JPH03205298A - Controller for operation reaction force - Google Patents

Controller for operation reaction force

Info

Publication number
JPH03205298A
JPH03205298A JP205390A JP205390A JPH03205298A JP H03205298 A JPH03205298 A JP H03205298A JP 205390 A JP205390 A JP 205390A JP 205390 A JP205390 A JP 205390A JP H03205298 A JPH03205298 A JP H03205298A
Authority
JP
Japan
Prior art keywords
reaction force
pressure
lever
load
operation reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP205390A
Other languages
Japanese (ja)
Inventor
Yukio Hidaka
日高 幸夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP205390A priority Critical patent/JPH03205298A/en
Publication of JPH03205298A publication Critical patent/JPH03205298A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fluid-Pressure Circuits (AREA)

Abstract

PURPOSE:To obtain a controller for the operation reaction force which possesses the superior controllability and operation performance by installing an operating member which operates in the direction for returning an operation part to a neutral position by the force corresponding to the hydraulic pressure inputted into a hydraulic chamber. CONSTITUTION:In hoisting up, the pressure PR in a conduit 31 on the hoisting side of a motor 3 is introduced into a conduit 81, and decompressed in a prescribed decompression ratio by a reducing valve 8 for load pressure PR, and the hydraulic pressure Pi1 in decompressed state is inputted as a hydraulic signal for reaction force instruction into the hydraulic chamber 73 of a reaction force cylinder 7, and a rod 72 is projected by the pressure, and the projection force acts as operation reaction force to an operation part 62 on the hoisting side of a lever 6. Accordingly, the control gradient of the operation reaction force can be set arbitrarily by selecting the instruction pressure Pi inputted into hydraulic chamber 73, i.e., the compression ratio by the reducing valve 8 for reaction force instruction and the pressure receiving area of a piston 71, and even if the load pressure PR of the motor 3 increases, the drastic increase of the operation reaction force can be controlled, and the smooth lever operation can be executed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、クレーン等のウインチを駆動する油圧モータ
等のアクチュエータの操作レバーに作業状態に応じた操
作反力を付与する操作反力制御装置に関するものである
[Detailed Description of the Invention] [Industrial Application Field] The present invention is an operation reaction force control device that applies an operation reaction force according to the working state to the operation lever of an actuator such as a hydraulic motor that drives a winch of a crane or the like. It is related to.

〔従来の技術〕[Conventional technology]

従来、ウインチの吊り荷重に応じて操作レバーに操作反
力を付与する手段として、たとえば実開昭55−141
99号公報に示されているように、遠隔操作弁(パイロ
ット弁)に巻土用と巻下用の各反カシリンダを付設し、
ウインチ用油圧モータとカウンタバランス弁との間から
取出した負荷圧力を上記各反カシリンダのピストン背面
に形成した油圧室に入力させ、その圧力でピストンに連
設したロ・ツドを押出して、レバーに連設した操作部に
接触させることにより、レバーにレバーを中立に戻そう
とする力(操作反力)を付与するようにしたものが知ら
れている。
Conventionally, as a means for applying an operation reaction force to the operation lever according to the hanging load of the winch, for example,
As shown in Publication No. 99, a remote control valve (pilot valve) is equipped with anti-carrying cylinders for hoisting and hoisting,
The load pressure taken out between the winch hydraulic motor and the counterbalance valve is input into the hydraulic chamber formed on the back of the piston of each of the above cylinders, and the pressure pushes out the rod connected to the piston, causing the lever to move. A lever is known in which a force (manipulation reaction force) is applied to the lever to return the lever to the neutral position by contacting a continuously arranged operation part.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術では、各反カシリンダのピストン背面に形
成された油圧室に、モータ側のメイン管路から取出した
負荷圧力を直接入力させるため、各反カシリンダに高圧
、高強度のものが必要であり、それだけコストアップに
なる。とくに、巻上げ作業時、吊荷重が大きくなると、
モータの負荷圧力も大きくなる。この場合、第5図の実
線■に示すように負荷圧力P.に比例して操作反力Fが
大きくなるので、負荷圧力P.が最大値Pmxxになる
以前に、ある圧力(イ点)を超えると、操作反力Fがレ
バーによる操作可能最大値FmaIを超えてしまい、操
作反力が大きくなり過ぎてレバー操作ができなくなる。
In the above conventional technology, the load pressure extracted from the main conduit on the motor side is directly input into the hydraulic chamber formed on the back of the piston of each anti-cylindrical cylinder, so each anti-cylindrical cylinder must have high pressure and high strength. , the cost will increase accordingly. In particular, when the lifting load becomes large during hoisting work,
The load pressure on the motor also increases. In this case, as shown by the solid line ■ in FIG. 5, the load pressure P. Since the operation reaction force F increases in proportion to the load pressure P. If a certain pressure (point A) is exceeded before Pmxx reaches the maximum value Pmxx, the operation reaction force F exceeds the maximum value FmaI that can be operated by the lever, and the operation reaction force becomes so large that the lever cannot be operated.

なお、操作反力Fが上記操作可能最大値Fmaxを超え
ないようにするためには、上記反カシリンダの受圧面積
すなわちピストン径を極端に小さくする必要がある。こ
のように反カシリンダにおいて、ピストン径を極端に小
さくした上で、前述したように高圧に絶えるように構戒
するには、高度の技術を要し、その製作が極めて困難で
ある。
In order to prevent the operation reaction force F from exceeding the maximum operable value Fmax, it is necessary to make the pressure receiving area of the counter cylinder, that is, the piston diameter extremely small. In this way, in order to make the piston diameter extremely small in such a cylinder and to maintain the high pressure as described above, a sophisticated technique is required and manufacturing thereof is extremely difficult.

本発明は、このような問題を解消し、反力機構に低圧用
のものを使用できるようにして構造を簡素化し、製作を
容易にしてコストダウンを図り、かつ、吊荷重が大きく
、負荷圧力が大きい場合でも、オペレータが操作可能な
範囲で操作反力を適性に制御できるようにし、制御性な
らびに操作性にすぐれた操作反力制御装置を提供するも
のである。
The present invention solves these problems, simplifies the structure by allowing the use of a low-pressure reaction mechanism, and facilitates manufacturing to reduce costs. An object of the present invention is to provide an operation reaction force control device that allows an operator to appropriately control the operation reaction force within an operable range even when the amount of force is large, and has excellent controllability and operability.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、支持部材に回動自在に支持されたレバーと、
レバーに連設されレバーと一体的に回動する操作部と、
この操作部に対応するように配置された反力機構と、ア
クチュエータに作動油を供給するメイン管路から負荷圧
力を取出して減圧する反力指令用減圧弁とを有し、上記
反力機構は、反力指令用減圧弁により減圧された油圧力
を入力する油圧室と、その油圧室に入力される油圧力に
応じた力で上記操作部を中立位置に戻す方向に作動する
作動部材を備えた構成としている。
The present invention includes a lever rotatably supported by a support member;
an operating section that is connected to the lever and rotates integrally with the lever;
The reaction force mechanism has a reaction force mechanism arranged to correspond to this operation part, and a reaction force command pressure reducing valve that takes out load pressure from the main pipe line that supplies hydraulic oil to the actuator and reduces the pressure. , comprising a hydraulic chamber into which the hydraulic pressure reduced by the reaction force command pressure reducing valve is input, and an actuating member that operates in a direction to return the operating part to the neutral position with a force corresponding to the hydraulic pressure input to the hydraulic chamber. The structure is as follows.

この構成において、負荷の上げ操作用減圧弁と下げ操作
用減圧弁とを有するパイロット弁に上記支持部材と反力
機構とが連設され、その支持部材にレバーが回動自在に
支持されるとともに、レバーに上記各操作用減圧弁およ
び反力機構に対応する操作部が設けられる。
In this configuration, the support member and the reaction force mechanism are connected to a pilot valve having a pressure reducing valve for increasing the load and a pressure reducing valve for decreasing the load, and the lever is rotatably supported by the supporting member. , the lever is provided with an operating section corresponding to each of the operating pressure reducing valves and the reaction force mechanism.

また、負荷の上げ操作用減圧弁と下げ操作用減圧弁とを
有するパイロット弁から離れた箇所に上記支持部材と反
力機構とが設けられ、その支持部材にレバーが回動自在
に支持され、レバーに反力機構に対応する操作部が設け
られるとともに、パイロット弁の各操作用減圧弁の操作
部材が連結部材を介して上記レバーに連結される。
Further, the support member and the reaction force mechanism are provided at a location away from the pilot valve having a pressure reducing valve for increasing the load and a pressure reducing valve for decreasing the load, and the lever is rotatably supported by the supporting member, The lever is provided with an operating portion corresponding to the reaction force mechanism, and the operating member of each operating pressure reducing valve of the pilot valve is connected to the lever via a connecting member.

さらに、レバーの上げ操作側に対応する上げ操作用反力
機構と、下げ操作側に対応する下げ操作用反力機構と、
アクチュエータの上げ作動時の負荷圧力を上げ操作反力
機構の油圧室に導く上げ操作反力制御用管路と、アクチ
ュエータの下げ作動時の負荷圧力を下げ操作反力機構の
油圧室に導く下げ操作反力制御用管路とを備え、上記上
げ操作反力制御用管路に上記負荷圧力を減圧して上げ操
作反力機構の油圧室に入力させる上げ操作反力指令用減
圧弁が設けられる。
Furthermore, a reaction force mechanism for raising operation corresponding to the raising operation side of the lever, a reaction force mechanism for lowering operation corresponding to the lowering operation side of the lever,
A raising operation reaction force control conduit that increases the load pressure when the actuator is raised and leads to the hydraulic chamber of the operation reaction mechanism, and a lowering operation that reduces the load pressure when the actuator is lowered and leads to the hydraulic chamber of the operation reaction mechanism. A pressure reducing valve for raising operation reaction force command is provided in the raising operation reaction force control conduit and reducing the load pressure and inputting the reduced pressure to the hydraulic chamber of the raising operation reaction force mechanism.

上記下げ操作反力制御用管路にアクチュエータの下げ作
動時の負荷圧力を減圧して下げ操作反力機構の油圧室に
入力させる下げ操作反力指令用減圧弁が設けられ、この
下げ操作反力指令用減圧弁の減圧比が上記上げ操作反力
指令用減圧弁の減圧比よりも低く設定される。
The lowering operation reaction force control conduit is provided with a pressure reducing valve for lowering operation reaction force command, which reduces the load pressure during the lowering operation of the actuator and inputs it to the hydraulic chamber of the lowering operation reaction force mechanism. The pressure reducing ratio of the command pressure reducing valve is set lower than the pressure reducing ratio of the raising operation reaction force command pressure reducing valve.

上記上げ操作反力指令用減圧弁と上げ操作反力機構の油
圧室との間にリリーフ弁が設けられる。
A relief valve is provided between the pressure reducing valve for raising operation reaction force command and the hydraulic chamber of the raising operation reaction force mechanism.

〔作 用〕[For production]

上記の構威により、アクチュエータの負荷圧力が反力指
令用減圧弁により減圧されて反力機構の油圧室に入力さ
れ、その圧力によって操作反力が制御される。したがっ
て、反力機構には、負荷圧力を直接入力させるものに比
べて低圧用のものを使用でき、その構造を箇素化でき、
コストダウンが図れる。また、故障も少なく、機械寿命
が長くなる。
With the above structure, the load pressure of the actuator is reduced by the reaction force command pressure reducing valve and input into the hydraulic chamber of the reaction force mechanism, and the operation reaction force is controlled by the pressure. Therefore, the reaction force mechanism can be used for lower pressures than one that directly inputs the load pressure, and its structure can be made more detailed.
Cost reduction can be achieved. Additionally, there are fewer breakdowns and the machine has a longer lifespan.

上記操作反力制御装置において、反力機構とパイロット
弁とは別個に形成する場合と、一体的に成形する場合と
があり、いずれを採用するかは機械の設置スペース等を
考慮して決定される。別個に構威すれば、パイロット弁
に既存のものを用いることができ、反力機構を小形化で
きる。一体的に構成すれば、力の伝達ロスが少なくなり
、制御精度が高められる。
In the above-mentioned operation reaction force control device, the reaction force mechanism and the pilot valve may be formed separately or integrally, and which one to adopt is determined by considering the installation space of the machine, etc. Ru. If configured separately, an existing pilot valve can be used, and the reaction force mechanism can be downsized. If configured integrally, force transmission loss will be reduced and control accuracy will be increased.

上記操作反力機構は上げ側にのみ設けてもよいが、通常
は上げ側と下げ側の双方に設けられる。
Although the operation reaction force mechanism may be provided only on the raising side, it is usually provided on both the raising side and the lowering side.

ここで、上げ側の負荷圧力は高圧になるが、機械によっ
ては下if側の負荷圧力が常に低圧の場合がある。この
ような場合は、下げ側の負荷圧力をそのまま反力機構に
入力させ、上げ側の負荷圧力のみを減圧して反力機構に
入力させる。これにより上げ、下げ双方の制御性が改善
される。
Here, the load pressure on the upward side becomes high pressure, but depending on the machine, the load pressure on the downward side may always be low pressure. In such a case, the load pressure on the lowering side is directly input to the reaction force mechanism, and only the load pressure on the increasing side is reduced and input to the reaction force mechanism. This improves controllability for both raising and lowering.

なお、下げ側の負荷圧力が高圧になる場合は、上げ側と
下げ側の双方に操作反力指令用減圧弁が設けられ、下げ
側の負荷圧力も上記減圧弁により減圧されて下げ操作反
力機構に入力され、下げ側の操作反力も適正に制御され
る。この場合、下げ操作反力指令用減圧弁の減圧比が、
上げ操作反力指令用減圧弁の減圧比よりも低く設定され
ることにより、作業内容に応じた適正な反力制御が行わ
れる。また、上げ側において、操作反力指令用減圧弁と
反力機構の油圧室との間にリリーフ弁を設けることによ
り、とくに、負荷の上げ作業時に操作反力が異常に上昇
することが防止され、操作性が改善される。
In addition, when the load pressure on the lowering side becomes high pressure, a pressure reducing valve for commanding the operation reaction force is provided on both the raising side and the lowering side, and the load pressure on the lowering side is also reduced by the pressure reducing valve, and the lowering operation reaction force is reduced. The operation reaction force on the lowering side is input to the mechanism and is appropriately controlled. In this case, the pressure reducing ratio of the pressure reducing valve for lowering operation reaction force command is
By setting the pressure reduction ratio lower than the pressure reduction ratio of the pressure reduction valve for raising operation reaction force command, appropriate reaction force control is performed according to the work content. In addition, by providing a relief valve between the pressure reducing valve for operating reaction force command and the hydraulic chamber of the reaction force mechanism on the lifting side, it is possible to prevent the operating reaction force from increasing abnormally, especially when lifting the load. , operability is improved.

〔実施例〕〔Example〕

第1図は本発明の実施例を示すものであり、この図にお
いて、1は主油圧ポンプ、2は方向切換弁、3はアクチ
ュエータとしてのウインチ用油圧モータを示す。モータ
3の巻上げ供給側管路31には巻下げ供給側管路32の
圧力によって開かれるカウンタバランス弁33が設けら
れている。モータ3にはウインチドラム(図示省略)が
連結され、そのドラムの回転により吊荷の巻上げまたは
巻下げが行われる。
FIG. 1 shows an embodiment of the present invention, and in this figure, 1 is a main hydraulic pump, 2 is a directional control valve, and 3 is a winch hydraulic motor as an actuator. A counterbalance valve 33 that is opened by the pressure of the lowering supply side pipe 32 is provided in the winding supply side pipe 31 of the motor 3 . A winch drum (not shown) is connected to the motor 3, and the suspended load is hoisted or lowered by rotation of the drum.

方向切換弁2はパイロット式切換弁であり、この方向切
換弁2を切換えるためにパイロット弁4が用いられてい
る。パイロット弁4の弁ケース41には巻上げ操作用と
巻下げ操作用の一対の減圧弁5.5′が設けられている
。減圧弁5,5′は、弁ケース41に設けられた入力ポ
ート42と、リターンポート43と、出力ポート44.
44’ とに対応する室51.51’内に油孔52.5
2’を有するスプール53.53’を摺動自在に挿入し
て構成されている。このスプール53,53’の先端側
にはプッシュロッド54.54’かばね55.55’ 
を介して連結され、後端側はばね56.56’ により
弁ケース41に支持されている。
The directional switching valve 2 is a pilot type switching valve, and a pilot valve 4 is used to switch the directional switching valve 2. The valve case 41 of the pilot valve 4 is provided with a pair of pressure reducing valves 5.5' for hoisting and lowering operations. The pressure reducing valves 5, 5' have an input port 42 provided in a valve case 41, a return port 43, and an output port 44.
44' and an oil hole 52.5 in the corresponding chamber 51.51'.
It is constructed by slidably inserting a spool 53, 53' having a diameter of 2'. Push rods 54, 54' and springs 55, 55' are attached to the tip sides of the spools 53, 53'.
The rear end side is supported by the valve case 41 by springs 56 and 56'.

上記入力ポート42には操作用油圧ポンプ50が接続さ
れ、リターンポート43はタンク10に接続され、出力
ポート44.44’がパイロット管路21.21’ を
介して方向切換弁2の切換え用パイロット部に接続され
ている。
A hydraulic pump 50 for operation is connected to the input port 42, a return port 43 is connected to the tank 10, and an output port 44.44' is connected to a pilot pipe for switching the directional control valve 2 via a pilot pipe 21.21'. connected to the section.

レバー6は、パイロット弁4の弁ケース41に連結され
た支持部材60に枢軸61を介して回動自在に支持され
ている。レバー6には枢軸61を中心として左右に張出
す操作部62.62’が一体的に連設され、この操作部
62.62’が上記減圧弁5,5′のプッシュロッド5
4.54’ に対向するように配置されている。
The lever 6 is rotatably supported by a support member 60 connected to the valve case 41 of the pilot valve 4 via a pivot shaft 61. The lever 6 is integrally connected with an operating section 62, 62' extending left and right about the pivot shaft 61, and this operating section 62, 62' is connected to the push rod 5 of the pressure reducing valve 5, 5'.
4.54'.

操作反力機構はシリンダ構造であり、巻上げ用および巻
下げ用の各操作反カシリンダ7.7′がパイロット弁4
の弁ケース41に一体的に組込まれている。すなわち弁
ケース41の各減圧弁5,5′に隣接する箇所にそれぞ
れ反力゛シリンダ室が設けられ、各反カシリンダ室内に
ピストン71.71′が摺動自在に挿入され、各ピスト
ン71.71′に連結されたロッド72.72’が作動
部材としてレバー6の各操作部62.62’ に対向す
るように配置されている。なお、上記反力機構の各ロッ
ド72.72’ はレバー中立時にはレバー6に操作反
力を加えず、レバー操作開始と同時に操作反力を加える
ようにするため、最大突出状態でその先端がレバー中立
状態での操作部62,62′の下面に接触するようにそ
のストロークが設定されている。
The operation reaction force mechanism has a cylinder structure, and each operation reaction force cylinder 7.7' for hoisting and lowering is connected to a pilot valve 4.
It is integrally incorporated into the valve case 41 of. That is, a reaction force cylinder chamber is provided at a location adjacent to each pressure reducing valve 5, 5' in the valve case 41, and a piston 71.71' is slidably inserted into each reaction cylinder chamber. A rod 72, 72' connected to the lever 6 is arranged as an actuating member opposite each operating part 62, 62' of the lever 6. In addition, each rod 72, 72' of the reaction force mechanism does not apply any operation reaction force to the lever 6 when the lever is in the neutral position, but applies an operation reaction force to the lever 6 at the same time as the lever operation starts, so that the tip of each rod 72, 72' touches the lever when the lever is at its maximum protrusion. The stroke is set so as to contact the lower surface of the operating parts 62, 62' in the neutral state.

一方、モータ3の巻上げ供給側管路31および巻下げ供
給側管路32からそれぞれ反力制御用管路81.81’
が分岐され、各管路81.81’に上げ操作反力指令用
減圧弁8および下げ操作反力指令用減圧弁8′がそれぞ
れ接続され、各減圧弁8,8′の二次側が管路82.8
2’を介して反カシリンダ7,7′のピストン71.7
1’の背面に形成された油圧室73.73’ に接続さ
れている。上記管路81はカウンタバランス弁33の上
流、下流いずれに接続してもよい。上記各減圧弁8.8
′にはいずれも一次側に入力される圧力(負荷圧力)を
一定の比率で減圧する定比減圧弁が用いられる。また、
好ましくは上げ側の減圧弁8の減圧比が下げ側の減圧弁
8′の減圧比よりも大きく設定される。
On the other hand, reaction force control pipes 81 and 81' are connected to the hoisting supply pipe 31 and the lowering supply pipe 32 of the motor 3, respectively.
The pressure reducing valve 8 for raising operation reaction force command and the pressure reducing valve 8' for lowering operation reaction force command are connected to each pipe 81, 81', respectively, and the secondary side of each pressure reducing valve 8, 8' is connected to the pipe line 81, 81'. 82.8
2' to the opposite cylinder 7, 7' piston 71.7
1' is connected to a hydraulic chamber 73,73' formed on the back side. The pipe line 81 may be connected either upstream or downstream of the counterbalance valve 33. Each of the above pressure reducing valves 8.8
In each case, a constant ratio pressure reducing valve is used to reduce the pressure (load pressure) input to the primary side at a fixed ratio. Also,
Preferably, the pressure reducing ratio of the pressure reducing valve 8 on the upward side is set larger than the pressure reducing ratio of the pressure reducing valve 8' on the downward side.

次に、作用について説明する。Next, the effect will be explained.

第l図はパイロット弁4のレバー6を中立位置から巻上
げ側に操作した場合を示しており、この巻上げ操作によ
り巻上げ側の操作用減圧弁5のプッシュロッド54が押
し下げられ、スプール53が押し下げられて出力ポート
44からレバー操作角に応じたパイロット圧がパイロッ
ト管路21に出力され(矢印イ)、そのパイロット圧に
より方向切換弁2が巻上げ位置に切換えられている。こ
れによりポンプ1の吐出油が矢印口方向に流れ、カウン
タバランス弁33を経てモータ3に流入される。そして
、モータ3の巻上げ側の管路31の圧力が吊荷重の大き
さに応じて上昇し、その圧力でモータ3が正転され、ウ
インチドラム(図示省略)が巻上げ方向に回転され、吊
荷が巻上げられる。
Figure 1 shows the case where the lever 6 of the pilot valve 4 is operated from the neutral position to the winding side, and this winding operation pushes down the push rod 54 of the operating pressure reducing valve 5 on the winding side, and pushes down the spool 53. A pilot pressure corresponding to the lever operation angle is output from the output port 44 to the pilot pipe 21 (arrow A), and the directional control valve 2 is switched to the winding position by the pilot pressure. As a result, the oil discharged from the pump 1 flows in the direction of the arrow and flows into the motor 3 via the counterbalance valve 33. Then, the pressure in the conduit 31 on the hoisting side of the motor 3 rises in accordance with the size of the hanging load, and the motor 3 is rotated forward by that pressure, the winch drum (not shown) is rotated in the hoisting direction, and the hoisted load is rotated in the winch drum (not shown). is rolled up.

この巻上げ時において、モータ3の巻上げ側の管路31
の圧力(負荷圧力)P8が管路81に導かれ、その負荷
圧力Piが減圧弁8により第3図の実線Iに示すように
所定の減圧比で減圧され、その減圧された油圧力P7x
が反力指令用油圧信号として反カシリンダ7の油圧室7
3に入力され、その圧力でロッド72が突出するように
付勢され、その突出力が操作反力Fiとしてレバー6の
巻上げ側の操作部62に作用する。
During this winding, the conduit 31 on the winding side of the motor 3
pressure (load pressure) P8 is led to the pipe 81, and the load pressure Pi is reduced by the pressure reducing valve 8 at a predetermined pressure reduction ratio as shown by the solid line I in FIG. 3, and the reduced hydraulic pressure P7x
is the hydraulic pressure signal for the reaction force command in the hydraulic chamber 7 of the counter cylinder 7.
3, the rod 72 is urged to protrude by the pressure, and the protrusion force acts on the winding-side operating portion 62 of the lever 6 as an operation reaction force Fi.

このときの操作反力F,は、 Fl =Pt1 ●Al+fl A1 :ピストン71の受圧面積 f8:上げ操作用減圧弁5のばね等による反力(固有反
力) によって決まる。したがって、上記油圧室73に入力さ
れる指令圧力Pt1すなわち反力指令用減圧弁8による
減圧比、およびピストン71の受圧面積A1を選定する
ことにより、操作反力FR?制御勾配を任意に設定でき
、たとえば第4図実線■に示すように制御できる。そし
て、吊荷重すなわちモータ3の負荷圧力P,が大きくな
っても、操作反力FRが極端に大きくなることを抑制で
き、さらに、負荷圧力PI1が最大値Pm*xで、反力
指令圧力Pt1が最大値P7maxになっても、操作反
力FRがレバー操作可能な最大値FIllaxを超える
ことはなく、レバー操作が円滑に行われる。また、上記
操作反力F,の大きさをレバー6を通して手で感知する
ことにより、オペレータが吊荷重の大きさを容易に感知
できることになる。
The operation reaction force F at this time is determined by: Fl = Pt1 ●Al+fl A1 : Pressure receiving area f8 of the piston 71 : Reaction force (specific reaction force) due to the spring, etc. of the pressure reducing valve 5 for raising operation. Therefore, by selecting the command pressure Pt1 input to the hydraulic chamber 73, that is, the pressure reduction ratio by the reaction force command pressure reducing valve 8, and the pressure receiving area A1 of the piston 71, the operation reaction force FR? The control gradient can be set arbitrarily, for example, as shown by the solid line (■) in FIG. Even if the hanging load, that is, the load pressure P of the motor 3 increases, the operation reaction force FR can be suppressed from becoming extremely large. Furthermore, when the load pressure PI1 is the maximum value Pm*x, the reaction force command pressure Pt1 Even if it reaches the maximum value P7max, the operation reaction force FR does not exceed the maximum value FIllax that allows lever operation, and the lever operation is performed smoothly. In addition, by sensing the magnitude of the operation reaction force F by hand through the lever 6, the operator can easily sense the magnitude of the hanging load.

とくにこの場合、モータ3の負荷圧力Pwを減圧弁8に
より反力指令圧力Pjエまで一旦減圧して反カシリンダ
7の油圧室73に入力させるので、その指令圧力Pt■
は低圧であり、したがって、反カシリンダ7に低圧用の
ものを使用でき、そのシール部等の構造を簡素化し、か
つ、そのピストン径(A1)をある程度大きくして製作
を容易にでき、コストダウンを図ることができる。また
、リリーフ弁83により反力指令圧力Ptxの上限値を
制御することにより、操作反力F,の上限値を第4図の
実線I[1、II2に示すように制御でき、高負荷時の
操作性を向上できる。なお、リリーフ弁83は省略して
もよい。
In particular, in this case, the load pressure Pw of the motor 3 is once reduced to the reaction force command pressure Pjd by the pressure reducing valve 8 and inputted to the hydraulic chamber 73 of the anti-force cylinder 7, so that the command pressure Pt■
is low pressure, therefore, a low pressure cylinder 7 can be used, the structure of the sealing part etc. can be simplified, and the piston diameter (A1) can be increased to a certain extent to facilitate manufacturing, reducing costs. can be achieved. In addition, by controlling the upper limit value of the reaction force command pressure Ptx with the relief valve 83, the upper limit value of the operation reaction force F can be controlled as shown by the solid lines I[1, II2 in FIG. Operability can be improved. Note that the relief valve 83 may be omitted.

次に、レバー6を中立位置から巻下げ側に操作すると、
巻下げ側の操作用減圧弁5′のプッシュロッド54′が
押・し下げられ、スプール53〆が押し下げられて出力
ポート44′からレバー操作角に応じたパイロット圧が
パイロット管路21′に出力され(矢印ハ)、そのパイ
ロット圧により方向切換弁2が巻下げ位置に切換えられ
、ポンプ1の吐出油がモータ3に流入され(矢印二)、
その圧力でカウンタバランス弁33が開かれ、モータ3
からタンク10に油が流出されながら、モータ3が逆転
され、ウインチドラム(図示省略)が巻下げ方向に回転
され、吊荷の巻下げが行われる。
Next, when lever 6 is operated from the neutral position to the lowering side,
The push rod 54' of the operating pressure reducing valve 5' on the lowering side is pushed down, the spool 53 is pushed down, and pilot pressure corresponding to the lever operation angle is output from the output port 44' to the pilot pipe 21'. (arrow C), the directional control valve 2 is switched to the lowering position by the pilot pressure, and the oil discharged from the pump 1 flows into the motor 3 (arrow 2).
The pressure opens the counterbalance valve 33, and the motor 3
While the oil is flowing out from the tank 10 into the tank 10, the motor 3 is reversely rotated, the winch drum (not shown) is rotated in the lowering direction, and the suspended load is lowered.

この巻下げ時において、モータ3の巻下げ側の管路32
の圧力(負荷圧力)Paが管路81′に導かれ、その負
荷圧力Poが減圧弁8′によって巻上げ側の減圧比より
も低い減圧比で減圧され(第3図の実線■参照)、その
減圧された油圧力Pt2が反力指令用油圧信号として反
カシリンダ7′の油圧室73′に入力され、その圧力で
ロッド72′が突出するように付勢され、その突出力が
操作反力F。とじてレバー6の巻下げ側の操作部62′
 に作用する。
During this lowering, the conduit 32 on the lowering side of the motor 3
The pressure (load pressure) Pa is led to the pipe 81', and the load pressure Po is reduced by the pressure reducing valve 8' at a pressure reduction ratio lower than the pressure reduction ratio on the hoisting side (see the solid line ■ in Fig. 3). The reduced hydraulic pressure Pt2 is input to the hydraulic chamber 73' of the counter cylinder 7' as a reaction force command hydraulic signal, and the pressure urges the rod 72' to protrude, and the protrusion force becomes the operation reaction force F. . Operation section 62' on the lowering side of the closing lever 6
It acts on

このときの操作反力F0は、 F o = P t2  ●A2+foA2 :ピスト
ン71′の受圧面積 f0 :下げ操作用減圧弁5′のばね等による反力(固
有反力) によって決まる。したがって、上記巻上げ時と同様に油
圧室73′に入力される指令圧力Pj2すなわち反力指
令用減圧弁8′による減圧比、およびピストン71′の
受圧面積A1を選定することにより、操作反力F,の制
御勾配を任意に設定できる。この場合、巻下げ時の負荷
圧力Foは巻上げ時の負荷圧力Fiに比べて低圧で、か
つその変化域も小さいので、第3図の実線■のように巻
下げ側の減圧比を低くすることによって、第4図の実線
■のように巻下げ操作反力FDの制御勾配を巻上げ操作
反力FRの制御勾配よりも大きくでき、これにより僅か
な巻下げ負荷圧力の変化を大きな操作反力Foの変化に
変換することができ、その変化をレバー6を介してオペ
レータが敏感に感知することができる。そして、操作初
期における負荷の動き始めを上記操作反力F0の変化を
通して容易に感知でき、負荷が見えない位置での操作で
あっても、安全に巻下げ操作ならびに巻下げ作業を行う
ことができる。
The operation reaction force F0 at this time is determined by: F o = P t2 ● A2 + foA2 : pressure receiving area f0 of the piston 71' : reaction force (specific reaction force) due to the spring, etc. of the pressure reducing valve 5' for lowering operation. Therefore, by selecting the command pressure Pj2 input to the hydraulic chamber 73', that is, the pressure reduction ratio by the reaction force command pressure reducing valve 8', and the pressure receiving area A1 of the piston 71', as in the case of hoisting, the operation reaction force F can be reduced. , the control gradient of can be set arbitrarily. In this case, the load pressure Fo at the time of lowering is lower than the load pressure Fi at the time of hoisting, and its variation range is also small, so the pressure reduction ratio on the lowering side should be lowered as shown by the solid line ■ in Figure 3. As a result, the control gradient of the lowering operation reaction force FD can be made larger than the control gradient of the hoisting operation reaction force FR, as shown by the solid line ■ in FIG. The operator can sensitively sense this change via the lever 6. The start of movement of the load at the initial stage of operation can be easily detected through the change in the operation reaction force F0, and even when the load is not visible, the lowering operation and lowering work can be performed safely. .

ところで、機械によっては、巻下げ側の負荷圧力が、巻
上げ側に比べて極端に低圧で、かつ、その変化域も極端
に小さい場合がある。その場合には、下げ操作指令用減
圧弁8′を省略し、巻下げ側の負荷圧力をそのまま下げ
操作反力機構の油圧室73′に入力させて下げ操作反力
を制御するようにしてもよい。
Incidentally, depending on the machine, the load pressure on the unwinding side may be extremely lower than that on the hoisting side, and the range of variation thereof may be extremely small. In that case, the lowering operation command pressure reducing valve 8' may be omitted and the load pressure on the lowering side may be directly inputted to the hydraulic chamber 73' of the lowering operation reaction force mechanism to control the lowering operation reaction force. good.

また、第1図では、反カシリンダ7.7′のシリンダケ
ースをパイロット弁4の弁ケース41と一体成形したよ
うに図示してあるが、それらは必ずしも一体威形するも
のではなく、互いに独立戒形したものを一体的に組立て
てもよいととはいうまでもない。なお、反カシリンダ7
,7′は必ずしもパイロット弁4と一体的に形成する必
要はない。たとえば第2図に示すようにレバー6をパイ
ロット弁4から離れた位置に配置した支持部材(図示省
略)に回動自在に支持させ、このレバー6の操作部62
と、パイロット弁4の操作部材63とをリンク等の連結
部材64により連結し、レバー6を支持した固定部材に
、レバー6の操作部62.62’ に対応する反カシリ
ンダ7.7′を取付けてもよい。
Furthermore, in Fig. 1, the cylinder case of the cylinder 7, 7' is shown to be integrally molded with the valve case 41 of the pilot valve 4, but they are not necessarily integrally formed and are independent of each other. It goes without saying that shaped objects can be assembled into one piece. In addition, anti-ka cylinder 7
, 7' are not necessarily formed integrally with the pilot valve 4. For example, as shown in FIG. 2, the lever 6 is rotatably supported by a support member (not shown) disposed at a position away from the pilot valve 4, and the operating portion 62 of the lever 6 is rotatably supported.
and the operating member 63 of the pilot valve 4 are connected by a connecting member 64 such as a link, and a counter cylinder 7.7' corresponding to the operating part 62.62' of the lever 6 is attached to the fixed member that supports the lever 6. You can.

本発明において、制御対象とするアクチュエータは、上
記実施例のウインチ用油圧モータに限定されず、クレー
ンのブームホイスト用の油圧モータまたは油圧シリンダ
、油圧ショベルのブーム、アーム、パケット等を駆動す
るための油圧シリンダとする場合もある。これらのアク
チュエータを操作する場合も、上記本発明の装置を適用
することにより、ブーム等の負荷の下げ゜操作時に操作
反力の変化率を大きくして、負荷の動きの感知を容易に
することができる。
In the present invention, the actuator to be controlled is not limited to the winch hydraulic motor of the above embodiment, but can also be used to drive a hydraulic motor or hydraulic cylinder for a boom hoist of a crane, a boom, an arm, a packet, etc. of a hydraulic excavator. It may also be a hydraulic cylinder. When operating these actuators, by applying the above-mentioned device of the present invention, the rate of change of the operation reaction force can be increased when lowering the load of the boom, etc., and the movement of the load can be easily detected. I can do it.

〔発明の効果〕〔Effect of the invention〕

本発明は、次のような作用効果がある。 The present invention has the following effects.

レバー操作によりアクチュエータを作動させた時に、ア
クチュエータの負荷圧力を反力指令用減圧弁により減圧
して反力機構に入力し、その圧力によってレバーに操作
反力を付与するようにしているので、負荷圧力を反力機
構に直接入力させるものに比べて、反力機構に低圧用の
ものを使用でき、その構造を簡素化でき、コストダウン
を図ることができる。
When the actuator is actuated by operating the lever, the load pressure of the actuator is reduced by the pressure reducing valve for reaction force command and input to the reaction force mechanism, and the pressure is used to apply the operation reaction force to the lever, so that the load pressure is reduced. Compared to a system in which pressure is directly input to the reaction mechanism, a low pressure reaction mechanism can be used, the structure can be simplified, and costs can be reduced.

パイロット弁と反力機構とを一体的に構成することによ
り、力の伝達ロスを少なくでき、制御精度を高めること
ができる。
By integrally configuring the pilot valve and the reaction force mechanism, force transmission loss can be reduced and control accuracy can be improved.

反力機構とパイロット弁とを別個に構成し、両者を離れ
た位置に配置することにより、パイロット弁に既存のも
のをそのまま使用することができ、反力機構を小形化し
てコストダウンを図ることができる。また、パイロット
弁とレバーおよび反力機構の配置を任意に設定でき、建
設機械のように狭い運転室であっても効率よく配置して
、その利用価値を高めることができる。
By configuring the reaction force mechanism and the pilot valve separately and arranging them at separate positions, the existing pilot valve can be used as is, and the reaction force mechanism can be made smaller and costs can be reduced. I can do it. Further, the arrangement of the pilot valve, lever, and reaction force mechanism can be set arbitrarily, and even in a narrow operator's cab such as in a construction machine, they can be arranged efficiently and the value of use thereof can be increased.

上げ側と下げ側を互いに独立して反力制御することによ
り、作業内容に応じて上げ、下げ双方をいずれも適正に
制御することができる。
By controlling the reaction force on the raising side and the lowering side independently of each other, both raising and lowering can be properly controlled depending on the work content.

上げ側と下げ側の双方に反力指令用減圧弁を設け、下げ
側の減圧比を下げ側のそれよりも低くすることにより、
下げ側の反力制御勾配を大きくでき、下げ側の感度をよ
くし、負荷圧力が低圧の場合でも反力を確実に感知して
負荷の大きさ等を容易に知ることができる。
By installing pressure reducing valves for reaction force command on both the raising side and lowering side, and making the pressure reduction ratio on the lowering side lower than that on the lowering side,
The reaction force control gradient on the lowering side can be increased, the sensitivity on the lowering side can be improved, and even when the load pressure is low, the reaction force can be reliably sensed and the magnitude of the load etc. can be easily known.

上げ側にリリーフ弁を設けることにより、操作反力の上
限値を容易に設定でき、操作反力が過大になるのを防止
して制御性ならびに操作性を向上できる。
By providing the relief valve on the raising side, the upper limit value of the operation reaction force can be easily set, the operation reaction force can be prevented from becoming excessive, and controllability and operability can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す構威説明図、第2図は別
の実施例を示す概略説明図、第3図は本発明による制御
特性を示す負荷圧力と反力指令圧力との関係図、第4図
はその反力指令圧力と操作反力との関係図、第5図は従
来の制御特性を示す負荷圧力と操作反力との関係図であ
る。 1・・・油圧ポンプ、2・・・方向切換弁、3・・・ウ
インチ用油圧モータ(アクチュエータ)、4・・・パイ
ロット弁、5・・・巻上げ操作用減圧弁、,5′・・・
巻下げ操作用減圧弁、6・・・レバー、7・・・巻上げ
操作反カシリンダ、7′・・・巻下げ操作反カシリンダ
、8・・・上げ操作反力指令用減圧弁、8′・・・下げ
操作針指令用減圧弁、62・・・巻上げ側操作部、62
′・・・巻上げ側操作部、73・・・巻上げ側油圧室、
73′・・・巻下げ側油圧室、81・・・巻上げ反力指
令管路、82・・・巻下げ反力指令管路。
FIG. 1 is a structural explanatory diagram showing an embodiment of the present invention, FIG. 2 is a schematic explanatory diagram showing another embodiment, and FIG. 3 is a diagram showing the control characteristics of the present invention between load pressure and reaction force command pressure. FIG. 4 is a relationship diagram between the reaction force command pressure and operation reaction force, and FIG. 5 is a relationship diagram between load pressure and operation reaction force showing conventional control characteristics. DESCRIPTION OF SYMBOLS 1... Hydraulic pump, 2... Directional switching valve, 3... Hydraulic motor (actuator) for winch, 4... Pilot valve, 5... Pressure reducing valve for hoisting operation, 5'...
Pressure reducing valve for lowering operation, 6... Lever, 7... Hoisting operation counter cylinder, 7'... Lowering operation counter cylinder, 8... Pressure reducing valve for raising operation reaction force command, 8'...・Pressure reducing valve for lowering operation needle command, 62... Winding side operation section, 62
'...Hoisting side operation section, 73...Hoisting side hydraulic chamber,
73'... Lowering side hydraulic chamber, 81... Hoisting reaction force command line, 82... Lowering reaction force command line.

Claims (1)

【特許請求の範囲】 1、支持部材に回動自在に支持されたレバーと、レバー
に連設されレバーと一体的に回動する操作部と、この操
作部に対応するように配置された反力機構と、アクチュ
エータに作動油を供給するメイン管路から負荷圧力を取
出して減圧する反力指令用減圧弁とを有し、上記反力機
構は、反力指令用減圧弁により減圧された油圧力を入力
する油圧室と、その油圧室に入力される油圧力に応じた
力で上記操作部を中立位置に戻す方向に作動する作動部
材を備えていることを特徴とする操作反力制御装置。 2、負荷の上げ操作用減圧弁と下げ操作用減圧弁とを有
するパイロット弁に上記支持部材と反力機構とが連設さ
れ、その支持部材にレバーが回動自在に支持されるとと
もに、レバーに上記各操作用減圧弁および反力機構に対
応する操作部が設けられていることを特徴とする請求項
1記載の操作反力制御装置。 3、負荷の上げ操作用減圧弁と下げ操作用減圧弁とを有
するパイロット弁から離れた箇所に上記支持部材と反力
機構とが設けられ、その支持部材にレバーが回動自在に
支持され、レバーに反力機構に対応する操作部が設けら
れるとともに、パイロット弁の各操作用減圧弁の操作部
材が連結部材を介して上記レバーに連結されていること
を特徴とする請求項1記載の操作反力制御装置。 4、レバーの上げ操作側に対応する上げ操作用反力機構
と、下げ操作側に対応する下げ操作用反力機構と、アク
チュエータの上げ作動時の負荷圧力を上げ操作反力機構
の油圧室に導く上げ操作反力制御用管路と、アクチュエ
ータの下げ作動時の負荷圧力を下げ操作反力機構の油圧
室に導く下げ操作反力制御用管路とを備え、上記上げ操
作反力制御用管路に上記負荷圧力を減圧して上げ操作反
力機構の油圧室に入力させる上げ操作反力指令用減圧弁
が設けられていることを特徴とする請求項1乃至3のい
ずれかに記載の操作反力制御装置。 5、上記下げ操作反力制御用管路にアクチュエータの下
げ作動時の負荷圧力を減圧して下げ操作反力機構の油圧
室に入力させる下げ操作反力指令用減圧弁が設けられ、
この下げ操作反力指令用減圧弁の減圧比が上記上げ操作
反力指令用減圧弁の減圧比よりも低く設定されているこ
とを特徴とする請求項4記載の操作反力制御装置。 6、上げ操作反力指令用減圧弁と上げ操作反力機構の油
圧室との間にリリーフ弁が設けられていることを特徴と
する請求項4または5記載の操作反力制御装置。
[Claims] 1. A lever rotatably supported by a support member, an operating section connected to the lever and rotating integrally with the lever, and a counter arranged to correspond to the operating section. It has a force mechanism and a reaction force command pressure reducing valve that extracts and reduces the load pressure from the main pipe line that supplies hydraulic oil to the actuator. An operation reaction force control device comprising: a hydraulic chamber into which pressure is input; and an actuating member that operates in a direction to return the operating section to a neutral position with a force corresponding to the hydraulic pressure input into the hydraulic chamber. . 2. The support member and the reaction force mechanism are connected to a pilot valve having a pressure reducing valve for increasing the load and a pressure reducing valve for decreasing the load, and the lever is rotatably supported by the supporting member, and the lever is rotatably supported by the supporting member. 2. The operation reaction force control device according to claim 1, further comprising an operation section corresponding to each of the operation pressure reducing valves and the reaction force mechanism. 3. The support member and the reaction force mechanism are provided at a location remote from the pilot valve having a pressure reducing valve for increasing the load and a pressure reducing valve for decreasing the load, and the lever is rotatably supported by the supporting member, 2. The operation according to claim 1, wherein the lever is provided with an operating section corresponding to the reaction force mechanism, and the operating member of each operating pressure reducing valve of the pilot valve is connected to the lever via a connecting member. Reaction force control device. 4. A reaction force mechanism for raising the lever corresponding to the raising operation side of the lever, a reaction force mechanism for lowering operation corresponding to the lowering operation side, and a hydraulic chamber of the operation reaction force mechanism that increases the load pressure when the actuator is raised. The raising operation reaction force control pipe is equipped with a raising operation reaction force control conduit that guides the lowering operation of the actuator, and a lowering operation reaction force control conduit that reduces the load pressure during the lowering operation of the actuator and leads to the hydraulic chamber of the operation reaction force mechanism. 4. The operation according to claim 1, further comprising a pressure reducing valve for commanding a raising operation reaction force which reduces the load pressure and inputs the reduced load pressure to a hydraulic chamber of the raising operation reaction force mechanism. Reaction force control device. 5. The lowering operation reaction force control conduit is provided with a pressure reducing valve for lowering operation reaction force command, which reduces the load pressure during the lowering operation of the actuator and inputs the reduced pressure to the hydraulic chamber of the lowering operation reaction force mechanism;
5. The operation reaction force control device according to claim 4, wherein a pressure reduction ratio of the pressure reduction valve for lowering operation reaction force commands is set lower than a pressure reduction ratio of the pressure reduction valve for raising operation reaction force commands. 6. The operation reaction force control device according to claim 4 or 5, wherein a relief valve is provided between the pressure reducing valve for raising operation reaction force command and the hydraulic chamber of the raising operation reaction force mechanism.
JP205390A 1990-01-08 1990-01-08 Controller for operation reaction force Pending JPH03205298A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP205390A JPH03205298A (en) 1990-01-08 1990-01-08 Controller for operation reaction force

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP205390A JPH03205298A (en) 1990-01-08 1990-01-08 Controller for operation reaction force

Publications (1)

Publication Number Publication Date
JPH03205298A true JPH03205298A (en) 1991-09-06

Family

ID=11518598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP205390A Pending JPH03205298A (en) 1990-01-08 1990-01-08 Controller for operation reaction force

Country Status (1)

Country Link
JP (1) JPH03205298A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9845738B2 (en) 2012-12-21 2017-12-19 Borgwarner Inc. Variable compression ratio piston system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9845738B2 (en) 2012-12-21 2017-12-19 Borgwarner Inc. Variable compression ratio piston system

Similar Documents

Publication Publication Date Title
JPH01226697A (en) Operating reaction force controller for winch
US9303661B2 (en) Control arrangement
JP7324655B2 (en) Hydraulic system for construction machinery
US20120279212A1 (en) Control arrangement
JPH03205298A (en) Controller for operation reaction force
JPH0741287A (en) Boom derricking and hoisting motion control device of crane
JPH0528846B2 (en)
JP2713695B2 (en) Hydraulic winch device
JP2018184299A (en) Revolving drive device and work machine with the same
JP2004292102A (en) Winch speed control device and crane
JP2752595B2 (en) Hydraulic winch device
JP2713696B2 (en) Hydraulic winch device
JPH03205297A (en) Controller for operation reaction force
JP3326116B2 (en) Control device for rope winch
JP3767389B2 (en) Hydraulic winch control device
JPH03209001A (en) Operation device for variable capacity type hydraulic motor
JPH08210303A (en) Controller for hydraulic actuator
JP2003194012A (en) Switching control valve for hydraulic actuator
JP2738660B2 (en) Hydraulic winch device
JPH02117596A (en) Control force control device for winch
JP2004203595A (en) Hook operating device of crane
JPH02261795A (en) Operating reaction force control device
JPH08217389A (en) Hydraulic winch device
SU1294760A1 (en) Hydraulic drive of boom crane winch
JPH02169495A (en) Operating reaction force controller