JPH03200386A - Excimer laser apparatus - Google Patents

Excimer laser apparatus

Info

Publication number
JPH03200386A
JPH03200386A JP34201189A JP34201189A JPH03200386A JP H03200386 A JPH03200386 A JP H03200386A JP 34201189 A JP34201189 A JP 34201189A JP 34201189 A JP34201189 A JP 34201189A JP H03200386 A JPH03200386 A JP H03200386A
Authority
JP
Japan
Prior art keywords
laser
nozzle
gas
pressure vessel
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34201189A
Other languages
Japanese (ja)
Other versions
JPH0714084B2 (en
Inventor
Naoya Horiuchi
直也 堀内
Takuhiro Ono
小野 拓弘
Nobuaki Furuya
古谷 伸昭
Keiichiro Yamanaka
山中 圭一郎
Takeo Miyata
宮田 威男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP34201189A priority Critical patent/JPH0714084B2/en
Publication of JPH03200386A publication Critical patent/JPH03200386A/en
Publication of JPH0714084B2 publication Critical patent/JPH0714084B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/036Means for obtaining or maintaining the desired gas pressure within the tube, e.g. by gettering, replenishing; Means for circulating the gas, e.g. for equalising the pressure within the tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/034Optical devices within, or forming part of, the tube, e.g. windows, mirrors
    • H01S3/0346Protection of windows or mirrors against deleterious effects

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To prevent deterioration of an optical member and to maintain a laser output stable for a long period by so forming a gap between the end face of a nozzle and the inner surface of the member as to uniformly spray laser gas to be injected from the inlet hole of a pressure vessel to substantially all the area of the inner surface of the member. CONSTITUTION:Laser gas injected from an inlet hole 5 flows between a window holder 16 and a cylindrical nozzle 17, and then flows in a gap 18 between the end face of the nozzle 17 and the inner surfaces of transmitting windows 3, 4 of optical members. Then, while it flows through a laser light inlet 20 to the inside of the nozzle 17 to pass the gap 18, it is uniformly sprayed over substantially all the area of the inner surfaces of the windows 3, 4 to prevent dust from adhering to the windows 3, 4. Laser light is generated by discharge exciting, and the generated light can be emitted from the windows 3, 4. Thus, deterioration of the member is prevented to maintain the laser output stable for a long period.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、希ガスハライド放電励起を利用したエキシマ
レーザ装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an excimer laser device using rare gas halide discharge excitation.

従来の技術 最近、希ガスハライド放電励起を利用したエキシマレー
ザが紫外線領域における高効率、高出力レーザとして、
半導体産業、光化学分野、あるいは医療分野において注
目されている。中でも高出力が期待することができるX
eC1(308nm) 、KrF (248nm)エキ
シマレーザ装置は最も注目されている。
Conventional technology Recently, excimer lasers using rare gas halide discharge excitation have been developed as high-efficiency, high-output lasers in the ultraviolet region.
It is attracting attention in the semiconductor industry, photochemical field, and medical field. Among them, X, which can be expected to have high output
eC1 (308 nm) and KrF (248 nm) excimer laser devices are attracting the most attention.

エキシマレーザは希ガスとハロゲンガスを封入し、放電
励起により必要な光を放出する。そして、上記封入され
るレーザガスは、ハロゲンガスであるF2、HCI等を
0.2〜0.3重量%程度含有するため、レーザ発振器
の主電極、予備電離電極およびその他の構造物と反応し
て化学的に分解される。
Excimer lasers contain rare gas and halogen gas, and emit the necessary light through discharge excitation. Since the laser gas sealed above contains about 0.2 to 0.3% by weight of halogen gases such as F2 and HCI, it reacts with the main electrode, pre-ionization electrode, and other structures of the laser oscillator. Decomposed chemically.

これによりハロゲンガスが消耗して濃度低下をもたらす
一方、固体状反応不純物が増大してレーザ光出射用の光
学部材に沈着し、レーザ光を散乱、あるいは吸収するな
ど、妨害作用を生じ、レーザ出力を低下させる。
As a result, the halogen gas is consumed and its concentration decreases, while solid reactive impurities increase and deposit on the optical components for laser beam emission, causing interference effects such as scattering or absorption of the laser beam, resulting in laser output. decrease.

従来、上記問題を解消するため、種々提案されている。Conventionally, various proposals have been made to solve the above problems.

例えば、特開昭58−186985号公報には、レーザ
ガスを電気集塵器に導き、レーザガス中の塵芥分を除去
して精製し、この精製されたガスを透過窓領域に流入さ
せて新たに発生する塵芥の透過窓部材への付着を防止す
るようにした構成が記載されている。
For example, in Japanese Patent Application Laid-Open No. 58-186985, laser gas is introduced into an electrostatic precipitator to remove dust from the laser gas and purified, and the purified gas is flowed into a transmission window area to generate new gas. A configuration is described that prevents dust from adhering to the transparent window member.

しかし、電気集塵器は固形塵芥の除去には効果的ではあ
るが、ガス状不純物を除去することはできず、このガス
状不純物の透過窓部材への付着を防止することはできな
い。また、透過窓部材へ除塵ガスを吹き付ければ、新た
な生成不純物の透過窓部材への接触の機会を阻止する上
で効果はあるが、この除塵ガス中には上記のように残留
ガス、特に、希ガスノ・ライドエキシマレーザでは、レ
ーザガス主成分の活性ガス、例えばF2ガスがあシ、こ
のF2ガスが高エネルギーのレーザ光により活性化され
、光化学反応による透過窓部材への沈着を生じやすい。
However, although electrostatic precipitators are effective in removing solid dust, they cannot remove gaseous impurities and cannot prevent these gaseous impurities from adhering to the transmission window member. In addition, blowing dust removal gas onto the transmission window member is effective in preventing newly formed impurities from coming into contact with the transmission window member, but this dust removal gas contains residual gas, especially as described above. In rare gas no-ride excimer lasers, active gas, such as F2 gas, is the main component of the laser gas, and this F2 gas is activated by high-energy laser light and tends to be deposited on the transmission window member due to a photochemical reaction.

そこで、これらの問題を解決するため、本出願人等は先
に特願昭63−190024号として、レーザ光を出射
する光学部材に対する反応不純物の沈着を抑制するよう
にしたエキシマレーザ装置を提案した。以下、上記従来
技術について図面を参照しながら説明する。
Therefore, in order to solve these problems, the present applicant and others previously proposed an excimer laser device in Japanese Patent Application No. 190024/1983, which suppresses the deposition of reactive impurities on optical members that emit laser light. . Hereinafter, the above-mentioned conventional technology will be explained with reference to the drawings.

第4図および第5図は従来のエキシマレーザ装置を示し
、第4図は全体の概略構成図、第5図は第4図の■−■
矢視断面図である。
4 and 5 show a conventional excimer laser device, FIG. 4 is a schematic diagram of the overall configuration, and FIG. 5 is a diagram of ■-■ in FIG.
It is an arrow sectional view.

第4図に示すように、エキシマレーザ装置本体1は金属
製で筒状の圧力容器2の両端に光学部材である透過窓(
若しくは反射鏡)3.4が設けられ、圧力容器2内に放
電励起に必要な電極ユニット等の部品(図示省略)が設
けられている。そして、圧力容器2内にレーザガスが封
入され、電極ユニット等により放電励起され、透過窓3
.4からレーザ光が出射されるように構成されている。
As shown in FIG. 4, the excimer laser device main body 1 is made of metal and has a cylindrical pressure vessel 2 with transmission windows (optical members) at both ends.
or a reflecting mirror) 3.4, and parts (not shown) such as an electrode unit necessary for discharge excitation are provided in the pressure vessel 2. Then, a laser gas is sealed in the pressure vessel 2, excited by discharge by an electrode unit, etc., and the transmission window 3 is
.. It is configured such that laser light is emitted from 4.

圧力容器2の両端部には透過窓3.4の領域に新鮮なレ
ーザガスを導入する導入孔5が形成され、中間部にも新
鮮なレーザガスを導入する導入孔6.7が形成され、各
導入孔5.6.7は制御弁8を介し、例えば、レーザガ
スであるHe、F2、Krガスの供給部9.10.11
に接続されている。圧力容器2の一側に形成された排出
口12は排気ポンプ13に接続されている。
An introduction hole 5 for introducing fresh laser gas into the region of the transmission window 3.4 is formed at both ends of the pressure vessel 2, and an introduction hole 6.7 for introducing fresh laser gas is also formed in the middle part. The hole 5.6.7 is connected via the control valve 8 to a supply section 9.10.11 for, for example, laser gas He, F2, Kr gas.
It is connected to the. A discharge port 12 formed on one side of the pressure vessel 2 is connected to an exhaust pump 13.

以上の構成において、以下、その動作について説明する
The operation of the above configuration will be described below.

まず、レーザ準備動作として、排気ポンプ13の動作に
より圧力容器2内の排出孔12から先に消耗劣化してい
るレーザガスを排出する。次に、排気ポンプ13を停止
し、新鮮なレーザガスを圧力容器2内に注入する。すな
わち、制御弁8の制御により供給部9内の希ガスである
Heガスを導入孔5から透過窓3.4の領域に注入し、
供給部10と11内の極めて活性なノ・ロゲンガスであ
るF2ガスとKrガスを導入孔6と7から注入し、最適
なレーザ動作圧力になるように封入する。例えば、圧力
容器2にF2ガスが0.1〜0.3重量%、Krガスが
5〜10重量%、Heガスが残余となるように充満する
First, as a laser preparation operation, the exhausted laser gas is first discharged from the discharge hole 12 in the pressure vessel 2 by operating the exhaust pump 13. Next, the exhaust pump 13 is stopped and fresh laser gas is injected into the pressure vessel 2. That is, under the control of the control valve 8, He gas, which is a rare gas in the supply section 9, is injected from the introduction hole 5 into the region of the transmission window 3.4,
F2 gas and Kr gas, which are extremely active nitrogen gases, are injected from the inlet holes 6 and 7 in the supply sections 10 and 11, and are sealed so that the optimal laser operating pressure is achieved. For example, the pressure vessel 2 is filled with 0.1 to 0.3% by weight of F2 gas, 5 to 10% by weight of Kr gas, and the remainder of He gas.

そして、上記のように放電励起によりレーザ光を発生さ
せ、発生したレーザ光を圧力容器2の透過窓3および4
より出射することができる。
Then, as described above, a laser beam is generated by discharge excitation, and the generated laser beam is transmitted to the transmission windows 3 and 4 of the pressure vessel 2.
It is possible to emit more radiation.

上記放電に際し、F2ガスが分解して際めて高い活性状
態となシ、KrFを生成する一方、圧力容器2等とも反
応して各種の不純ガスや塵芥、例えば、CF’4、Si
F4、HF SCr F 11等を生じる。これらの不
純物は上記劣化ガスの排出、清浄ガスの導入を連続的に
行うことにより大部分を除去することができるが、なお
一部が残留し、更に、レーザ光との光化学反応により透
過窓3.4に沈着する。
During the above-mentioned discharge, F2 gas decomposes and becomes extremely active, producing KrF, while also reacting with the pressure vessel 2, etc., resulting in various impurity gases and dust, such as CF'4, Si, etc.
F4, HF SCr F 11 etc. are produced. Most of these impurities can be removed by continuously discharging the degraded gas and introducing the clean gas, but some of them still remain, and furthermore, due to the photochemical reaction with the laser beam, the transmission window 3 .4 is deposited.

この繰り返し堆積により、レーザ光の透過を阻害する膜
が生じる。したがって、この弊害を排除するため、上記
のように制御弁8の制御により供給部9内の新鮮な希ガ
ス、例えば、Heガスを導入孔5から透過窓3.4の内
側表面に沿って導入し、第5図に点線で示すように希ガ
スカーテンを形成することにより、不純物の透過窓3.
4に対する接触を阻止する。
This repeated deposition produces a film that inhibits the transmission of laser light. Therefore, in order to eliminate this problem, fresh rare gas, such as He gas, in the supply section 9 is introduced from the introduction hole 5 along the inner surface of the transmission window 3.4 by controlling the control valve 8 as described above. By forming a rare gas curtain as shown by the dotted line in FIG. 5, the impurity transmission window 3.
Prevent contact with 4.

発明が解決しようとする課題 上記従来例のように光学部材への反応不純物の沈着を抑
制するようにしたエキシマレーザ装置では、目的とする
効果を得ることはできるが、塵芥については十分な集塵
を行っても完全に除去することは不可能であり、光学部
材への影響は避けられない。完全な除塵を行うには、定
期的に容器を開放し、清掃する必要があり、レーザ出力
を長期間安定に維持することができない。
Problems to be Solved by the Invention Although the excimer laser device designed to suppress the deposition of reactive impurities on optical members as in the conventional example described above can achieve the desired effect, it is difficult to collect dust sufficiently. Even if you do this, it is impossible to completely remove it, and the influence on optical components is unavoidable. To completely remove dust, it is necessary to periodically open and clean the container, making it impossible to maintain stable laser output for a long period of time.

本発明は、上記のような従来技術の課題を解決するもの
であり、レーザガスを封入する圧力容器に塵芥が含まれ
ていても、レーザ光を出射させる光学部材の劣化を防止
することができると共に、レーザ出力を長期間安定に維
持することができ、信頼性を向上させることができるよ
うにしたエキシマレーザ装置を提供することを目的とす
るものである。
The present invention solves the problems of the prior art as described above, and even if the pressure vessel that seals the laser gas contains dust, it is possible to prevent the optical member that emits the laser beam from deteriorating, and also to prevent the deterioration of the optical member that emits the laser beam. The object of the present invention is to provide an excimer laser device that can maintain stable laser output for a long period of time and improve reliability.

課題を解決するための手段 上記課題を解決するための本発明の技術的手段は、レー
ザガスを封入する圧力容器の内側でレーザ光と同軸上に
ノズルが設けられ、このノズルの先端面が上記圧力容器
の端部のレーザ光出射用の光学部材の内側表面に近接し
て配置され、上記圧力容器の導入孔から注入されたレー
ザガスが光学部材の内側表面のほぼ全域に亘って均一に
吹き付けられるように上記ノズルの先端面と上記光学部
材の内側表面とに隙間が形成されたものである。
Means for Solving the Problems The technical means of the present invention for solving the above problems is that a nozzle is provided coaxially with the laser beam inside a pressure vessel that encloses laser gas, and the tip surface of this nozzle is connected to the above pressure. It is arranged close to the inner surface of the optical member for laser beam emission at the end of the container, so that the laser gas injected from the introduction hole of the pressure vessel is sprayed uniformly over almost the entire inner surface of the optical member. A gap is formed between the tip end surface of the nozzle and the inner surface of the optical member.

そして、上記ノズルが内側にレーザ光よりも大きいレー
ザ光用アパーチャが形成された1段以上の狭さく部を有
するのが好ましい。
Preferably, the nozzle has one or more narrowed portions in which a laser beam aperture larger than the laser beam is formed.

作用 したがって、本発明によれば、導入孔より注入したレー
ザガスを圧力容器とノズルの間に流入し、続いてノズル
の先端面とレーザ光出射用の光学部材との隙間に流し、
このとき、光学部材外周より表面のほぼ全域に亘って均
一に吹き付けることができる。
Therefore, according to the present invention, the laser gas injected from the introduction hole flows between the pressure vessel and the nozzle, and then flows into the gap between the tip surface of the nozzle and the optical member for emitting laser light,
At this time, it is possible to spray uniformly over almost the entire surface of the optical member from the outer periphery.

また、圧力容器内で発生する塵芥はノズルの内側を飛散
するが、ノズルの内側に1段以上設けられた狭さく部に
よシ光学部材への侵入を防止することができる。
In addition, although dust generated in the pressure vessel scatters inside the nozzle, it is possible to prevent dust from entering the optical member by the narrow portion provided in one or more stages inside the nozzle.

実施例 以下、本発明の実施例について図面を参照しながら説明
する。
EXAMPLES Hereinafter, examples of the present invention will be described with reference to the drawings.

第1図ないし第3図は本発明の一実施例におけるエキシ
マレーザ装置を示し、第1図は全体の概略構成図、第2
図は第1図の■部の拡大図、第3図は第2図の■−■矢
視断面図である。
1 to 3 show an excimer laser device according to an embodiment of the present invention, FIG. 1 is a schematic diagram of the overall configuration, and FIG.
The figure is an enlarged view of the section ■ in FIG. 1, and FIG. 3 is a sectional view taken along the line ■--■ in FIG.

本実施例においては、第1図に示す上記従来例と同一部
分については同一符号を付してその説明を省略し、異な
る構成について説明する。本実施例の特徴とするところ
は、レーザ光を出射させる光学部材である透過窓3.4
領域の構成にある。
In this embodiment, the same parts as those of the conventional example shown in FIG. 1 are given the same reference numerals, and the explanation thereof will be omitted, and the different configuration will be explained. The feature of this embodiment is that the transmission window 3.4 is an optical member that emits laser light.
It is in the structure of the area.

第1図ないし第3図に示すように、金属製の圧力容器2
はその筒状本体部14の両側内周に環状の端板15が連
設され、各端板15の中間部周囲に筒状の窓ホルダ16
の基部が連設され、各窓ホルダ16の先端に透過窓3.
4が固定されている。各窓ホルダ16の内側において、
レーザ光軸lと同軸になるように円筒状のノズル17の
基部が端板15の内周に連設され、各ノズル17の先端
面は透過窓3.4の内側表面とに隙間18を有するよう
に配置されている。
As shown in FIGS. 1 to 3, a metal pressure vessel 2
Annular end plates 15 are connected to the inner periphery of both sides of the cylindrical main body 14, and a cylindrical window holder 16 is arranged around the middle part of each end plate 15.
The base of each window holder 16 is provided with a transparent window 3 .
4 is fixed. Inside each window holder 16,
The bases of cylindrical nozzles 17 are connected to the inner periphery of the end plate 15 so as to be coaxial with the laser optical axis l, and the tip surface of each nozzle 17 has a gap 18 with the inner surface of the transmission window 3.4. It is arranged like this.

各ノズル17の内側には透過窓3.4側寄り位置におい
て、1段、若しくは複数段に狭さく部19が設けられ、
狭さく部19の内側にはレーザ光の外形よりも大きいレ
ーザ光用アパーチャ20が形成されている。新鮮なレー
ザガスの導入孔5は各窓ホルダ16の中間部に連通され
ている。
On the inside of each nozzle 17, a narrow part 19 is provided in one or more stages at a position closer to the transmission window 3.4,
A laser beam aperture 20 larger than the outer shape of the laser beam is formed inside the narrowed portion 19. The fresh laser gas introduction hole 5 is communicated with the middle part of each window holder 16.

以上の構成において、以下、その動作について説明する
The operation of the above configuration will be described below.

まず、レーザ準備動作として、排気ポンプ13の動作に
より圧力容器2内の排気孔12から先に消耗劣化してい
るレーザガスを排出する。次に排気ポンプ13を停止し
、新鮮なレーザガスを圧力容器2内に注入する。すなわ
ち、制御弁8の制御により供給部9内の希ガスであるH
eガスを導入孔5から透過窓3.4の領域に注入し、供
給部10と11内の極めて活性なハロゲンガスであるF
2とKrガスを導入孔6と7から注入し、最適なレーザ
動作圧力になるように封入する。そして、上記のように
導入孔5から注入されたレーザガス(Heガス)21は
、窓ホルダ16と円筒状のノズル17の間を流れ、続い
てノズル17の先端面と透過窓3.4の内側表面との隙
間18を流れ、続いてレーザ光導入口20を通ってノズ
ル17の内側へ流れ、隙間18を流れる間に透過窓3.
4の内側表面のほぼ全域に亘って均一に吹き付けられ、
塵芥の透過窓3.4の付着が防止される。そして、上記
のように放電励起によりレーザ光を発生させ、発生した
レーザ光を透過窓3.4より出射することができる。こ
の連続発振により塵芥が発生しても、円筒状のノズル1
7の先端面が光学部材である透過窓3.4の内側表面に
近接するように配置すると共に、ノズル17の内側に狭
さく部19を設けることにより透過窓3.4への塵芥の
侵入を防止することができる。したがって、上記レーザ
ガス20の透過窓3.4への吹き付けによる塵芥の付着
防止効果と相まって透過窓3.4の劣化を効果的に防止
し、レーザ出力を長期に亘って効果的に安定に維持する
ことができる。
First, as a laser preparation operation, the exhausted laser gas is first discharged from the exhaust hole 12 in the pressure vessel 2 by operating the exhaust pump 13. Next, the exhaust pump 13 is stopped and fresh laser gas is injected into the pressure vessel 2. That is, by controlling the control valve 8, the rare gas H in the supply section 9 is
E gas is injected into the region of the transmission window 3.4 through the inlet hole 5, and the extremely active halogen gas F in the supply sections 10 and 11 is
2 and Kr gases are injected through the introduction holes 6 and 7 and sealed so that the optimal laser operating pressure is achieved. The laser gas (He gas) 21 injected from the introduction hole 5 as described above flows between the window holder 16 and the cylindrical nozzle 17, and then between the tip surface of the nozzle 17 and the inside of the transmission window 3.4. It flows through the gap 18 between the surface and the laser beam inlet 20 to the inside of the nozzle 17, and while flowing through the gap 18, it passes through the transmission window 3.
Sprayed uniformly over almost the entire inner surface of 4,
Dust is prevented from adhering to the transparent window 3.4. Then, as described above, laser light is generated by discharge excitation, and the generated laser light can be emitted from the transmission window 3.4. Even if dust is generated due to this continuous oscillation, the cylindrical nozzle 1
By arranging the nozzle 17 so that its tip end surface is close to the inner surface of the transmission window 3.4, which is an optical member, and providing a narrowed portion 19 inside the nozzle 17, dust can be prevented from entering the transmission window 3.4. can do. Therefore, in combination with the effect of preventing dust from adhering to the transmission window 3.4 by spraying the laser gas 20 onto the transmission window 3.4, deterioration of the transmission window 3.4 is effectively prevented, and the laser output is effectively maintained stably over a long period of time. be able to.

発明の効果 以上述べたように本発明によれば、導入孔より注入した
レーザガスを圧力容器とノズルの間に流し、続いてノズ
ルの先端面とレーザ光出射用の光学部材との隙間に流し
、このとき、光学部材外周より表面のほぼ全域に亘って
均一に吹き付けることができる。したがって、レーザ光
出射用の光学部材の劣化を防止すると共に、レーザ出力
を長期に亘って安定に維持することができ、信頼性を向
上させることができる。
Effects of the Invention As described above, according to the present invention, the laser gas injected from the introduction hole flows between the pressure vessel and the nozzle, and then flows into the gap between the tip surface of the nozzle and the optical member for laser beam emission. At this time, it is possible to spray uniformly over almost the entire surface of the optical member from the outer periphery. Therefore, it is possible to prevent deterioration of the optical member for emitting laser light, and to maintain stable laser output over a long period of time, thereby improving reliability.

また、圧力容器内で発生する塵芥はノズルの内側を飛散
するが、ノズルの内側に1段以上設けられた狭さく部に
より光学部材への侵入を防止することができるので、上
記レーザガスの光学部材に対する吹き付は作用と相まっ
て更に一層、光学部材の劣化防止、レーザ出力の長期安
定出力、信頼性の向上を図ることができる。
In addition, although the dust generated in the pressure vessel scatters inside the nozzle, the constricted part provided at least one stage inside the nozzle prevents it from entering the optical member. In combination with the effect, spraying can further prevent deterioration of optical members, provide long-term stable laser output, and improve reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第3図は本発明の一実施例におけるエキシ
マレーザ装置を示し、第1図は全体の概略構成図、第2
図は第1図の■部の拡大図、第3図は第2図の■−■矢
視断面図、第4図および第5図は従来のエキシマレーザ
装置を示し、第4図は全体の概略構成図、第5図は第4
図のv−■矢視断面図である。 1・・・エキシマレーザ装置本体、2・・・圧力容器、
3.4・・・透過窓、5.6.7・・・導入孔、8・・
・制御弁、9.10.11・・・供給部、12・・・排
出孔、13・・・排気ポンプ、16・・・窓ホルダ、1
7・・・円筒状のノズル、18・・・隙間、19・・・
狭さく部、20・・・レーザ光導入口。 第 1 図
1 to 3 show an excimer laser device according to an embodiment of the present invention, FIG. 1 is a schematic diagram of the overall configuration, and FIG.
The figure is an enlarged view of the part ■ in Figure 1, Figure 3 is a sectional view taken along the arrow ■-■ in Figure 2, Figures 4 and 5 show a conventional excimer laser device, and Figure 4 shows the entire structure. Schematic configuration diagram, Figure 5 is the 4th
It is a sectional view taken along the line v-■ in the figure. 1... excimer laser device main body, 2... pressure vessel,
3.4...Transmission window, 5.6.7...Introduction hole, 8...
・Control valve, 9.10.11... Supply section, 12... Discharge hole, 13... Exhaust pump, 16... Window holder, 1
7... Cylindrical nozzle, 18... Gap, 19...
Narrow portion, 20...laser light introduction port. Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)レーザガスを封入する圧力容器の内側でレーザ光
と同軸上にノズルが設けられ、このノズルの先端面が上
記圧力容器の端部のレーザ光出射用の光学部材の内側表
面に近接して配置され、上記圧力容器の導入孔から注入
されたレーザガスが光学部材の内側表面のほぼ全域に亘
って均一に吹き付けられるように上記ノズルの先端面と
上記光学部材の内側表面とに隙間が形成されたエキシマ
レーザ装置。
(1) A nozzle is provided coaxially with the laser beam inside the pressure vessel that seals the laser gas, and the tip surface of this nozzle is close to the inner surface of the optical member for laser beam emission at the end of the pressure vessel. A gap is formed between the tip surface of the nozzle and the inner surface of the optical member so that the laser gas injected from the introduction hole of the pressure vessel is uniformly sprayed over almost the entire inner surface of the optical member. excimer laser device.
(2)ノズルが内側にレーザ光よりも大きいレーザ光用
アパーチャが形成された1段以上の狭さく部を有する請
求項1記載のエキシマレーザ装置。
(2) The excimer laser device according to claim 1, wherein the nozzle has one or more narrowed portions in which a laser beam aperture larger than the laser beam is formed.
JP34201189A 1989-12-27 1989-12-27 Excimer laser device Expired - Fee Related JPH0714084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34201189A JPH0714084B2 (en) 1989-12-27 1989-12-27 Excimer laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34201189A JPH0714084B2 (en) 1989-12-27 1989-12-27 Excimer laser device

Publications (2)

Publication Number Publication Date
JPH03200386A true JPH03200386A (en) 1991-09-02
JPH0714084B2 JPH0714084B2 (en) 1995-02-15

Family

ID=18350491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34201189A Expired - Fee Related JPH0714084B2 (en) 1989-12-27 1989-12-27 Excimer laser device

Country Status (1)

Country Link
JP (1) JPH0714084B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04177886A (en) * 1990-11-13 1992-06-25 Fanuc Ltd Gas laser device
JPH06152030A (en) * 1992-11-05 1994-05-31 Komatsu Ltd Gas laser apparatus
WO2021206838A1 (en) * 2020-04-06 2021-10-14 Cymer, Llc Conduit system, radiation source, lithographic apparatus, and methods thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04177886A (en) * 1990-11-13 1992-06-25 Fanuc Ltd Gas laser device
JPH06152030A (en) * 1992-11-05 1994-05-31 Komatsu Ltd Gas laser apparatus
WO2021206838A1 (en) * 2020-04-06 2021-10-14 Cymer, Llc Conduit system, radiation source, lithographic apparatus, and methods thereof
TWI806020B (en) * 2020-04-06 2023-06-21 美商希瑪有限責任公司 Pulsed-discharge radiation source, the method of using the same, and lithographic apparatus

Also Published As

Publication number Publication date
JPH0714084B2 (en) 1995-02-15

Similar Documents

Publication Publication Date Title
JP5083318B2 (en) Substrate cleaning apparatus and substrate cleaning method
JPH03200386A (en) Excimer laser apparatus
US6768765B1 (en) High power excimer or molecular fluorine laser system
US6940886B2 (en) Laser oscillator
US6627843B2 (en) Casing for laser device, production method and cleaning method of the same
CA1312114C (en) Ir-radiation source and method for producing same
JP2792689B2 (en) Optical component protection method
EP1355391B1 (en) Laser oscillator
JPH0521868A (en) Excimer laser oscillator
JP2653216B2 (en) Excimer laser device
JPS63108786A (en) Gas laser generator
JPS6342189A (en) Gas laser apparatus
JPH0239580A (en) Excimer laser device
JPH04237176A (en) Excimer laser device
JPH03200387A (en) Excimer laser apparatus
JP2003115281A (en) Dielectric barrier discharge lamp
JPH088378B2 (en) Laser oscillator
JPH03283478A (en) Ultraviolet pulse laser device
JP2874350B2 (en) Excimer laser equipment
JP2006049422A (en) Gas laser oscillator
JP2003092268A (en) Cleaning method for light transmission window and optical output device
JPH04177886A (en) Gas laser device
JPH0613678A (en) Gas laser of external mirror type
JPH02207580A (en) Carbon dioxide gas laser
JPH021190A (en) Excimer laser equipment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees