JPH03201577A - Manufacture of bi-sb-ti-se thermoelectric semiconductor material - Google Patents

Manufacture of bi-sb-ti-se thermoelectric semiconductor material

Info

Publication number
JPH03201577A
JPH03201577A JP1343205A JP34320589A JPH03201577A JP H03201577 A JPH03201577 A JP H03201577A JP 1343205 A JP1343205 A JP 1343205A JP 34320589 A JP34320589 A JP 34320589A JP H03201577 A JPH03201577 A JP H03201577A
Authority
JP
Japan
Prior art keywords
solid solution
powder
semiconductor material
thermoelectric semiconductor
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1343205A
Other languages
Japanese (ja)
Inventor
Kazuhiro Tsuchiya
土屋 一広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP1343205A priority Critical patent/JPH03201577A/en
Publication of JPH03201577A publication Critical patent/JPH03201577A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent damage of cleavage of a crystal by mixing additive elements such as Bi, Sb and Re, Se, to become a desire composition, heating to melt the mixture, cooling to form an ingot of a solid solution, pulverizing it to predetermined particle size, cleaning, molding and sintering it. CONSTITUTION:One type of group Vb elements such as Bi, Sb, and one type of group IVb elements such as Te, Se, etc., are so weighed and mixed as to produce a desired composition. Then, the mixture is heated to be melted, then quickly cooled to solid solution. Thereafter, the solid solution is pulverized as solid solution powder, which is then granulated to 30-200mum of particle size. Then, the powder is compression molded under the pressure of 1-5t/cm<2>, molded in a powder molding of desired shape, and then sintered.

Description

【発明の詳細な説明】 E産業上の利用分野コ この発明は、熱感応素子として利用されるB1Sb−T
e”Se系熱電半導体材料の製法に関し、固溶体粉末の
粒径を揃えるとともに固溶体粉末間の凝集を解くことに
より、熱電特性に優れた熱電半導体材料を提供するよう
にした乙のである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention is directed to B1Sb-T used as a heat sensitive element.
Regarding the manufacturing method of the e''Se-based thermoelectric semiconductor material, the particle size of the solid solution powder is made uniform and the agglomeration between the solid solution powders is broken to provide a thermoelectric semiconductor material with excellent thermoelectric properties.

E従来の技術] 2種以上の元素を混合して得られる固溶体結晶に、種々
の不純物をドープしてなる化合物半導体のうち、BLT
e3.Sb2Tes、BizSe3等に代表され、一般
式V−Wで示される化合物半導体は熱電特性を示すこと
が知られているので、従来から熱電冷却や熱電発電の材
料として広く用いられている。
E. Prior Art] BLT is a compound semiconductor formed by doping various impurities into a solid solution crystal obtained by mixing two or more elements.
e3. Compound semiconductors represented by the general formula V-W, such as Sb2Tes and BizSe3, are known to exhibit thermoelectric properties, and have thus far been widely used as materials for thermoelectric cooling and thermoelectric power generation.

この種の化合物半導体は、ノーマルフリージング法、ゾ
ーンメルティング法、チョクラルスキー法等に代表され
る結晶インゴット法、あるいは膜状素子法、粉末焼結法
等の各種製法によって得ることができる。
This type of compound semiconductor can be obtained by various manufacturing methods such as a crystal ingot method such as a normal freezing method, a zone melting method, and a Czochralski method, a film element method, and a powder sintering method.

[発明が解決しようとする課題] ところが結晶インゴット法は、大量生産に適さないばか
りでなく、得られる熱電半導体材料の熱的および電気的
物性が不均一となる。さらに結晶インゴット法によって
得られた熱電半導体材料は、著しL)へき間性を有して
おり、加工時にワレやカケが生して、製品歩溜か低いと
いう不都合かあった。
[Problems to be Solved by the Invention] However, the crystal ingot method is not only unsuitable for mass production, but also results in non-uniform thermal and electrical properties of the resulting thermoelectric semiconductor material. Furthermore, the thermoelectric semiconductor material obtained by the crystal ingot method has significant spacing, and cracks and chips occur during processing, resulting in a low product yield.

また膜状素子法では、得られる#I電電導導体材料熱電
特性が低いうえに、通常の熱電モジュールの作成に適さ
ないという問題があった。
In addition, the membrane element method has the problem that the obtained #I electrically conductive material has low thermoelectric properties and is not suitable for producing a normal thermoelectric module.

粉末焼結法は、素子のサイズおよび断面形状を任意?こ
選択することができるうえ?こ、へき同性の問題が起こ
りにくくなるという利点がある反面、焼結密度を上げる
ことが困難である。そして焼結密度があがらないために
、半田付けを行った場合に、内部に半田が含浸されて熱
電特性を低下させる原因となるという問題があった。さ
らに組織内に微細な孔を均一に形成することができない
ためにドーピング制御が困難であることから、半導体内
のキャリア濃度を一定にするのが困難となり、その結果
、十分な熱雷特性が得られないという不都合もあった。
Does the powder sintering method allow for arbitrary device size and cross-sectional shape? Is it possible to choose this? Although this has the advantage that the problem of cleavage is less likely to occur, it is difficult to increase the sintered density. Since the sintered density does not increase, there is a problem in that when soldering is performed, the interior is impregnated with solder, causing deterioration of thermoelectric properties. Furthermore, it is difficult to control doping because fine pores cannot be uniformly formed within the structure, making it difficult to maintain a constant carrier concentration within the semiconductor, and as a result, it is difficult to maintain sufficient thermal lightning characteristics. There was also the inconvenience of not being able to

この発明は上記課題を解決するためになされたもので、
ドーピング制御が容易であり、へき開破壊の起こりにく
い緻密な構造とすることにより、優れた熱電特性を示す
B1−5tr−Te−5e系熱電半導体材料が得られる
製法を提供することを目的としている。
This invention was made to solve the above problems,
The object of the present invention is to provide a manufacturing method that can obtain a B1-5tr-Te-5e-based thermoelectric semiconductor material that exhibits excellent thermoelectric properties by easily controlling doping and creating a dense structure that is less prone to cleavage fracture.

1課題を解決するための手段] この発明のB1−8b−Te−Se系熱電半導体材料の
製法は、所望組成となるようにBi、SbとTe。
Means for Solving 1 Problem] In the method for producing the B1-8b-Te-Se thermoelectric semiconductor material of the present invention, Bi, Sb, and Te are mixed to have a desired composition.

Se等の添加元素とを混合し、加熱溶融せしめる加熱工
程と、冷却して固溶体のインゴットを形成する冷却工程
と、該インゴットを粉砕して粒径30〜200μmの固
溶体粉末とする粉砕工程と、この固溶体粉末を有機溶媒
により洗浄する洗浄工程と、成形工程と、焼結工程とを
具備することを解決手段とした。
A heating step of mixing and heating and melting an additional element such as Se, a cooling step of cooling to form a solid solution ingot, and a pulverizing step of pulverizing the ingot into a solid solution powder with a particle size of 30 to 200 μm. The solution is to include a cleaning process of cleaning this solid solution powder with an organic solvent, a molding process, and a sintering process.

E作用コ 固溶体粉末の粒径を30〜200μmに調節することに
より粗大粒子を除去するとともに、固溶体粉末を有機溶
媒によって洗浄して、各固溶体間の凝集を解くとともに
微粉末を除去する。このように粒径が揃って凝集の無い
固溶体粉末を焼結させるので、均質で焼結密度の高い熱
電半導体材料を得ることができる。
E-effect Coarse particles are removed by adjusting the particle size of the solid solution powder to 30 to 200 μm, and the solid solution powder is washed with an organic solvent to loosen the agglomeration between each solid solution and remove fine powder. Since the solid solution powder with uniform particle size and no agglomeration is sintered in this way, it is possible to obtain a thermoelectric semiconductor material that is homogeneous and has a high sintered density.

以下、この発明の詳細な説明する。The present invention will be explained in detail below.

この発明によって製造される熱電半導体材料は、一般式
V−”/I(たたし、VはS b、B i等の周期率表
vb族元素の1種以上を示し、■はSe、Te等の周期
率表vtb族元素の1種以上を示す。)で示される組成
のもののうち、Biおよびsbを主成分とする固溶体結
晶にTe、Se等をドーピングしてなるB1Sb−Te
−Se系の化合物半導体である。この組成を例示すれば
P型の熱電半導体材料としては25IIloI%B i
2T e3−75 m01%SbtTesに対して0〜
8wt%のTeを添加したものや、N型としては75m
o1%B itT e3−25 mo1%B11Se3
に対して0.04wt%のSbI3を添加したものなど
である。
The thermoelectric semiconductor material produced according to the present invention has the general formula V-''/I (where V represents one or more elements of group Vb of the periodic table, such as Sb and Bi, and ■ represents Se, Te, etc.). B1Sb-Te, which is a solid solution crystal containing Bi and sb as main components doped with Te, Se, etc.
-Se-based compound semiconductor. To illustrate this composition, as a P-type thermoelectric semiconductor material, 25IIloI%B i
0 to 2T e3-75 m01%SbtTes
8wt% Te added, and N-type 75m
o1%BitT e3-25 mo1%B11Se3
For example, 0.04 wt % of SbI3 is added.

なおP型の熱電半導体材料の固溶体結晶に1〜8wt%
のTeを添加するのは、Teの蒸気圧が高く、加熱溶融
時のTeの消耗が激しく、固溶体の組成比率が変化しや
すいためである。そしてTeの格子点に侵入している一
Biおよびsb元素等のvb族元素を過剰のTeによっ
て追い出し、正孔の易動度を増加させることができるん
めである。さらに過剰Teが結晶中でドナーとして作用
し、固溶体結晶中の過剰な正孔を中和し、正孔濃度を最
適状態に近くできるためである。
Note that the solid solution crystal of P-type thermoelectric semiconductor material contains 1 to 8 wt%.
The reason for adding Te is that the vapor pressure of Te is high, Te is consumed rapidly during heating and melting, and the composition ratio of the solid solution is likely to change. The Vb group elements such as Bi and sb elements that have invaded the lattice points of Te can be driven out by the excess Te, and the mobility of holes can be increased. Furthermore, excess Te acts as a donor in the crystal, neutralizes excess holes in the solid solution crystal, and brings the hole concentration close to the optimum state.

また得られる熱電半導体材料の結晶粒径は50〜250
μm1特に80〜180μMの範囲であることが望まし
い。結晶粒径が50μm未満であると粒界が多くなると
ともに、粒界の分布が不均一となり、ドーピング制御が
困難となる。逆に250μ町を越えると結晶粒界が大き
くなりすぎて、結晶のへき開破壊が起こりやすくなり、
加工時にカケやワレ等が発生し、機械的強度が低下する
ためである。
In addition, the crystal grain size of the thermoelectric semiconductor material obtained is 50 to 250.
μm1 is preferably in the range of 80 to 180 μM. If the crystal grain size is less than 50 μm, the number of grain boundaries will increase and the distribution of grain boundaries will become non-uniform, making doping control difficult. On the other hand, if it exceeds 250 μm, the grain boundaries will become too large and cleavage fracture of the crystal will easily occur.
This is because chips, cracks, etc. occur during processing, resulting in a decrease in mechanical strength.

このような熱電半導体材料を製造するにあたっては、ま
ず所望組成となるようにBi(ビスマス)、Sb(アン
チモン)等のvb族元素の1M以上と、Te(テルル)
、Se(セレン)等のvtb族元素の1種以上とを、そ
れぞれ秤量した後に混合する。各元素の混合比率は熱電
半導体材料の用途等によって適宜選択される。なお上記
原料はいずれも高純度金属であり、少なくとも純度99
.99%以上であることが好ましい。ついでこの混合物
を溶融加熱し、さらに急冷して固溶体とする。これには
上記混合物を石英管等内に投入し、真空ポンプ等により
脱気した後に封止し、この管を800℃で1時間加熱し
つつ、十分に撹拌した後、空冷する方法等を用いること
ができる。
In manufacturing such a thermoelectric semiconductor material, first, 1M or more of Vb group elements such as Bi (bismuth) and Sb (antimony) and Te (tellurium) are added to obtain the desired composition.
, and one or more types of VTB group elements such as Se (selenium) are weighed and then mixed. The mixing ratio of each element is appropriately selected depending on the use of the thermoelectric semiconductor material. The above raw materials are all high-purity metals, with a purity of at least 99%.
.. It is preferable that it is 99% or more. This mixture is then heated to melt and then rapidly cooled to form a solid solution. For this purpose, the above mixture is put into a quartz tube, etc., degassed with a vacuum pump, etc., then sealed, and the tube is heated at 800°C for 1 hour, thoroughly stirred, and then air cooled. be able to.

ついで上記固溶体を粉砕して固溶体粉末とし、その粒径
が30〜200μmとなるように整粒する。粉砕にはヘ
ンシェルミキサー、ハイブリッドミル等の粉砕機を用い
ることができる。またこの粉砕は大気中で行っても良い
が、固溶体粉末表面の酸化を防止する目的から不活性ガ
ス中で行うことが好ましい。固溶体粉末の整粒はフルイ
等を用いて行うことができ、粒径が30〜200μm1
好ましくは70〜150μmの範囲内となるようにする
。粒径が30μm未満であると、焼結後の固溶体結晶の
粒界が非常に多くなり、ドーピング制御が困難となる。
Next, the solid solution is pulverized to obtain a solid solution powder, which is then sized to have a particle size of 30 to 200 μm. For pulverization, a pulverizer such as a Henschel mixer or a hybrid mill can be used. Although this pulverization may be carried out in the air, it is preferably carried out in an inert gas for the purpose of preventing oxidation of the surface of the solid solution powder. The solid solution powder can be sized using a sieve, etc., and the particle size is 30 to 200 μm1.
Preferably it is within the range of 70 to 150 μm. If the grain size is less than 30 μm, the solid solution crystal after sintering will have a large number of grain boundaries, making it difficult to control doping.

さらに固溶体粉末間での凝集が起こりやすくなるととも
に、粉末表面が酸化されやすくなり、焼結性が低下する
ので好ましくない。また粒径200μmを越えると、粉
末の成形性が悪く、焼結密度が低下するので好ましくな
い。
Further, agglomeration between the solid solution powders becomes more likely to occur, and the powder surface becomes more likely to be oxidized, resulting in a decrease in sinterability, which is undesirable. Moreover, if the particle size exceeds 200 μm, the moldability of the powder will be poor and the sintered density will decrease, which is not preferable.

次に、整粒された上記固溶体粉末を洗浄し、十分に乾燥
する。この洗浄工程は上記粉砕工程にて固溶体粉末の表
面に付着する不純物や、整粒によって除去不可能な微粉
末を除去するとともに、固溶体粉末どうしの凝集を解く
ためのものであって、超音波洗浄器を用いると非常に有
効である。この時の洗浄液としては、固溶体粉末と反応
しない有機溶媒であれば特に限定されないが、エチルア
ルコール、アセトン等が好適である。このように固溶体
を粉砕、整粒した後に、洗浄すること1こよって、固溶
体粉末の焼結性を向上させることができる。
Next, the sized solid solution powder is washed and sufficiently dried. This cleaning process is to remove impurities that adhere to the surface of the solid solution powder in the above-mentioned crushing process and fine powder that cannot be removed by sizing, as well as to break up the agglomeration of the solid solution powder. It is very effective to use a container. The cleaning liquid at this time is not particularly limited as long as it is an organic solvent that does not react with the solid solution powder, but ethyl alcohol, acetone, etc. are suitable. By washing the solid solution after pulverizing and sizing it in this manner, the sinterability of the solid solution powder can be improved.

次に、十分に乾燥された上記固溶体粉末を1〜5t/c
−の圧力で圧縮成形し、所望形状の粉末成形体とした後
、焼結する。焼結の際に上記粉末成形体が酸化されない
ように、まず石英等の容器内に粉末成形体を投入し、こ
れを真空ポンプ等により空気を排気した後、封止する。
Next, the sufficiently dried solid solution powder is added at 1 to 5 t/c.
- Compression molding is performed at a pressure of - to form a powder compact of a desired shape, and then sintering is performed. In order to prevent the powder compact from being oxidized during sintering, the powder compact is first placed in a container made of quartz or the like, and after air is evacuated using a vacuum pump or the like, the container is sealed.

そしてこの容器内に封止された粉末成形体を、容器ごと
加熱し、炉冷する。加熱条件は、製造すべき熱電半導体
材料の組成およびその特性等によって適宜選択されるが
、たとえば400℃、2時間等である。
The powder compact sealed in this container is then heated together with the container and cooled in a furnace. The heating conditions are appropriately selected depending on the composition of the thermoelectric semiconductor material to be manufactured, its characteristics, etc., and are, for example, 400° C. for 2 hours.

このようにして得られた熱電半導体材料は、粉砕、整粒
工程によって粒径が揃えられ、かつ洗浄工程によって粉
末間の凝集が解かれた状態の固溶体粉末を焼結してなる
ものであるので、均質でかつ焼結密度の高いものとなる
。よってドーピング制御が行い易く、所望の熱電特性を
得ることができる。さらに結晶粒界が適当であるので、
結晶間でのへき閘破壊が起こりにくくなり、機械的強度
の高いものとなり、被削性が良好となり、製品化の際の
加工性も向上し、製品少滴を向上させることができる。
The thermoelectric semiconductor material obtained in this way is made by sintering solid solution powder whose particle size has been made uniform through a crushing and sizing process, and whose agglomerations have been broken up through a washing process. , it becomes homogeneous and has a high sintering density. Therefore, doping control can be easily performed and desired thermoelectric properties can be obtained. Furthermore, since the grain boundaries are appropriate,
Cleavage fracture between crystals is less likely to occur, resulting in high mechanical strength, good machinability, improved workability during commercialization, and improved product droplet production.

[実施例コ (実施例1) 純度99.99%以上の高純度ビスマス、テルル、アン
チモンを、25mo1%B LT e3−75 mo1
%S bzT e34 wt%T、e(P型)の組成と
なるように、それぞれ所定量秤量し混合物とした後、石
英管内に投入し、真空ポンプで管内の空気を十分に排気
した後、封止した。この石英管を800℃で1時間加熱
して、上記混合物を溶解して撹拌した後、空冷して固溶
体のインゴットを得た。
[Example 1 (Example 1) High purity bismuth, tellurium, and antimony with a purity of 99.99% or more were added to 25 mo1% BLT e3-75 mo1
%S bzT e34 wt%T, e (P-type) were prepared by weighing out a predetermined amount of each to form a mixture, then putting it into a quartz tube, thoroughly exhausting the air in the tube with a vacuum pump, and sealing it. It stopped. This quartz tube was heated at 800° C. for 1 hour to dissolve and stir the above mixture, and then cooled in air to obtain a solid solution ingot.

このインゴットを不活性ガス雰囲気のヘンシェルミキサ
ーで粉砕して固溶体粉末とした後、この固溶体粉末をフ
ルイを用いて粒径が30〜200μmとなるように整粒
した。ついでこの整粒された固溶体粉末を、エチルアル
コールと共に超音波洗浄器内に入れて洗浄した後、十分
に乾燥させた。
This ingot was crushed into a solid solution powder using a Henschel mixer in an inert gas atmosphere, and then the solid solution powder was sized using a sieve so that the particle size was 30 to 200 μm. The sized solid solution powder was then washed in an ultrasonic cleaner together with ethyl alcohol, and then thoroughly dried.

ついでこの固溶体粉末を5cm角の立方体の粉末成形体
となるように1〜5ton/c−の圧力で圧縮成形し、
石英製の容器内に入れて真空排気して封止した。
This solid solution powder was then compression molded at a pressure of 1 to 5 ton/c to form a 5 cm square cubic powder compact.
It was placed in a quartz container, evacuated, and sealed.

そしてこの粉末成形体を容器ごと加熱し、焼結させた後
、炉冷して実施例1の熱電半導体材料を得た。この際の
加熱条件は400°C12時間とした。
The powder compact was heated in a container, sintered, and then cooled in a furnace to obtain the thermoelectric semiconductor material of Example 1. The heating conditions at this time were 400°C for 12 hours.

(比較例I) 上記実施例1と同様の組成となるように、純度99.9
9%以上の高純度ビスマス、テルル、アンチモンを秤量
した後、加熱して固溶体とした。
(Comparative Example I) Purity 99.9 to have the same composition as Example 1 above.
After weighing 9% or more of high purity bismuth, tellurium, and antimony, they were heated to form a solid solution.

この固溶体を粉砕して固溶体粉末とした後、直ちに圧縮
成形して5cm角の立方体の粉末成形体とし、実施例1
と同条件で焼結させて比較例1の熱電半導体材料を得た
。なお、焼結前の固溶体粉末の粒径は実施例1と同様に
70〜150μmとした。
After pulverizing this solid solution to obtain a solid solution powder, it was immediately compression molded to form a 5 cm square cube powder compact.
A thermoelectric semiconductor material of Comparative Example 1 was obtained by sintering under the same conditions as . Note that the particle size of the solid solution powder before sintering was 70 to 150 μm as in Example 1.

(実施例2) 純度99.99%以上の高純度ビスマス、テルル、セレ
ンを、75mo1%B LT eff −25mo1%
BLSe3−0.04wt%Sb13(N型)の組成と
なるように、それぞれ所定量秤量し、固溶体粉末の粒径
を80〜180μmとした以外は上記実施例1と全く同
様にして、実施例2の熱電半導体材料を得た。
(Example 2) High-purity bismuth, tellurium, and selenium with a purity of 99.99% or more were mixed into 75 mo1% B LT eff -25 mo1%
Example 2 was prepared in exactly the same manner as in Example 1, except that a predetermined amount of each was weighed so as to have a composition of BLSe3-0.04 wt% Sb13 (N type), and the particle size of the solid solution powder was set to 80 to 180 μm. A thermoelectric semiconductor material was obtained.

(比較例2) 上記実施例2と同様の組成となるように、純度99.9
9%以上の高純度ビスマス、テルル、セレンを秤量した
後、加熱して固溶体とした。この固溶体を粉砕して固溶
体粉末とした後、直ちに圧縮成形して5cm角の立方体
の粉末成形体とした後、実施例1と同条件で焼結させて
比較例2の熱電半導体材料を得た。なお焼結前の固溶体
粉末の粒径は5〜180μmとした。
(Comparative Example 2) Purity 99.9 was prepared to have the same composition as Example 2 above.
After weighing 9% or more of high purity bismuth, tellurium, and selenium, they were heated to form a solid solution. This solid solution was pulverized to form a solid solution powder, which was immediately compression molded to form a 5 cm square cubic powder compact, and then sintered under the same conditions as Example 1 to obtain a thermoelectric semiconductor material of Comparative Example 2. . Note that the particle size of the solid solution powder before sintering was 5 to 180 μm.

(比較例3) 上記実施例1と同様の組成となるように、純度99.9
9%以上の高純度ビスマス、テルル、アンチモンを秤量
した後、加熱して固溶体とした。
(Comparative Example 3) The purity was 99.9 to have the same composition as in Example 1 above.
After weighing 9% or more of high purity bismuth, tellurium, and antimony, they were heated to form a solid solution.

この固溶体を粉砕して粒径が30μm未満となるように
した以外は、実施例!と同条件で焼結させて比較例Iの
熱電半導体材料を得た。
Example except that this solid solution was crushed to have a particle size of less than 30 μm! A thermoelectric semiconductor material of Comparative Example I was obtained by sintering under the same conditions as .

(比較例4) 上記実施例1と同様の組成となるように、純度99.9
9%以上の高純度ビスマス、テルル、アンチモンを秤量
した後、加熱して固溶体とした。
(Comparative Example 4) The purity was 99.9 to have the same composition as in Example 1 above.
After weighing 9% or more of high purity bismuth, tellurium, and antimony, they were heated to form a solid solution.

この固溶体を粉砕して粒径が200μmより太きくなる
ように調節した以外は、実施例Iと同条件で焼結させて
比較例1の熱電半導体材料を得た。
A thermoelectric semiconductor material of Comparative Example 1 was obtained by sintering under the same conditions as in Example I, except that this solid solution was pulverized and the particle size was adjusted to be larger than 200 μm.

(試験例) 上記実施例■、実施例2、比較例1ないし比較例4の各
熱電半導体材料の結晶粒径、熱電特性、空孔率、被削性
を測定し、第1表に併せて示した。
(Test Example) The crystal grain size, thermoelectric properties, porosity, and machinability of each of the thermoelectric semiconductor materials of Example ■, Example 2, and Comparative Examples 1 to 4 were measured, and the results are shown in Table 1. Indicated.

熱電特性は各熱電半導体材料の両端に温度差を与えるこ
とにより発生する熱起電力によって評価した。
Thermoelectric properties were evaluated by thermoelectromotive force generated by applying a temperature difference between both ends of each thermoelectric semiconductor material.

空孔率は((固溶体の密度)−(焼結体の密度))/(
固溶体の密度)X I OOの式に従って求めた。
The porosity is ((density of solid solution) - (density of sintered body))/(
Density of solid solution) was determined according to the formula X I OO.

被削性は砥石をドレッシングした後、片面ラップした各
熱電半導体材料(5cm角)に溝入れ加工を施して、ラ
ップ面上5mmの長さの領域をそれぞれ検鏡して発生し
たチッピングの大きさで評価し、チッピングの発生が無
かったものを○、有ったものを×で示した。なおダイシ
ング条件は砥石;SD 1500M(52mmφX40
mmφxO,27mmt)切込み量:0.5mm、切込
み速度:0.4mn+/秒、砥石回転数:3万回とした
Machinability was measured by dressing the grindstone, grooving each thermoelectric semiconductor material (5 cm square) lapped on one side, and inspecting each 5 mm long area on the lapped surface with a microscope, and measuring the size of chipping. Evaluation was made using the following methods, and those in which no chipping occurred were marked with ○, and those with chipping were marked with ×. The dicing conditions are: grindstone: SD 1500M (52mmφX40
mmφxO, 27 mmt) depth of cut: 0.5 mm, speed of cut: 0.4 m+/sec, and number of rotations of the grindstone: 30,000 times.

第1表 上記第1表の結果から、固溶体粉末の粒径を、30〜2
00μmに整粒した後、有機溶媒によってこれを洗浄す
る工程を有するこの発明の製法によれば熱電特性と機械
的強度とに優れた熱電半導体材料を容易に得られること
が確認できた。
Table 1 From the results in Table 1 above, the particle size of the solid solution powder was determined to be 30 to 2.
It was confirmed that according to the manufacturing method of the present invention, which includes a step of sizing to 00 μm and then washing the particles with an organic solvent, a thermoelectric semiconductor material having excellent thermoelectric properties and mechanical strength can be easily obtained.

[発明の効果コ 以上説明したように、この発明のB1−8b−TeSe
系熱電半導体材料の製法は、原料を溶融冷却してなる固
溶体を所定粒径に粉砕した後に、整粒して粒径の揃った
固溶体粉末とするとともに、この固溶体粉末を有機溶媒
によって洗浄して各固溶体粉末の凝集を解くようにした
ので、これら固溶体粉末を焼結させてなる熱電半導体材
料は、均質で焼結密度の高いものとなる。そしてこのよ
うにして得られた熱電半導体材料は均質であるために、
ドーピング制御が行い易く、優れた熱電特性を示すもの
となる。
[Effects of the invention As explained above, the B1-8b-TeSe of this invention
The manufacturing method for thermoelectric semiconductor materials involves pulverizing a solid solution obtained by melting and cooling raw materials to a predetermined particle size, then sizing to obtain a solid solution powder with a uniform particle size, and washing this solid solution powder with an organic solvent. Since each solid solution powder is deagglomerated, the thermoelectric semiconductor material obtained by sintering these solid solution powders becomes homogeneous and has a high sintered density. Since the thermoelectric semiconductor material obtained in this way is homogeneous,
It is easy to control doping and exhibits excellent thermoelectric properties.

またこの発明の製法による熱電半導体材料は焼結密度が
高いので、結晶のへき開破壊が起こりにくく、被削性等
にも優れた機械的強度の高いものとなり、製品への加工
時の少滴を高くすることができる。
Furthermore, since the thermoelectric semiconductor material produced by the method of this invention has a high sintered density, crystal cleavage fracture is less likely to occur, and the material has high mechanical strength with excellent machinability. It can be made higher.

Claims (1)

【特許請求の範囲】 Bi−Sb−Te−Se系熱電半導体材料の製法であっ
て、 所望組成となるようにBi、SbとTe、Se等の添加
元素とを混合し、加熱溶融せしめる加熱工程と、冷却し
て固溶体のインゴットを形成する冷却工程と、該インゴ
ットを粉砕して粒径30〜200μmの固溶体粉末とす
る粉砕工程と、この固溶体粉末を有機溶媒により洗浄す
る洗浄工程と、成形工程と、焼結工程とを具備すること
を特徴とするBi−Sb−Te−Se系熱電半導体材料
の製法
[Claims] A method for producing a Bi-Sb-Te-Se based thermoelectric semiconductor material, comprising a heating step of mixing Bi, Sb and additional elements such as Te and Se to obtain a desired composition and heating and melting the mixture. a cooling step of cooling to form a solid solution ingot; a pulverizing step of pulverizing the ingot to form a solid solution powder with a particle size of 30 to 200 μm; a washing step of washing this solid solution powder with an organic solvent; and a molding step. and a sintering process.
JP1343205A 1989-12-28 1989-12-28 Manufacture of bi-sb-ti-se thermoelectric semiconductor material Pending JPH03201577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1343205A JPH03201577A (en) 1989-12-28 1989-12-28 Manufacture of bi-sb-ti-se thermoelectric semiconductor material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1343205A JPH03201577A (en) 1989-12-28 1989-12-28 Manufacture of bi-sb-ti-se thermoelectric semiconductor material

Publications (1)

Publication Number Publication Date
JPH03201577A true JPH03201577A (en) 1991-09-03

Family

ID=18359730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1343205A Pending JPH03201577A (en) 1989-12-28 1989-12-28 Manufacture of bi-sb-ti-se thermoelectric semiconductor material

Country Status (1)

Country Link
JP (1) JPH03201577A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998011612A1 (en) * 1996-09-13 1998-03-19 Komatsu Ltd. Thermoelectric semiconductor material, manufacture process therefor, and method of hot forging thermoelectric module using the same
WO1999046824A1 (en) * 1998-03-13 1999-09-16 Komatsu Ltd. Method of producing thermoelectric semiconductor material
US7626114B2 (en) 2006-06-16 2009-12-01 Digital Angel Corporation Thermoelectric power supply
US7629531B2 (en) 2003-05-19 2009-12-08 Digital Angel Corporation Low power thermoelectric generator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998011612A1 (en) * 1996-09-13 1998-03-19 Komatsu Ltd. Thermoelectric semiconductor material, manufacture process therefor, and method of hot forging thermoelectric module using the same
US6274802B1 (en) 1996-09-13 2001-08-14 Komatsu Ltd. Thermoelectric semiconductor material, manufacture process therefor, and method of hot forging thermoelectric module using the same
WO1999046824A1 (en) * 1998-03-13 1999-09-16 Komatsu Ltd. Method of producing thermoelectric semiconductor material
US7629531B2 (en) 2003-05-19 2009-12-08 Digital Angel Corporation Low power thermoelectric generator
US8269096B2 (en) 2003-05-19 2012-09-18 Ingo Stark Low power thermoelectric generator
US7626114B2 (en) 2006-06-16 2009-12-01 Digital Angel Corporation Thermoelectric power supply

Similar Documents

Publication Publication Date Title
US5108515A (en) Thermoelectric material and process for production thereof
US5246504A (en) Thermoelectric material
US6440768B1 (en) Thermoelectric semiconductor material and method of manufacturing the same
US5318743A (en) Processes for producing a thermoelectric material and a thermoelectric element
US20060118161A1 (en) Thermoelectric material having crystal grains well oriented in certain direction and process for producing the same
JP2829415B2 (en) Thermoelectric semiconductor material and method of manufacturing the same
JP2002285274A (en) Mg-Si BASED THERMOELECTRIC MATERIAL AND PRODUCTION METHOD THEREFOR
JP2000106460A (en) Thermoelectric semiconductor material and manufacture thereof
KR102579525B1 (en) Semiconductor sintered body, electrical/electronic components, and semiconductor sintered body manufacturing method
JP2816945B2 (en) Bi2Te3-based thermoelectric material composition having pn transition prevention properties
EP0996174B1 (en) Thermoelectric materials and thermoelectric conversion element
JPH03201577A (en) Manufacture of bi-sb-ti-se thermoelectric semiconductor material
KR101959448B1 (en) Thermoelectric materials, thermoelectric device and method for manufacturing the same
JPH0832588B2 (en) Thermoelectric semiconductor material and manufacturing method thereof
JP2003298122A (en) Method of manufacturing thermoelectric conversion material
JP2018059160A (en) Mg2Si(1-x)Snx-BASED POLYCRYSTALLINE BODY, SINTERED BODY THEREOF AND MANUFACTURING METHOD THEREOF
JP3523600B2 (en) Thermoelectric element manufacturing method
US3059040A (en) Method for producing sintered semiconductor bodies
JP2003243733A (en) METHOD FOR MANUFACTURING p-TYPE THERMOELECTRIC CONVERSION MATERIAL
JP2000049392A (en) Manufacture of thermoelectric semiconductor material
JPH10308538A (en) Thermoelectric element and its manufacture
JPH0341780A (en) Manufacture of thermoelectric material
JP2887468B2 (en) Manufacturing method of thermoelectric semiconductor material
JPH03165076A (en) Manufacture of thermoelectric device
JPH1140860A (en) Skutterudite thermoelectric material and manufacture thereof