JPH088378B2 - Laser oscillator - Google Patents

Laser oscillator

Info

Publication number
JPH088378B2
JPH088378B2 JP63047643A JP4764388A JPH088378B2 JP H088378 B2 JPH088378 B2 JP H088378B2 JP 63047643 A JP63047643 A JP 63047643A JP 4764388 A JP4764388 A JP 4764388A JP H088378 B2 JPH088378 B2 JP H088378B2
Authority
JP
Japan
Prior art keywords
laser
quartz glass
laser medium
laser oscillator
members
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63047643A
Other languages
Japanese (ja)
Other versions
JPH01223786A (en
Inventor
達政 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP63047643A priority Critical patent/JPH088378B2/en
Publication of JPH01223786A publication Critical patent/JPH01223786A/en
Publication of JPH088378B2 publication Critical patent/JPH088378B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/0305Selection of materials for the tube or the coatings thereon

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Lasers (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、主としてKrF XeF ArF HeFその他のフッ素
元素等を含むレーザ媒質を用いたレーザ発振器に係り、
好ましくはエキシマレーザ発振器に関する。
The present invention relates to a laser oscillator using a laser medium containing KrF XeF ArF HeF and other fluorine elements.
It preferably relates to an excimer laser oscillator.

「従来の技術」 従来より例えば第1図に示すように、混合ガスその他
のレーザ媒質を封入したレーザ管1の両端側に、レーザ
光線をほぼ100%反射する高反射ミラー3と所望の反射
率を有する出力ミラー4とを配し、前記レーザ管1内に
設けた励起手段2により励起したレーザ光を前記ミラー
間で複数回往復させながら増幅した後、所定出力レベル
のレーザ光を前記出力ミラー4より出力するようにした
レーザ発振器は公知であり、この種のレーザ発振器にお
いては、希ガスとハロゲンバスとを混合したガス、例え
ばKrF XeF ArF等の混合ガスをレーザ媒質として使用
し、励起状態で形成された前記両ガスの結合分子が基底
状態に落ちて解離する際に発光するエキシマレーザを利
用したレーザ発振器が近年開発されている。
“Prior Art” Conventionally, for example, as shown in FIG. 1, a high-reflecting mirror 3 that reflects almost 100% of a laser beam and a desired reflectance are provided on both ends of a laser tube 1 in which a mixed gas or other laser medium is sealed. And an output mirror 4 having a laser beam having a predetermined output level is amplified after the laser light excited by the excitation means 2 provided in the laser tube 1 is reciprocated between the mirrors a plurality of times. A laser oscillator configured to output from 4 is publicly known. In this type of laser oscillator, a mixed gas of a rare gas and a halogen bath, for example, a mixed gas such as KrF XeF ArF is used as a laser medium, and an excited state is obtained. In recent years, a laser oscillator using an excimer laser that emits light when the binding molecules of the two gases formed in step 2 fall to the ground state and dissociate has been developed.

かかるエキシマレーザはエネルギー変換効率が高い点
に加えて、コヒーレンス長が極端に短くほとんど干渉が
起きない、紫外域や真空紫外域で強力な発振線(特定波
長における発振レーザ光線)を有する、単一発振線での
線幅が広い等の優れた特性を有する為に、近年印写光学
やレーザ加工分野に加えて特に光リソグラフィ、CVD,ア
ニール、ドーピング等の半導体プロセス分野への利用が
急速に浸透しつつある。
Such an excimer laser has a high energy conversion efficiency, an extremely short coherence length and almost no interference, and has a strong oscillation line (oscillation laser beam at a specific wavelength) in the ultraviolet region or vacuum ultraviolet region. Due to its excellent characteristics such as the wide line width of the oscillation line, it has rapidly spread in recent years to the fields of printing optics and laser processing as well as semiconductor process fields such as photolithography, CVD, annealing, and doping. I am doing it.

たとえば、ウエハ上に集積回路パターンを描画する光
リソグラフィ技術においては、VLSI時代を迎え、より微
細な線幅の描画を可能にする為に、露光波長(光源)の
短波長化が要請されているが、該短波長化を実現しつつ
光干渉の防止と広い回路パターン部分の一様照射が可能
等の機能を実現し得るものとしては現在の所、エキシマ
レーザ以外には見当たらない。
For example, in the optical lithography technology for drawing an integrated circuit pattern on a wafer, the exposure wavelength (light source) is required to have a shorter wavelength in order to enable the drawing of a finer line width in the VLSI era. However, at present, it is not found other than the excimer laser as a device capable of realizing the function of preventing the light interference and uniformly irradiating a wide circuit pattern portion while realizing the shortening of the wavelength.

しかしながら、前記エキシマレーザ用発振器内に組込
まれるミラーその他の光学系を従来の光学ガラスを用い
て形成すると、使用波長が365nm(i線)付近より光透
過率が急激に低下して光吸収による発熱が生じせしめる
とともに、特に多数回の繰り返し反射によりその利得増
幅を図る前記一対のミラー部材等においては、前記繰り
返し反射による発熱温度上昇により前記光学系自体の破
壊や変形が生じる場合がある。
However, when a mirror or other optical system incorporated in the excimer laser oscillator is formed by using conventional optical glass, the light transmittance is drastically reduced from around the wavelength of 365 nm (i-line) and heat generated by light absorption. In addition, the optical system itself may be destroyed or deformed due to the heat generation temperature increase due to the repeated reflection, especially in the pair of mirror members whose gain is amplified by a large number of repeated reflections.

この為前記ミラーその他の発振器内に組込まれる光学
系に石英ガラスを用いる事が提案されている。
Therefore, it has been proposed to use quartz glass for the optical system incorporated in the oscillator such as the mirror.

「発明が解決しようとする課題」 一方前記エキシマレーザを含むレーザ発振器において
は、前記レーザ管1や励起手段2として機能する放電電
極が前記発振動作中にレーザ媒質として使用されるハロ
ゲンガスと反応し、有機金属の不純物が発生する場合が
ある。
[Problems to be Solved by the Invention] On the other hand, in a laser oscillator including the excimer laser, a discharge electrode functioning as the laser tube 1 or the excitation means 2 reacts with a halogen gas used as a laser medium during the oscillation operation. However, organic metal impurities may be generated.

そしてこのような不純物の発生は従来多用されている
窒素ガスレーザ発振器においては前記ガスがフロー型で
前記ガスが1回の使用によりそのまま廃棄される為に特
に問題とならないが、エキシマレーザ発振器においては
前記ガスを一旦チャンバ内に封じ込め、循環させて使用
する構成を採る為に繰り返し使用の都度、前記不純物が
濃縮されてガス濃度の変化や水分発生等の各種障害を引
き起こす。
The generation of such impurities is not a particular problem in nitrogen gas laser oscillators that have been widely used in the past, because the gas is a flow type and the gas is discarded as it is after a single use. Since the gas is once contained in the chamber and is circulated for use, the impurities are concentrated each time the gas is repeatedly used, which causes various troubles such as a change in gas concentration and water generation.

特に前記水分の発生は単に前記各光学系に結露となっ
て付着するのみならず、レーザ媒質中のフッ素ガスと反
応してフッ酸を生成し、該フッ酸が石英ガラスで形成さ
れた光学系を浸食してしまうという問題が生じる。
In particular, the generation of the water not only adheres to each optical system as dew condensation, but also reacts with the fluorine gas in the laser medium to generate hydrofluoric acid, and the hydrofluoric acid is an optical system formed of quartz glass. The problem of eroding.

又前記フッ酸は石英ガラス自体のみならず、前記光学
系に所望の反射率又は所望の透過特性を付与するコート
層をも浸食し、共振器自体の性能劣化とともに耐久性を
大幅に低減させる事になる。
Further, the hydrofluoric acid corrodes not only the quartz glass itself but also the coating layer that imparts a desired reflectance or a desired transmission characteristic to the optical system, thereby significantly deteriorating the performance and the durability of the resonator itself. become.

この為、前記フッ素ガス以外のハロゲンガスを用いた
レーザ媒質も検討されているが、前記のように出力レー
ザの短波長化を図るにはKrF(248nm),ArF(193nm)等
フッ素混合ガス以外のレーザ媒質は現在の所、見い出せ
ない。
Therefore, a laser medium using a halogen gas other than the above-mentioned fluorine gas is also being studied, but as mentioned above, in order to shorten the wavelength of the output laser, KrF (248 nm), ArF (193 nm) or other fluorine mixed gas is used. At present, no laser medium can be found.

本発明はかかる従来技術の欠点に鑑み、前記フッ酸の
生成に起因する光学系の浸食を阻止し、これにより共振
器自体の共振性能劣化や耐久性を大幅に向上し得るレー
ザ発振器を提供する事を目的とする。
In view of the above-mentioned drawbacks of the prior art, the present invention provides a laser oscillator that can prevent erosion of an optical system due to the generation of hydrofluoric acid, thereby significantly improving the resonance performance deterioration and durability of the resonator itself. To aim for things.

「課題を解決する為の手段」 本発明はかかる技術的課題を達成する為に、 前記レーザ媒質に接触する恐れのある一又は複数の部
材を、アニール処理された高純度の合成石英ガラス材で
形成するとともに、 該石英ガラス材からなる部材の表面にコート層を形成
した後、該コート層の内少なくとも前記レーザ媒質と対
面する側に、蒸着又はエピタキシャル手段により形成し
た立方晶系ほたる石構造層からなる薄膜保護層を被覆し
た事により前記従来技術の欠点の解消を図った点にあ
る。
[Means for Solving the Problems] In order to achieve the technical problem, the present invention is to use an annealed high-purity synthetic quartz glass material for one or more members that may come into contact with the laser medium. A cubic fluorite structure layer formed by vapor deposition or epitaxial means at least on the side facing the laser medium of the coat layer after forming the coat layer on the surface of the member made of the quartz glass material. By covering with a thin film protective layer made of, the drawbacks of the prior art described above are solved.

以下本発明の構成及びその作用を詳細に説明する。 Hereinafter, the configuration and the operation of the present invention will be described in detail.

先ず本発明はフッ素元素その他のハロゲンガスを含む
レーザ媒質を用いたレーザ発振器に適用される点を前提
条件とするものである。
First, the present invention is premised on being applied to a laser oscillator using a laser medium containing a fluorine gas or other halogen gas.

即ち本発明はKrF XeF ArF HeF等のフッ素元素を含む
レーザ媒質を用いたレーザ発振器、特にエキシマレーザ
発振器において特に好ましい効果を達成するものである
が、これ以外でもフッ素元素を含む固体又は液体からな
るレーザ媒質を用いたレーザ発振器、又XeCl等のハロゲ
ンガスを用いたエキシマレーザ発振器等に本発明を適用
した場合でも従前の装置以上の耐久性を得る事が可能で
ある。
That is, the present invention achieves a particularly preferable effect in a laser oscillator using a laser medium containing a fluorine element such as KrF XeF ArF HeF, particularly an excimer laser oscillator, but in addition to this, it is composed of a solid or liquid containing a fluorine element. Even when the present invention is applied to a laser oscillator using a laser medium, an excimer laser oscillator using a halogen gas such as XeCl, etc., it is possible to obtain higher durability than conventional devices.

次に第1の構成要件として前記レーザ媒質に接触する
恐れのある一又は複数の部材を、アニール処理された高
純度の合成石英ガラス材で形成した点にある。
Next, as a first requirement, one or a plurality of members that may come into contact with the laser medium are formed of annealed high-purity synthetic quartz glass material.

そしてこのようなレーザ媒質に接触する恐れのある部
材には、第1図に示すように前記レーザ媒質を密封する
レーザ管1、前記レーザ媒質を励起して得られるレーザ
光を複数回往復させて総合的に長い相互作用長を確保す
る高反射ミラー3と出力ミラー4、前記レーザ光より一
又は複数の特定波長を選択するプリズム5その他の特定
波長選択素子、前記選択された波長の線幅を狭帯化する
エタロン、若しくは前記レーザ管1その他に取付けられ
た窓部材等が含まれる。
As shown in FIG. 1, a laser tube 1 for sealing the laser medium, a laser beam obtained by exciting the laser medium, and reciprocating the laser beam a plurality of times are provided as members that may come into contact with the laser medium. A high-reflecting mirror 3 and an output mirror 4 for ensuring a long interaction length, a prism 5 for selecting one or a plurality of specific wavelengths from the laser light, and other specific wavelength selection elements, and a line width of the selected wavelengths are set. It includes an etalon for narrowing the band or a window member attached to the laser tube 1 and others.

更に第2の構成要件とする所は、合成石英ガラス材か
らなる部材の表面にコート層を形成した後、該コート層
の内すくなくとも前記レーザ媒質と対面する側に、蒸着
又はエピタキシャル手段によりに形成した立方晶系ほた
る石構造層からなる薄膜保護層を被覆した事にある。
A second requirement is that after a coat layer is formed on the surface of a member made of synthetic quartz glass, the coat layer is formed on at least the side facing the laser medium by vapor deposition or epitaxial means. The thin film protective layer consisting of the cubic fluorite structure layer was covered.

尚ミラー3やプリズム等は所定反射率又は透過率を得
る為にコーティングされ、該コート層を介して前記レー
ザ媒質と接触する訳であるが、このコート層もレーザ媒
質との接触により浸食し反射率又は透過率の低下につな
がる。
The mirror 3 and the prism are coated in order to obtain a predetermined reflectance or transmittance and come into contact with the laser medium through the coat layer. This coat layer also erodes and is reflected by the contact with the laser medium. Rate or transmittance is reduced.

従って合成石英ガラス材からなる部材の表面にコート
層を形成した後、該コート層の表面に立方晶系ほたる石
構造層からなる薄膜保護層を被覆している。
Therefore, after forming a coat layer on the surface of a member made of synthetic quartz glass material, the surface of the coat layer is covered with a thin film protective layer made of a cubic fluorite structure layer.

尚、例えば一部の区域にのみ前記励起レーザが透過又
は反射するミラー部材やプリズム5等の場合は、レーザ
媒質と対面する母材全面に薄膜保護層6を被覆する必要
はなく、前記励起レーザが透過又は反射する区域にのみ
薄膜保護層6を被覆すればよい。
For example, in the case of the mirror member or the prism 5 or the like through which the excitation laser transmits or reflects only in a part of the area, it is not necessary to cover the entire surface of the base material facing the laser medium with the thin film protective layer 6, and the excitation laser The thin film protective layer 6 may be coated only on the areas where the light is transmitted or reflected.

又、前記立方晶系ほたる石構造層は天然のほたる石で
はなく、後記実施例で示すように蒸着又はエピタキシャ
ル手段により形成するのがよい。
Further, the cubic fluorite structure layer is not natural fluorite, and it is preferable to form the fluorite structure layer by vapor deposition or epitaxial means as will be shown in Examples below.

「作用」 A,本発明によれば前記部材に光学ガラスや蛍石ではなく
合成石英ガラス、特に高純度の合成石英ガラスを用いた
が故に次のような第1の利点を有する。
[Operation] A: According to the present invention, the above-mentioned first advantage is obtained because synthetic quartz glass, particularly high-purity synthetic quartz glass, is used for the member instead of optical glass or fluorite.

即ち前記光学ガラスは前述したようにミラー部材やプ
リズム5等に励起レーザが繰り返し透過又は反射した場
合発熱温度上昇により前記光学系自体の破壊や変形が生
じる事は前述した通りである。
That is, as described above, in the optical glass, when the excitation laser is repeatedly transmitted or reflected by the mirror member or the prism 5 or the like, the optical system itself is destroyed or deformed due to the temperature rise of the heat generation.

かかる欠点を解消する為にレーザの短波長化に対応し
得る部材としては石英ガラス材やほたる石が挙げられる
が、ほたる石は結晶性であり、且つその物理的性質が脆
く且つ貝殻状に破開する性質を有する為に、所望形状に
加工又は研磨するのが困難であるとともに機械的強度に
問題が多く残されており、更には合成で形成し得ない為
に天然のものに依存しなければならず、この為高純度の
ものを得る事が困難であるとともに、特に集積回路パタ
ーンの高集積化に伴ない、レーザビームの広幅化に対応
し得る大口径で且つ均一純度で且つ屈折率の均一性のミ
ラー部材3,4やプリズム5を得る事が不可能である。
Quartz glass and fluorspar can be mentioned as members that can cope with the shortening of the wavelength of the laser in order to eliminate such drawbacks.However, fluorspar is crystalline and its physical properties are fragile and breaks like a shell. Since it has a property of opening, it is difficult to process or polish it into a desired shape, and many problems remain in mechanical strength. Furthermore, since it cannot be formed synthetically, it must depend on a natural one. Therefore, it is difficult to obtain a high-purity product, and a large diameter and a uniform purity and a refractive index that can deal with the widening of the laser beam especially with the high integration of the integrated circuit pattern. It is impossible to obtain the mirror members 3 and 4 and the prism 5 having the above uniformity.

一方石英ガラス内の合成石英ガラスは、四塩化珪素等
を原料とするシリカ合成法に基づいて高純度で且つ均質
な光学特性を有する所望の大きさの部材として形成し得
るとともに、その加工性、研磨性及びその機械的強度が
ほたる石に比較して極めて大であり、前記欠点を一挙に
解決し得る。
On the other hand, the synthetic quartz glass in the quartz glass can be formed as a member of desired size having high purity and uniform optical characteristics based on the silica synthesis method using silicon tetrachloride or the like as a raw material, and its workability, The abrasiveness and its mechanical strength are extremely large as compared with fluorspar, and the above drawbacks can be solved at once.

又アニール処理による高純度の石英ガラス材で形成す
る事により、均一純度で且つ屈折率の均一性のミラー部
材3,4やプリズム5を得る事が可能となる。
Further, by forming the quartz glass material of high purity by the annealing treatment, it becomes possible to obtain the mirror members 3 and 4 and the prism 5 having a uniform purity and a uniform refractive index.

B,又本発明は前記合成石英ガラス製部材の表面にコート
層を形成した後、そのコート層の上に立方晶系ほたる石
構造層からなる薄膜保護層6を被覆した為に、前記エキ
シマレーザ発振脆内で発生した水分に起因してレーザ媒
質中に含まれるフッ素ガスよりフッ酸が生成した場合で
あっても該フッ酸と石英ガラス材自体及びフッ酸と石英
ガラス材表面に形成したコート層との接触を絶つ事が出
来、これらの部材の浸食を完全に阻止し、これにより共
振器自体の共振性能劣化や耐久性を大幅に向上させる事
が出来る。
B, In the present invention, since the coating layer is formed on the surface of the synthetic quartz glass member, and the thin film protective layer 6 composed of the cubic fluorite structure layer is coated on the coating layer, the excimer laser is formed. Even when hydrofluoric acid is generated from the fluorine gas contained in the laser medium due to the water generated in the oscillation embrittlement, the coating formed on the hydrofluoric acid and the quartz glass material itself or on the surface of the hydrofluoric acid and the quartz glass material. It is possible to break the contact with the layers and completely prevent the erosion of these members, thereby significantly improving the resonance performance deterioration and durability of the resonator itself.

又、前記ほたる石構造層は天然のほたる石を用いるの
ではなく、蒸着その他の手段により人口的に蒸着その他
の手段により人口的に形成した立方晶系ほたる石構造層
を用いるのがよい。
Further, it is preferable that the fluorite structure layer is not made of natural fluorspar but a cubic fluorite structure layer artificially formed by vapor deposition or other means and artificially formed by other means.

尚、前記保護層の形成手段は定区域の薄膜被覆した層
として用いるのであるから例えでも高純度のものが容易
に得られるとともに、又加工性や機械的強度製も特に問
題にする事はない。
Since the means for forming the protective layer is used as a layer coated with a thin film in a fixed area, a high-purity product can be easily obtained, and workability and mechanical strength do not pose a particular problem. .

又特に前記保護層はほたる石自体ではなく蒸着又はエ
ピタキシャル手段により形成した立方晶系ほたる石構造
層を用いる為に、特に光反射性及び光透過性を問題にす
る個所においては後記するように分子蒸着によりCaF2
CaCdF2等の被覆を形成すれば、前記光学的特性を劣化す
る事もない。
Further, in particular, since the protective layer is not a fluorspar itself but a cubic fluorspar structure layer formed by vapor deposition or an epitaxial means, a molecular layer as described below is used particularly in a place where light reflectivity and light transmissivity are a problem. CaF 2 by vapor deposition,
Forming a coating such as CaCdF 2 does not deteriorate the optical characteristics.

「実施例」 以下、図面を参照して本発明の好適な実施例を例示的
に詳しく説明する。ただしこの実施例に記載されている
構成部品の寸法、材質、形状、その相対配置などは特に
特定的な記載がない限りは、この発明の範囲をそれのみ
に限定する趣旨ではなく、単なる説明例に過ぎない。
[Embodiment] Hereinafter, a preferred embodiment of the present invention will be exemplarily described in detail with reference to the drawings. However, unless otherwise specified, the dimensions, materials, shapes, relative positions, etc. of the components described in this embodiment are not intended to limit the scope of the present invention only thereto, but merely illustrative examples. Nothing more than.

第1図は本発明の実施例に係わるエキシマレーザ発振
器の要部を示す基本構成図を示す。
FIG. 1 is a basic configuration diagram showing a main part of an excimer laser oscillator according to an embodiment of the present invention.

1は、Kr Xe又はAr等の希ガスとフッ素ガスからなる
レーザ媒質が封入されているレーザ管、20は該レーザ管
1内に軸方向に沿って配置されたレーザ励起手段2とし
て機能する電極群で、軸方向に延設する一対の石英ガラ
ス製指示部材21により支持されるとともに、外部の高圧
電源23及びサイラトロンその他が組込まれた放電回路22
と電気的に接続されている。
Reference numeral 1 is a laser tube in which a laser medium composed of a rare gas such as Kr Xe or Ar and a fluorine gas is sealed, and 20 is an electrode functioning as a laser excitation means 2 arranged in the laser tube 1 along the axial direction. In a group, the discharge circuit 22 is supported by a pair of quartz glass indicating members 21 extending in the axial direction, and has an external high-voltage power supply 23, a thyratron, etc. incorporated therein
Is electrically connected to.

3,4は前記レーザ管1の両端側に配置された一対のミ
ラー部材で、前記レーザ媒質を励起して得られるレーザ
光を複数回往復させて総合的に長い相互作用長を確保す
る高反射ミラー3と出力ミラー4として機能させてい
る。又、高反射ミラー3と励起手段2間には、前記レー
ザ光より一又は複数の特定波長を選択すプリズム5が排
泄されている。
Numerals 3 and 4 are a pair of mirror members arranged at both ends of the laser tube 1, and are highly reflective to ensure a long interaction length by reciprocating the laser light obtained by exciting the laser medium a plurality of times. It functions as a mirror 3 and an output mirror 4. A prism 5 for selecting one or a plurality of specific wavelengths from the laser light is discharged between the high-reflecting mirror 3 and the excitation means 2.

そして前記一対のミラー部材3,4とプリズム5は後記
するように石英ガラス材で製造するとともに、その表面
の所定区域に立方晶系ほたる石構造の薄膜が蒸着されて
いる。
The pair of mirror members 3 and 4 and the prism 5 are made of quartz glass material as described later, and a cubic fluorite structure thin film is vapor-deposited on a predetermined area of the surface thereof.

次にかかる部材の製造方法について詳細に説明する。 Next, a method for manufacturing such a member will be described in detail.

先ず、公知のように四塩化珪素を合成バーナに導入し
つつ酸水素炎中で燃焼−反応させて製造した合成石英ガ
ラスインゴットをアニール処理して高純度の石英ガラス
母材を製造した後、該母材を所定形状に切断、加工及び
研磨処理を行った後、その表面に所望の反射率又は透過
率を得る為に表面に誘電体多層膜コーティング50を施
す。
First, as known in the art, a synthetic quartz glass ingot produced by burning-reacting in an oxyhydrogen flame while introducing silicon tetrachloride into a synthetic burner is annealed to produce a high-purity quartz glass base material, After cutting, processing and polishing the base material into a predetermined shape, a dielectric multilayer coating 50 is applied to the surface of the base material in order to obtain a desired reflectance or transmittance.

そしてかかるコーティング7処理を施し且つ清浄化し
た前記ミラー部材3,4,5等を真空室内に封入した後、レ
ーザ媒質と対面する側に位置するミラー部材3,4の各反
射面31、41とプリズム5の入出射面51,52の励起レーザ
が透過する区域に、所定温度に制御された分子線オーブ
ンよりCaF2のビームを衝突させ約0.2μmの膜厚を有す
る立方晶系ほたる石構造層からなる薄膜保護層6を蒸着
する。
After the mirror members 3, 4, 5, etc., which have been subjected to such coating 7 treatment and cleaned, are enclosed in a vacuum chamber, the reflecting surfaces 31, 41 of the mirror members 3, 4 located on the side facing the laser medium are A cubic fluorite structure layer having a film thickness of about 0.2 μm is produced by colliding a CaF 2 beam from a molecular beam oven controlled at a predetermined temperature with the area of the entrance / exit surfaces 51, 52 of the prism 5 through which the excitation laser passes. A thin film protective layer 6 consisting of is deposited.

尚、前記保護層6は精密な格子整合が得られるように
するにはCaF2及びCdF2を入れた各オーブンからの同時の
分子線により成長する約40%CdF2、60%のCaF2の混合物
からなるほたる石構造層を形成するのがよい。この場合
前記2つの物質の混合比率はオーブンの温度を違わせる
事により容易に制御出来る。
Incidentally, the protective layer 6 is precise to such lattice matching is obtained of about 40% CdF 2, 60% of CaF 2 which grows by simultaneous molecular beam from the oven containing the CaF 2 and CdF 2 It is preferable to form a fluorite structure layer composed of a mixture. In this case, the mixing ratio of the two substances can be easily controlled by changing the temperature of the oven.

そしてこのようにして構成されたレーザ発振器によれ
ば本発明の作用効果を円滑に達成し得る。
With the laser oscillator configured as described above, the effects of the present invention can be achieved smoothly.

「発明の効果」 以上記載した如く本発明によれば、前記エキシマレー
ザ発振器内で発生した水分に起因してレーザ媒質中に含
まれるフッ素ガスよりフッ酸が生成した場合であっても
該フッ酸と石英ガラス材およびコート層で形成した部材
等との接触を絶つ事が出来、これらの部材の浸食を完全
に阻止し、これによりこれにより共振器自体の共振性能
劣化や耐久性を大幅に向上させる事が出来る。
[Advantages of the Invention] As described above, according to the present invention, even when hydrofluoric acid is generated from the fluorine gas contained in the laser medium due to the water generated in the excimer laser oscillator, the hydrofluoric acid is generated. It is possible to cut off the contact between the quartz glass material and the members made of the coating layer, etc., and completely prevent the erosion of these members, thereby significantly improving the resonance performance deterioration and durability of the resonator itself. You can

又本発明は前記部材自体にはほたる石を用いる事なく
合成石英ガラス材を用いたが故に励起レーザの短波長化
に対応し得且つ加工性及び機械的強度も良好である為に
所望のレーザ発振器用各種部材の形成が容易である。
Further, in the present invention, since the synthetic quartz glass material is used for the member itself without using fluorspar, it is possible to cope with the shortening of the wavelength of the excitation laser and the workability and the mechanical strength are good, so that the desired laser is obtained. It is easy to form various members for the oscillator.

【図面の簡単な説明】[Brief description of drawings]

第1図乃至第2図は本発明の実施例に係るエキマレーザ
発振器を示し第1図はその要部構成を示す概略図、第2
図(A)(B)は前記装置内に組み込まれたプリズムの
横断面図と縦断面図である。
1 and 2 show an excimer laser oscillator according to an embodiment of the present invention, and FIG. 1 is a schematic view showing the configuration of the main part thereof.
Figures (A) and (B) are a horizontal sectional view and a vertical sectional view of a prism incorporated in the apparatus.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】フッ素元素その他のハロゲンガスを含むレ
ーザ媒質を用いたレーザ発振器において、 前記レーザ媒質に接触する恐れのある一又は複数の部材
を、アニール処理された高純度の合成石英ガラス材で形
成するとともに、 該石英ガラス材からなる部材の表面にコート層を形成し
た後、 該コート層の内少なくとも前記レーザ媒質と対面する側
に、蒸着又はエピタキシャル手段により形成した立方晶
系ほたる石構造層からなる薄膜保護層を被覆した事を特
徴とするレーザ発振器
1. A laser oscillator using a laser medium containing a fluorine gas or other halogen gas, wherein one or a plurality of members that may come into contact with the laser medium is annealed high-purity synthetic quartz glass material. A cubic fluorite structure layer formed by vapor deposition or epitaxial means at least on the side facing the laser medium in the coat layer after forming the coat layer on the surface of the member made of the quartz glass material. Laser oscillator characterized by being coated with a thin film protective layer made of
JP63047643A 1988-03-02 1988-03-02 Laser oscillator Expired - Fee Related JPH088378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63047643A JPH088378B2 (en) 1988-03-02 1988-03-02 Laser oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63047643A JPH088378B2 (en) 1988-03-02 1988-03-02 Laser oscillator

Publications (2)

Publication Number Publication Date
JPH01223786A JPH01223786A (en) 1989-09-06
JPH088378B2 true JPH088378B2 (en) 1996-01-29

Family

ID=12780925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63047643A Expired - Fee Related JPH088378B2 (en) 1988-03-02 1988-03-02 Laser oscillator

Country Status (1)

Country Link
JP (1) JPH088378B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4052457B2 (en) * 2003-01-29 2008-02-27 三菱重工業株式会社 Microwave excited hydrogen ultraviolet light lamp and method of using an optical device using the ultraviolet light lamp
US7190512B2 (en) 2004-04-29 2007-03-13 Mitsubishi Heavy Industries, Ltd. Optical properties restoration apparatus, the restoration method, and an optical system used in the apparatus
JP4994873B2 (en) * 2007-02-06 2012-08-08 三菱重工業株式会社 Optical system and method of using optical apparatus using the optical system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63209187A (en) * 1987-02-26 1988-08-30 Nikon Corp Excimer laser device
JPH0828542B2 (en) * 1987-02-27 1996-03-21 株式会社ニコン Excimer laser device

Also Published As

Publication number Publication date
JPH01223786A (en) 1989-09-06

Similar Documents

Publication Publication Date Title
US6560254B2 (en) Line-narrowing module for high power laser
US5978409A (en) Line narrowing apparatus with high transparency prism beam expander
JP3154977B2 (en) Narrow frequency band excimer laser
US5513039A (en) Ultraviolet resistive coated mirror and method of fabrication
US7907655B2 (en) Mode selection by synchronous pumping of a wagon wheel optical cavity
JPH10209548A (en) Assembly, excimer laser, method for improving beam profile of light beam and reducing spectrum band width in excimer laser, and method for operating laser
EP0901989B1 (en) Silica glass and its manufacturing method
TWI238262B (en) Coated optics to improve durability
JP2000124531A (en) Excimer laser
JPH088378B2 (en) Laser oscillator
JP2002084026A (en) F2 laser
JP2000239040A (en) Quartz glass material for optical member for f2 excimer laser, and optical member
JPH0912323A (en) Quartz glass member suppressed from becoming dense due to irradiation of uv ray
JP2000154029A (en) Synthetic quartz glass for optical member and its production
Komori et al. Feasibility study of argon fluoride excimer laser for microlithography
JP2967623B2 (en) Narrow band laser oscillator
JPH01167258A (en) Element assembly of laser optical system
JPH05291674A (en) Narrow-band optical element
JPH0426174A (en) Narrow-band laser apparatus
JP2688991B2 (en) Narrow-band oscillation excimer laser
JP2004245905A (en) Mask fabricating device
JPH02241074A (en) Excimer laser generating device
JPH05218555A (en) Narrow-band laser oscillator
JPH0243786A (en) Laser device
JPH02273981A (en) Narrow-band laser device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees