破断し易くする。上記被覆金属のコーティング方
法としては,例えば,メッキ,スパッタリング,真空蒸
着,厚膜印刷焼成がある。また,接合時の加圧としては
,例えば1〜600kg/cm2 の圧力で加圧される
。加圧が1kg/cm2 未満では,接合体間の密着が
不十分であり,固相焼結が緻密に焼結できず接合強度が
十分得られない。600kg/cm2 を越えるとセラ
ミックス体内部の破断が生じたり,金属が変形する。上
記固相焼結の雰囲気は,真空,N2 ,Ar,He,H
2 等の非酸化性で行う。
What is most noteworthy here is that metal powder mainly composed of Cu or Ni is interposed between the above two members, and these are solid phase sintered under pressure at a relatively low temperature of 300 to 700°C. It is to be. If the temperature is less than 300°C, the sintering speed is slow and high bonding strength cannot be obtained. When the temperature exceeds 700℃,
Those with a large difference in thermal expansion between bonded members have large stress and are likely to break during the cooling process. Examples of coating methods for the above metal coating include plating, sputtering, vacuum deposition, and thick film printing and baking. Furthermore, the pressure applied during bonding is, for example, 1 to 600 kg/cm2. If the pressure is less than 1 kg/cm2, the adhesion between the bonded bodies will be insufficient, solid phase sintering will not be able to sinter densely, and sufficient bonding strength will not be obtained. If it exceeds 600 kg/cm2, the inside of the ceramic body may break or the metal may be deformed. The atmosphere for the solid phase sintering is vacuum, N2, Ar, He, H.
2. Carry out with a non-oxidizing agent such as No. 2.

【0010】また,上記Cu又はNiを主成分とする金
属部材同士を互いに接合する方法としては,次の方法が
ある。即ち,Cu又はNiを主成分とする部材を互いに
接合するに当たり,両部材の間にCu又はNiを主成分
とする金属粉末を介在させ,これらを加圧下で300〜
700℃において加熱して上記金属粉末を固相焼結する
と共に,両部材を接合することを特徴とする金属又はセ
ラミックスからなる部材の接合方法である。ここで,最
も注目すべきことは,金属と金属の部材を互いに接合す
るに当たり,Cu又はNiを主成分とする金属粉末を用
いて,300〜700℃の比較的低温で該金属粉末を固
相焼結し,両部材を接合することである。
[0010] Furthermore, as a method for joining the metal members whose main component is Cu or Ni, there is the following method. That is, when joining members mainly composed of Cu or Ni, a metal powder mainly composed of Cu or Ni is interposed between the two members, and these are heated under pressure to a
This is a method for joining members made of metal or ceramics, characterized in that the metal powder is solid-phase sintered by heating at 700° C., and both members are joined. What is most noteworthy here is that when joining metal members to each other, metal powder containing Cu or Ni as the main component is used to form a solid state at a relatively low temperature of 300 to 700°C. This involves sintering and joining both parts together.

【0011】[0011]

【作用及び効果】本発明の接合部材においては,各部材
を互いに接合する接合層を,粒径が0.1〜10μmの
Cu又はNiを主成分とする金属粉末の固相焼結層を用
いて形成してある。このように,粒径が比較的微粒子で
あるため,かかる金属粉末の表面は高活性となる。その
ため,該金属粉末を焼結するに当たっては,比較的低温
で固相焼結することができる。また,上記金属粉末は,
Cu又はNiを主成分としているため,上記各部材の接
合表面との「なじみ」が良く,熱膨張差が少なくなるよ
う構成されている。そのため,上記固相焼結層が強固と
なり,優れた接合強度を得ることができる。
[Operations and Effects] In the joining member of the present invention, the joining layer that joins each member to each other is a solid phase sintered layer of metal powder mainly composed of Cu or Ni with a particle size of 0.1 to 10 μm. It is formed as follows. As described above, since the particle size is relatively fine, the surface of the metal powder becomes highly active. Therefore, when sintering the metal powder, solid phase sintering can be performed at a relatively low temperature. In addition, the above metal powder is
Since the main component is Cu or Ni, it is configured to have good "compatibility" with the bonding surfaces of the above-mentioned members and to reduce the difference in thermal expansion. Therefore, the solid phase sintered layer becomes strong and excellent bonding strength can be obtained.

【0012】したがって,本発明によれば,比較的低温
で接合でき,接合強度に優れた,接合部材及び接合方法
を提供することができる。また,上記接合方法において
は,金属又はセラミックスからなる部材を互いに接合す
るに当たり,両部材の表面にCu又はNiを主成分とす
る被覆金属をコーティングしている。また,該両部材の
間には,上記のごとく表面が高活性のCu又はNiを主
成分とする金属粉末を介在させている。そのため,両部
材の接合表面は,その間に介在させる金属粉末と同質の
材料からなる。したがって,両部材の接合表面の間に熱
膨張による熱歪を生じない。そのため,上記両部材は,
上記金属粉末によって強固に接合されることになる。ま
た,上記固相焼結層においては,従来のごとく,接合部
分の溶融に起因するリードフレーム等の断線を生ずるこ
とがない。
Therefore, according to the present invention, it is possible to provide a joining member and a joining method that can be joined at a relatively low temperature and have excellent joining strength. Furthermore, in the above joining method, when joining members made of metal or ceramics to each other, the surfaces of both members are coated with a coating metal containing Cu or Ni as a main component. Furthermore, as described above, a metal powder whose main component is Cu or Ni and has a highly active surface is interposed between the two members. Therefore, the joining surfaces of both members are made of the same material as the metal powder interposed therebetween. Therefore, thermal distortion due to thermal expansion does not occur between the joining surfaces of both members. Therefore, both of the above members are
The above-mentioned metal powder provides a strong bond. Further, in the solid phase sintered layer, there is no disconnection of the lead frame or the like due to melting of the bonded portion, unlike in the conventional case.

【0013】また,両部材と金属粉末とは,加圧下で3
00〜700℃において加熱される。そのため,上記部
材と金属粉末とは,これらの融点以下の比較的低温で固
相焼結することができる。該固相焼結は,被焼結物の融
点以下の温度で加熱して,該被焼結物を焼き固める,有
効な手段となるからである。また,上記固相焼結は,加
圧下で行われる。そのため,上記金属粉末からなる固相
焼結層は,強固となり,優れた接合強度を得ることがで
きる。したがって,比較的低温で,接合強度に優れた接
合部材を接合することができる。
[0013] Furthermore, both members and the metal powder are separated by 3
Heated at 00-700°C. Therefore, the above member and the metal powder can be solid-phase sintered at a relatively low temperature below their melting points. This is because the solid phase sintering is an effective means of baking and solidifying the sintered object by heating it at a temperature below the melting point of the sintered object. Further, the solid phase sintering described above is performed under pressure. Therefore, the solid phase sintered layer made of the metal powder becomes strong, and excellent bonding strength can be obtained. Therefore, it is possible to join joining members with excellent joining strength at a relatively low temperature.

【0014】また,Cu又はNiを主成分とする金属部
材を互いに接合するに当たって,両部材の間にCu又は
Niを主成分とする被覆金属をコーティングしている。 また,両部材の間にCu又はNiを主成分とする金属粉
末を介在させている。そのため,両部材は,上記と同様
に,表面活性の大きい金属粉末によって強固に接合され
ることになる。また,両部材と金属粉末とは,加圧下で
300〜700℃において加熱される。そのため,上記
と同様に,両部材と金属粉末とを,比較的低温で固相焼
結することができる。したがって,上記と同様に,比較
的低温で,接合強度に優れた接合部材を接合することが
できる。
[0014] Furthermore, when joining metal members containing Cu or Ni as a main component to each other, a coating metal containing Cu or Ni as a main component is coated between the two members. Further, a metal powder containing Cu or Ni as a main component is interposed between both members. Therefore, both members are firmly joined by the highly surface-active metal powder, as described above. Moreover, both members and the metal powder are heated at 300 to 700° C. under pressure. Therefore, similarly to the above, both members and the metal powder can be solid-phase sintered at a relatively low temperature. Therefore, similarly to the above, it is possible to join joining members with excellent joining strength at a relatively low temperature.

【0015】[0015]

【実施例】実施例1〜実施例5,比較例1本発明の実施
例にかかる接合部材及び接合方法につき,図1〜図3を
用いて説明する。即ち,本例の接合部材は,図1,図2
に示すごとく,セラミックス部材2と金属部材21とを
,金属粉末11からなる固相焼結層1を介して接合した
ものである。以下,実施例1にかかる接合部材及びその
接合方法につき,主として説明する。
[Examples] Examples 1 to 5, Comparative Example 1 Bonding members and bonding methods according to embodiments of the present invention will be described with reference to FIGS. 1 to 3. That is, the joining member of this example is as shown in FIGS. 1 and 2.
As shown in the figure, a ceramic member 2 and a metal member 21 are joined via a solid phase sintered layer 1 made of metal powder 11. The joining member and the joining method thereof according to Example 1 will be mainly explained below.

【0016】上記金属粉末11は,その平均粒径が約1
μmのCu微粉末からなる。また,上記セラミックス部
材2は,ホウケイ酸系ガラスとアルミナとの混合粉末か
らなるセラミックス基板である。該セラミックス基板は
,厚みが約5mmで,直径が約20.5mmの円盤状の
焼結体からなる。また,該セラミックス基板の表面には
,Cuメタライズ膜の被覆金属3が形成してある。また
,上記金属部材21は,コバール(Fe54%,Ni2
9%,Co17%)合金からなる金属部材よりなる。 そして,該金属部材21は,直径が13.5mmで,そ
の全面にスパッタリングにより形成したCuメタライズ
膜からなる被覆金属31をコーティングしてある。また
,該金属部材21は,上記セラミックス部材2と同様の
厚み5mmを有する。
The metal powder 11 has an average particle size of about 1
Consists of μm Cu fine powder. The ceramic member 2 is a ceramic substrate made of a mixed powder of borosilicate glass and alumina. The ceramic substrate is a disc-shaped sintered body with a thickness of about 5 mm and a diameter of about 20.5 mm. Furthermore, a metal coating 3 made of a Cu metallized film is formed on the surface of the ceramic substrate. Further, the metal member 21 is made of Kovar (Fe54%, Ni2
9%, Co17%) alloy. The metal member 21 has a diameter of 13.5 mm, and its entire surface is coated with a metal coating 31 made of a Cu metallized film formed by sputtering. Further, the metal member 21 has a thickness of 5 mm, similar to the ceramic member 2 described above.

【0017】次に,上記固相焼結層1につき,これを詳
述する。即ち,上記固相焼結層1は,上記金属粉末11
を固相焼結して形成したものである。該Cu微粉末は,
図3に示すごとく,上記固相焼結層1において強固なネ
ック12を形成するよう,その粒径が略均一となるよう
調整してある。ここにいうネック12とは,Cu微粉末
の相隣接する粒子間に生じた焼き付きによる「くびれ」
をいう。そして,このネック12は,Cu微粉末の各粒
子径,形状が均一となるよう調整することにより,可及
的に大きくできる。上記接合部材は,次の方法により接
合する。まず,上記ホウケイ酸系ガラス(CaO−Al
2 O3 −SiO2 −B2 O5 )粉末60重量
部と,アルミナ(Al2 O3 )粉末40重量部との
混合材料からなるグリーンシートを,ドクターブレード
法により準備する。
Next, the solid phase sintered layer 1 will be explained in detail. That is, the solid phase sintered layer 1 has the metal powder 11
It is formed by solid phase sintering. The Cu fine powder is
As shown in FIG. 3, in order to form a strong neck 12 in the solid phase sintered layer 1, the grain size is adjusted to be approximately uniform. The neck 12 referred to here is a "constriction" caused by seizure between adjacent particles of Cu fine powder.
means. The neck 12 can be made as large as possible by adjusting the diameter and shape of each particle of the fine Cu powder to be uniform. The above joining members shall be joined by the following method. First, the above borosilicate glass (CaO-Al
A green sheet made of a mixed material of 60 parts by weight of 2O3-SiO2-B2O5) powder and 40 parts by weight of alumina (Al2O3) powder is prepared by a doctor blade method.

【0018】次に,上記グリーンシート上には,Cu粉
末を含有するペースト膜を印刷する。該ペースト膜は,
図1,図5に示すごとく,焼結することにより,上記C
uメタライズ膜の厚さ2μmの被覆金属3になる。また
,被覆金属31はスパッタでCuを2mm形成する。 また,上記部材21は,上記コバール合金からなる円盤
状の金属部材よりなる。図1に示すごとく,両部材2,
21の間に,上記Cu微粉末からなる金属粉末11を配
置し,積層する。また,Cu微粉末は,総量が約0.1
gである。
Next, a paste film containing Cu powder is printed on the green sheet. The paste film is
As shown in Figures 1 and 5, the above C
The coating metal 3 of the u metallized film has a thickness of 2 μm. Further, the covering metal 31 is formed by sputtering Cu to a thickness of 2 mm. Further, the member 21 is a disc-shaped metal member made of the Kovar alloy. As shown in Fig. 1, both members 2,
The metal powder 11 made of the Cu fine powder is placed between the two layers 21 and laminated. In addition, the total amount of Cu fine powder is approximately 0.1
It is g.

【0019】そして,図2に示すごとく,上記両部材2
,21及び金属粉末11からなる積層物を,加圧下で焼
結する。上記焼結は,10−1Pa以下の真空中で,5
50kgf/cm2 の加圧下において,550℃の比
較的低温で60分間行う。なお,実施例1及び実施例2
〜5にかかる焼成条件については,表1に示した。また
,上記550℃の焼結温度は,その焼結温度中の最高温
度を示したものである。また,この時の昇温速度は,2
0℃/分である。これにより,前記図2,図3に示した
接合材を得た。なお,上記金属部材21に代えて,セラ
ミックス基材とすることができる。次に,上記複合材に
つき,剪断強度(kgf/cm2 )を測定して,接合
強度の評価を行った。その測定結果及び構成部材等につ
いては,表1に示した。
Then, as shown in FIG. 2, both of the above members 2
, 21 and metal powder 11 is sintered under pressure. The above sintering is performed in a vacuum of 10-1 Pa or less.
The test is carried out at a relatively low temperature of 550°C for 60 minutes under a pressure of 50 kgf/cm2. In addition, Example 1 and Example 2
The firing conditions for items 5 to 5 are shown in Table 1. Further, the sintering temperature of 550° C. above indicates the highest temperature among the sintering temperatures. Also, the temperature increase rate at this time is 2
0°C/min. As a result, the bonding material shown in FIGS. 2 and 3 was obtained. Note that the metal member 21 may be replaced with a ceramic base material. Next, the shear strength (kgf/cm2) of the composite material was measured to evaluate the bonding strength. The measurement results and constituent members are shown in Table 1.

【0020】次に,実施例2〜5の製造条件の概要及び
比較例1につき,表1を用いて説明する。同表において
,実施例2の接合部材は,上記実施例1と同様の構成で
ある。また,実施例3〜5の接合部材は,金属部材とし
てNiメッキ被覆金属膜を有するコバール片(図1中符
号21,31)とした外は,上記実施例1の接合部材と
同様の構成である。また,焼成条件は,同表に示した通
りである。また,比較例1は,金属部材として,被覆金
属を有しないコバール片を用いた。また,金属粉末とし
て,粒径が1.0μmのCu粉末を用いた。そして,セ
ラミックス部材として,上記実施例1と同様のセラミッ
クス基板を用いた。その他は,実施例1と同様である。
Next, an outline of the manufacturing conditions of Examples 2 to 5 and Comparative Example 1 will be explained using Table 1. In the same table, the joining member of Example 2 has the same structure as that of Example 1 described above. The joining members of Examples 3 to 5 had the same structure as the joining member of Example 1, except that the metal members were Kovar pieces (reference numerals 21 and 31 in FIG. 1) having a Ni-plated metal film. be. Furthermore, the firing conditions are as shown in the same table. Moreover, in Comparative Example 1, a Kovar piece without a coating metal was used as the metal member. Moreover, Cu powder with a particle size of 1.0 μm was used as the metal powder. The same ceramic substrate as in Example 1 was used as the ceramic member. The rest is the same as in the first embodiment.

【0021】表1における剪断強度に関し,本発明の実
施例1〜5は,290〜460kgf/cm2 である
。 そして,このときの破壊モードである破断面は,セラミ
ックス部材2におけるセラミックス基板破壊であった。 これに対し,比較例1は,80kgf/cm2 であり
,破壊モードが上記固相焼結層1と部材21としてのコ
バール片との間の界面破壊であった。それ故,実施例1
〜5は,いずれも接合強度が,比較例1に比し,著しく
優れていることが知られる。なお,上記剪断強度は,速
度0.5mm/分で引っ張ったときの測定値である。こ
のように,本発明の実施例1〜5が,比較例1よりも接
合強度が優れている理由としては,次のように考えられ
る。
Regarding the shear strength in Table 1, Examples 1 to 5 of the present invention are 290 to 460 kgf/cm2. The fracture surface, which was the fracture mode at this time, was a ceramic substrate fracture in the ceramic member 2. On the other hand, in Comparative Example 1, the force was 80 kgf/cm2, and the failure mode was interface failure between the solid phase sintered layer 1 and the Kovar piece as the member 21. Therefore, Example 1
It is known that all of Samples Nos. 5 to 5 have significantly superior bonding strength compared to Comparative Example 1. Note that the above shear strength is a measured value when pulled at a speed of 0.5 mm/min. The reason why Examples 1 to 5 of the present invention are superior in bonding strength to Comparative Example 1 is considered to be as follows.

【0022】即ち,本例の接合部材においては,セラミ
ックス部材とセラミックス部材,セラミックス部材と金
属部材の各部材を互いに接合する固相焼結層を,粒径が
0.1〜10μmのCu又はNiを主成分とする金属粉
末を用いて形成してある。この様に,粒径が比較的微粒
子であるため,かかる金属粉末の表面は高活性となる。 そのため,該金属粉末を焼結するに当たっては,比較的
低温で固相焼結することができるものと推察される。ま
た,上記固相焼結層1においては,従来のごとく,接合
部分の溶融に起因するリードフレーム等の断線を生ずる
ことがない。また,上記Cu微粉末は,その熱膨張係数
が16.8〜17.7×10−6/℃である。これに対
し,上記セラミックス,例えばガラスとセラミックスの
混合部材は,上記熱膨張係数が5〜10×10−6/℃
である。また,上記金属としてコバール片(図1中の部
材21)は,上記熱膨張係数がガラスと略同等の5.5
〜6.5×10−6/℃である。
That is, in the joining member of this example, the solid phase sintered layer that joins the ceramic members and the ceramic members and the ceramic member and the metal member to each other is made of Cu or Ni with a particle size of 0.1 to 10 μm. The main component is metal powder. As described above, since the particle size is relatively fine, the surface of such metal powder becomes highly active. Therefore, when sintering the metal powder, it is presumed that solid phase sintering can be performed at a relatively low temperature. Further, in the solid-phase sintered layer 1, there is no disconnection of the lead frame or the like due to melting of the bonded portion, unlike in the conventional case. Further, the Cu fine powder has a coefficient of thermal expansion of 16.8 to 17.7 x 10-6/°C. On the other hand, the above ceramics, for example, a mixed member of glass and ceramics, have a coefficient of thermal expansion of 5 to 10 x 10-6/°C.
It is. In addition, the Kovar piece (member 21 in FIG. 1) as the metal has a coefficient of thermal expansion of 5.5, which is approximately the same as glass.
~6.5x10-6/°C.

【0023】そのため,セラミックス部材とセラミック
ス部材,セラミックス部材と金属部材(コバール片)か
らなる各部材を,互いに熱膨張差のない固相焼結層1に
より,容易に接合することができるものと推察される。 即ち,上記金属粉末は,Cuであるため,上記各被覆金
属3,31との「なじみ」が良く,熱膨張差が少なくな
るよう構成されている。そのため,表1に示すごとく,
上記固相焼結層1は強固となり,優れた剪断強度を得る
ことができる。
[0023] Therefore, it is inferred that each member consisting of a ceramic member and a ceramic member, or a ceramic member and a metal member (Kovar piece) can be easily joined by the solid phase sintered layer 1 having no difference in thermal expansion. be done. That is, since the metal powder is Cu, it is configured to have good "compatibility" with each of the coating metals 3 and 31, and to reduce the difference in thermal expansion. Therefore, as shown in Table 1,
The solid phase sintered layer 1 becomes strong and can obtain excellent shear strength.

【0024】[0024]

【表1】[Table 1]

【0025】実施例6〜10 本例の接合部材は,金属部材同士を接合するもので,図
4,図5に示すごとく,実施例1〜5における金属部材
としてのコバール片に代えて,コバール製のピン(コバ
ールピン)としたものである。即ち,上記金属部材とし
てのコバールピン4は,図4,図5に示すごとく,先端
部にφ0.8mmの略円形のツバ部41を有する。また
,上記コバールピン4は,その全面にCuスパッタ被覆
金属膜32を有する。また,該コバールピン4は,細長
棒状の円柱形を有する。
Examples 6 to 10 The joining members of the present examples are for joining metal members together, and as shown in FIGS. 4 and 5, Kovar pieces were used instead of Kovar pieces as the metal members in Examples 1 to 5. It is a manufactured pin (Kovar pin). That is, as shown in FIGS. 4 and 5, the Kovar pin 4 as the metal member has a substantially circular collar portion 41 with a diameter of 0.8 mm at its tip. Further, the Kovar pin 4 has a Cu sputter coated metal film 32 on its entire surface. Further, the Kovar pin 4 has a cylindrical shape in the form of an elongated rod.

【0026】また,表2に示すごとく,セラミックス部
材として,上記実施例1におけるセラミックス部材2と
同様のセラミックス基板を用いる。また,金属粉末とし
て,上記実施例1における金属粉末11と同様のCu微
粉末を用いる。その他,焼成条件としての焼結温度(℃
),焼成時間(分),加圧条件が若干異なる外は,実施
例1と同様の構成である。なお,図4,図5において,
符号33はNiメッキ膜,34はCuメッキ膜を示す。 表2より知られるごとく,引張強度(kg/pin)に
関し,実施例6〜10は,5,12〜7,41kg/p
inである。このように,本例にかかる接合部材は,い
ずれも接合強度としての引張り強度に優れていることが
知られる。この様に実施例6〜10が引張り強度に優れ
ている理由としては,次のように考えられる。なお,上
記kg/pinとは,1つのpinを垂直に引っ張って
基板から破断する時の強度のことを意味する。
Further, as shown in Table 2, a ceramic substrate similar to the ceramic member 2 in Example 1 is used as the ceramic member. Further, as the metal powder, Cu fine powder similar to the metal powder 11 in Example 1 is used. In addition, the sintering temperature (°C
), firing time (minutes), and pressurizing conditions were slightly different, but the configuration was the same as in Example 1. In addition, in Figures 4 and 5,
Reference numeral 33 indicates a Ni plating film, and numeral 34 indicates a Cu plating film. As is known from Table 2, regarding the tensile strength (kg/pin), Examples 6 to 10 have a tensile strength of 5,12 to 7,41 kg/pin.
It is in. As described above, it is known that all of the bonding members according to this example have excellent tensile strength as bonding strength. The reason why Examples 6 to 10 are excellent in tensile strength is considered to be as follows. Note that the above kg/pin refers to the strength when one pin is pulled vertically and broken from the substrate.

【0027】即ち,上記接合部材,接合方法においては
,金属又はセラミックスからなる部材を互いに接合する
に当たり,両部材の表面にCu又はNiを主成分とする
被覆金属をコーティングしている。また,該両部材の間
には,上記両部材と同様に,Cu又はNiを主成分とす
る金属粉末を介在させてある。したがって,両部材は,
これらの間に熱膨張による熱歪を生じない。そのため,
上記両部材は,上記金属粉末によって強固に接合される
ことになるものと推察される。また,両部材と金属粉末
とは,加圧下で550〜650℃において加熱される。 そのため,上記部材と金属粉末とは,これらの融点以下
の比較的低温で固相焼結することができる。該固相焼結
は,被焼結物の融点以下の温度で加熱して,該被焼結物
を焼き固める,有効な手段となる。また,上記固相焼結
は,加圧下で行われる。そのため,上記金属粉末からな
る固相焼結層は強固となり,優れた接合強度としての引
張強度を得ることができる。
That is, in the above joining member and joining method, when joining members made of metal or ceramics to each other, the surfaces of both members are coated with a coating metal containing Cu or Ni as a main component. Furthermore, metal powder containing Cu or Ni as a main component is interposed between the two members, similar to the above-mentioned two members. Therefore, both members are
No thermal distortion occurs between them due to thermal expansion. Therefore,
It is presumed that the two members are firmly joined by the metal powder. Moreover, both members and the metal powder are heated at 550 to 650° C. under pressure. Therefore, the above member and the metal powder can be solid-phase sintered at a relatively low temperature below their melting points. The solid-phase sintering is an effective means of baking and hardening the sintered object by heating it at a temperature below the melting point of the sintered object. Further, the solid phase sintering described above is performed under pressure. Therefore, the solid-phase sintered layer made of the metal powder becomes strong and can provide excellent tensile strength as bonding strength.

【0028】[0028]

【表2】[Table 2]

【0029】実施例11 本例は,図6,図7に示すごとく,金属部材相互を接合
するものである。即ち,同図に示すごとく,金属部材と
して,被覆金属を有しない直径が13.5mmで厚みが
5mmの金属部材51と,直径が20.5mmで厚みが
5mmの金属部材52とを用いる。上記金属部材51,
52は,純粋なCu部材により構成してある。そして,
図6に示すごとく,上記実施例1と同様に,上記金属部
材51,52間に金属粉末1を配置する。次に,上記金
属部材51,52を下記の焼成条件により,固相焼結し
た。
Embodiment 11 In this embodiment, metal members are joined together as shown in FIGS. 6 and 7. That is, as shown in the figure, a metal member 51 with a diameter of 13.5 mm and a thickness of 5 mm without coating metal and a metal member 52 with a diameter of 20.5 mm and a thickness of 5 mm are used. The metal member 51,
52 is made of pure Cu material. and,
As shown in FIG. 6, metal powder 1 is placed between the metal members 51 and 52, as in the first embodiment. Next, the metal members 51 and 52 were solid phase sintered under the following firing conditions.

【0030】即ち,図7に示すごとく,真空中で70k
gf/cm2 の加圧下で,300〜700℃の被覆金
属で60分間焼成した。このようにして,固相焼結した
金属部材同士の接合部材につき,剪断強度を測定した。 その結果を,図8に示す。一方,比較例2として,上記
金属部材51,52を,金属粉末を用いることなしに,
直接接合をした。そして,この比較例2についても,剪
断強度を測定した。その結果を,図8に示す。
That is, as shown in FIG. 7, 70k in vacuum
The coated metal was fired for 60 minutes at 300-700°C under a pressure of gf/cm2. In this way, the shear strength of the bonded member between solid-phase sintered metal members was measured. The results are shown in Figure 8. On the other hand, as Comparative Example 2, the metal members 51 and 52 were prepared without using metal powder.
I made a direct connection. The shear strength of Comparative Example 2 was also measured. The results are shown in Figure 8.

【0031】なお,上記実施例1〜5のいずれにおいて
も,図8に示した剪断強度と同様に,焼成温度が300
℃付近で上記剪断強度が向上し,比較例2に比し著しく
接合強度が優れていた。なお,比較例2については,焼
結温度が600℃以上において剪断強度が向上するのみ
である。このように,本発明の実施例11が,比較例2
よりも,著しく剪断強度が優れている理由としては,次
のように考えられる。即ち,Cu微粉末の金属部材2枚
を互いに接合するに当たって,両部材の間にCuを主成
分とする金属粉末を介在させている。そのため,両部材
は,上記と同様に,金属粉末によって強固に接合される
ことになるものと推察される。また,両部材と金属粉末
とは,加圧下で300〜700℃において加熱される。 そのため,上記と同様に,両部材と金属粉末とを,比較
的低温で固相焼結することができる。したがって,上記
と同様に,比較的低温で,接合強度に優れた接合部材を
接合することができる。
[0031] In any of Examples 1 to 5 above, the firing temperature was 300°C, similar to the shear strength shown in Figure 8.
The above-mentioned shear strength improved near ℃, and the bonding strength was significantly superior to that of Comparative Example 2. Note that in Comparative Example 2, the shear strength only increases when the sintering temperature is 600° C. or higher. In this way, Example 11 of the present invention is different from Comparative Example 2.
The reason why the shear strength is significantly superior to that of the steel is thought to be as follows. That is, when joining two metal members made of fine Cu powder to each other, metal powder containing Cu as a main component is interposed between the two members. Therefore, it is presumed that both members will be firmly joined by the metal powder, similar to the above. Moreover, both members and the metal powder are heated at 300 to 700° C. under pressure. Therefore, similarly to the above, both members and the metal powder can be solid-phase sintered at a relatively low temperature. Therefore, similarly to the above, it is possible to join joining members with excellent joining strength at a relatively low temperature.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】実施例1における部材の接合方法を示す断面図
FIG. 1 is a cross-sectional view showing a method of joining members in Example 1.

【図2】実施例1にかかる接合部材の断面図。FIG. 2 is a sectional view of a joining member according to Example 1.

【図3】実施例1にかかる接合部材の接合状態を示す断
面図。
FIG. 3 is a cross-sectional view showing a joined state of the joining member according to Example 1.

【図4】実施例6〜10における部材の接合方法を示す
断面図。
FIG. 4 is a cross-sectional view showing a method of joining members in Examples 6 to 10.

【図5】実施例6〜10にかかる接合部材の断面図。FIG. 5 is a sectional view of a joining member according to Examples 6 to 10.

【図6】実施例11における部材の接合方法を示す断面
図。
FIG. 6 is a cross-sectional view showing a method of joining members in Example 11.

【図7】実施例11における接合部材の断面図。FIG. 7 is a sectional view of a joining member in Example 11.

【図8】実施例11における焼結温度と剪断強度との関
係を示すグラフ。
FIG. 8 is a graph showing the relationship between sintering temperature and shear strength in Example 11.

【図9】従来例にかかる接合部材の断面図。FIG. 9 is a sectional view of a joining member according to a conventional example.

【符号の説明】[Explanation of symbols]

1...固相焼結層, 11...金属粉末, 2...セラミックス部材, 21...金属部材, 3...被覆金属, 4...コバールピン, 51,52...金属部材, 1. .. .. solid phase sintered layer, 11. .. .. metal powder, 2. .. .. ceramic parts, 21. .. .. metal parts, 3. .. .. coated metal, 4. .. .. Kovar pin, 51, 52. .. .. metal parts,

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  金属又はセラミックスからなる部材を
金属粉末の固相焼結層を介して接合してなり,上記金属
粉末は,0.1〜10μmのCu又はNiを主成分とす
る粉末であることを特徴とする接合部材。
[Claim 1] A member made of metal or ceramics is joined through a solid-phase sintered layer of metal powder, and the metal powder is a powder whose main component is Cu or Ni with a diameter of 0.1 to 10 μm. A joining member characterized by:
【請求項2】  金属又はセラミックスからなる部材を
互いに接合するに当たり,両部材の表面にCu又はNi
を主成分とする被覆金属をコーティングし,その後両部
材の間にCu又はNiを主成分とする金属粉末を介在さ
せ,これらを加圧下で300〜700℃において加熱し
て上記金属粉末を固相焼結すると共に,両部材を接合す
ることを特徴とする金属又はセラミックスからなる部材
の接合方法。
[Claim 2] When joining members made of metal or ceramics to each other, the surfaces of both members are coated with Cu or Ni.
After that, a metal powder mainly composed of Cu or Ni is interposed between both members, and these are heated at 300 to 700°C under pressure to turn the metal powder into a solid phase. A method for joining parts made of metal or ceramics, characterized by sintering and joining both parts.
【請求項3】  Cu又はNiを主成分とする部材を互
いに接合するに当たり,両部材の間にCu又はNiを主
成分とする金属粉末を介在させ,これらを加圧下で30
0〜700℃において加熱して上記金属粉末を固相焼結
すると共に,両部材を接合することを特徴とする金属又
はセラミックスからなる部材の接合方法。
[Claim 3] When joining members containing Cu or Ni as a main component, a metal powder containing Cu or Ni as a main component is interposed between the two members, and these are bonded under pressure for 30 minutes.
A method for joining members made of metal or ceramics, characterized in that the metal powder is solid-phase sintered by heating at 0 to 700°C, and both members are joined.
JP3087915A 1991-03-27 1991-03-27 Joining member and joining Pending JPH04300259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3087915A JPH04300259A (en) 1991-03-27 1991-03-27 Joining member and joining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3087915A JPH04300259A (en) 1991-03-27 1991-03-27 Joining member and joining

Publications (1)

Publication Number Publication Date
JPH04300259A true JPH04300259A (en) 1992-10-23

Family

ID=13928220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3087915A Pending JPH04300259A (en) 1991-03-27 1991-03-27 Joining member and joining

Country Status (1)

Country Link
JP (1) JPH04300259A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000335983A (en) * 1999-05-28 2000-12-05 Denki Kagaku Kogyo Kk Production of conjugate
JP2009146912A (en) * 2009-03-27 2009-07-02 Jsr Corp Anisotropic conductive sheet, and electrical inspection method and electrical connection method using the same
JP2009177084A (en) * 2008-01-28 2009-08-06 Mutsuki Denki Kk Electronic device and method of manufacturing the same
JP2014043382A (en) * 2012-08-27 2014-03-13 Toyota Central R&D Labs Inc Semiconductor device and method of manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000335983A (en) * 1999-05-28 2000-12-05 Denki Kagaku Kogyo Kk Production of conjugate
JP2009177084A (en) * 2008-01-28 2009-08-06 Mutsuki Denki Kk Electronic device and method of manufacturing the same
JP2009146912A (en) * 2009-03-27 2009-07-02 Jsr Corp Anisotropic conductive sheet, and electrical inspection method and electrical connection method using the same
JP2014043382A (en) * 2012-08-27 2014-03-13 Toyota Central R&D Labs Inc Semiconductor device and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US4624897A (en) Clad brazing filler for bonding ceramic to metal, glass, or other ceramic and composites using such filler
US4854495A (en) Sealing structure, method of soldering and process for preparing sealing structure
JP2602372B2 (en) Method of brazing metallized components to ceramic substrate
CN107787259B (en) Method for producing a composite material
US4624404A (en) Method for bonding ceramics and metals
JPH09275166A (en) Semiconductor device member using aluminum nitride base material and its manufacturing method
JP3095490B2 (en) Ceramic-metal joint
JP2572823B2 (en) Ceramic joint
JPH04300259A (en) Joining member and joining
JP2606115B2 (en) Element bonding pad for semiconductor mounting board
JP3302714B2 (en) Ceramic-metal joint
JPH05105563A (en) Metal-ceramic joint
JPH05319946A (en) Ceramic substrate joined to metallic plate
US5192622A (en) Low-cost ternary composite for use in vias in glass-ceramic structures
JP2650460B2 (en) Joining method of alumina ceramic and metal
JP2001048670A (en) Ceramics-metal joined body
JPS6272472A (en) Joining method for ceramics and metal or the like
JP2000349098A (en) Bonded body of ceramic substrate and semiconductor device, and its manufacture
JP2729751B2 (en) Joining method of alumina ceramics and aluminum
JPH0786444A (en) Manufacture of compound heat dissipating substrate for semiconductor
JPS61236661A (en) Method of joining ceramic and metal, same kind of ceramics or different kind of ceramics
JPH07187839A (en) Nitride ceramics-metal joined body and its production
JP2909856B2 (en) Joint of ceramic substrate and metal
JP2571026B2 (en) Element bonding pad and bonded body for semiconductor mounting substrate
JPH07157373A (en) Joining method of ceramic material and metallic material and production of airtight vessel