JPH0320002A - Manufacture of hexagonal system barium ferite magnetic powder containing cobalt - Google Patents

Manufacture of hexagonal system barium ferite magnetic powder containing cobalt

Info

Publication number
JPH0320002A
JPH0320002A JP1280299A JP28029989A JPH0320002A JP H0320002 A JPH0320002 A JP H0320002A JP 1280299 A JP1280299 A JP 1280299A JP 28029989 A JP28029989 A JP 28029989A JP H0320002 A JPH0320002 A JP H0320002A
Authority
JP
Japan
Prior art keywords
magnetic powder
coercive force
cobalt
organic compounds
barium ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1280299A
Other languages
Japanese (ja)
Inventor
Akihisa Yamamoto
陽久 山本
Tadayuki Kikuma
忠之 菊間
Hidenobu Urata
浦田 秀信
Hidenori Sawabe
沢部 秀紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP1280299A priority Critical patent/JPH0320002A/en
Publication of JPH0320002A publication Critical patent/JPH0320002A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To give a desired coercive force accurarely by evaporating and removing organic compounds after depositing a specific organic compound to a hexagonal system barium ferite magnetic powder containing cobalt. CONSTITUTION:A material containing a small amount of one or more than two kinds of elements selected out of various elements, e. g. Mg, Sc, and the like in addition to cobalt is used as a hexagonal system barium ferite magnetic powder containing cobalt for the purposes of improvement and the like in powdered magnetism and magnetic characteristics. Organic compounds which consist of carbons, the number of which is less than 13 and does not contain atoms of phosphorus are used as one of materials. After depositing these organic compounds uniformly to the whole of the above powder, the deposited organic compounds are evaporated and removed at a temperature that is lower than a thermal decomposition temperature of the organic compounds. As a result, the coercive force of the magnetic powder increases compared to that of the magnetic powder that is not treated yet within a range of 10-1000 (Oe); besides, the increase of the coercive force is controlled by selecting the kinds and combinations of the organic compounds. A desired coercive force is thus given accurately.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、コバルト含有バリウムフェライト磁性粉の製
造方法に関し、さらに詳しくは、制御された保磁力を有
するコバルト含有バリウムフェライト磁性粉の製造方法
および該磁性粉を用いた磁気記録媒体に関する. 本発明の製造方法により、磁気記録媒体用に適した範囲
の保磁力に精度良く制御した磁性粉を得ることができる
ので、該磁性粉は、特に、高密度磁気記録媒体用磁性材
料として好適に用いることができる.
The present invention relates to a method for producing cobalt-containing barium ferrite magnetic powder, and more particularly to a method for producing cobalt-containing barium ferrite magnetic powder having a controlled coercive force, and a magnetic recording medium using the magnetic powder. By the production method of the present invention, it is possible to obtain a magnetic powder whose coercive force is precisely controlled in a range suitable for magnetic recording media, so that the magnetic powder is particularly suitable as a magnetic material for high-density magnetic recording media. It can be used.

【従来の技術】[Conventional technology]

近年,磁気記録に対する高密度化の要求に伴い、磁気記
録媒体の厚み方向に磁界を記録する垂直磁気記録方式が
注目されている.このような垂直磁気記録方式において
使用される磁性材料は、磁気記録媒体表面に垂直な方向
に磁化容易軸を有するものであることが必要である. 六方晶系で一軸磁化異方性を有するバリウムフエライト
磁性粉は,六角板状の結晶であって、板面に垂直な方向
に磁化容易軸を有しており、このため、該磁性粉は塗布
しただけでも仮面が基体面と平行になりやすく、磁場配
向処理もしくは機械的配向処理によって、容易にその磁
化容易軸が垂直方向に配向するので、塗布膜タイプの垂
直磁気記録媒体用磁性材料として適している.ところで
、一般にテープやフロッピーディスク等の磁気記録媒体
に磁気ヘッドを用いて記録再生及び消去を行うためには
、磁気記録媒体の磁性層に用いる磁性粉の保磁力(Hc
)を通常200〜2000 [Oelの範囲に設定する
ことが必要である.ところが、通常知られている六方晶
系バリウムフェライト( B a F e t*0 +
*)磁性粉は、保磁力が5000 [Oelに近く、こ
のままでは磁気記録媒体用磁性材料としては保磁力が大
きすぎる.このため、バリウムフェライトのFeの一部
をCo%Nl,Ti、Mn,Zn,In%Ge.Nb等
の異種元素で置換することにより保磁力を低下させる方
法が提案されている(特開昭56−67904号公報,
特開昭59−175707号公報、特開昭55−881
03号公報など).これらの方法によれば、置換元素の
置換量や置換元素の組合わせ等を制御することによって
六方晶系バリウムフェライト磁性粉の保磁力を低減させ
て、磁気記録媒体用に適した保磁力に制御すること.が
できる. ところが、置換元素により保磁力を制御した六方晶系バ
リウムフェライト磁性粉(置換六方晶系バリウムフェラ
イト磁性粉)は、磁気記録媒体に用いた場合にその保磁
力が変動するという問題がある.第1表に示すように、
磁気記録媒体としたときの置換六方晶系バリウムフェラ
イト磁性粉の保磁力は、使用した磁性粉の保磁力に対し
て約1.1倍以上、ときには2.0倍程度にまで上昇す
るという問題がある. (以下余白) このように、一般に、磁性粉の保磁力は、磁気記録媒体
にしたときに変動するが、出力及びノイズ等の性能上の
要求から,M1気記録媒体の保磁力の変動許容範囲は、
±20 [Oel以内、好ましくは±10[Oel以内
であることが要求される.このため、一定の保磁力を有
する磁気記録媒体を±20 [Oel以内、好ましくは
±10[Oel以内の精度で製造するためには、使用す
る磁性粉の保磁力と、それを磁気記録媒体にしたときの
保磁力との関係を前以って正確に予測し、その予測値通
りの保磁力を有する磁性粉を製造し、使用しなければな
らない. このことを具体的に第l表の特開昭62−207720
号公報記載の例で説明するならば、設定値650±20
 [Oe)の精度の保磁力を有するテープを製造するた
めには、正確に512±15[Oelの保磁力を有する
置換六方晶系バリウムフェライトを製造することが必要
である.ところで、六方晶系バリウムフェライト磁性粉
の保磁力は,置換元素の含有量等をかえることによって
制御できるが、置換元素の含有量が変動すると、その変
動量が微量であっても得られる磁性粉の保磁力は大きく
変動する(日経ニューマテリアル、1986年4月28
日号52頁).さらに、製造工程の微少な条件変化によ
っても、保磁力はかなり変動するため、前述の如き狭い
許容範囲内で所望の保磁力を有する磁性粉を安定して製
造することは非常に困難である. しかも、所望の保磁力を有する磁性粉を製造し得たとし
ても、磁性粉の含水率、表面イオン濃度、分散の度合い
、あるいは磁気記録媒体の製造工程における条件変化等
によって、磁気記録媒体としたときの磁性粉の保磁力が
大きく変動し易いため、設定値通りの保磁力を有する磁
気記録媒体を精度よく製造することは困難である.一方
、磁気記録媒体の磁性層における置換六方晶系バリウム
フェライト磁性粉の分散性を改善するために、各種の分
散剤を用いたり、有機化合物を付着させたりすることが
提案されている.例えば、アクリル酸などのラジカル重
合しりる単量体によりフエライトをカプセル化ないしグ
ラフト化する方法(特開昭57−177606号公報)
、分散剤としてリン酸エステルを付着させる方法(特開
昭57−56329号公報)、レシチンやアミン化合物
、アンモニウム系化合物、高級脂肪酸、高級脂肪酸の金
属石鹸,高級脂肪酸エステル、アルキルスルホン酸塩、
ボリオキシエチレンエーテルまたはエステルなどの分散
剤を付着させる方法(特開昭57−198605号公報
)、リン酸エステル型界面活性剤や高級脂肪酸などの分
散剤を吸着させる方法(特開昭61−5590l号公報
)、ホスホン酸基を有するカルボン酸化合物またはその
塩によって被覆する方法(特開昭61−132521号
公報)、有機物質の熱分解残漬物を粒子表面に担持させ
る方法(特開昭59−72 1 04号公報)、炭素数
3〜4の有機酸で被覆して分散性を向上させる方法(特
開昭61−295237号公報)などが提案されている
.しかしながら、これらの分散剤等を付着ないし被覆す
る方法により、磁性層中での磁性粉の分散性は改良され
るものの、前記した問題点、すなわち、置換六方晶系バ
リウムフェライト磁性粉において、設定値通りの保磁力
を有する磁性粉を安定して製造すること、および磁気記
録媒体用に使用した場合の保磁力の変動を効果的に抑制
することができないという従来技術の有する問題点を解
決することはできない.
In recent years, with the demand for higher density magnetic recording, perpendicular magnetic recording, which records a magnetic field in the thickness direction of a magnetic recording medium, has attracted attention. The magnetic material used in such perpendicular magnetic recording systems must have an axis of easy magnetization in a direction perpendicular to the surface of the magnetic recording medium. Barium ferrite magnetic powder, which has a hexagonal crystal system and uniaxial magnetization anisotropy, is a hexagonal plate-shaped crystal with an axis of easy magnetization perpendicular to the plate surface. It is suitable as a magnetic material for coated film-type perpendicular magnetic recording media because the mask easily becomes parallel to the substrate surface even if it is only ing. By the way, in general, in order to perform recording, reproduction and erasing using a magnetic head on a magnetic recording medium such as a tape or a floppy disk, the coercive force (Hc) of the magnetic powder used in the magnetic layer of the magnetic recording medium is required.
) is usually set in the range of 200 to 2000 [Oel]. However, the commonly known hexagonal barium ferrite (B a Fe t*0 +
*) Magnetic powder has a coercive force close to 5000 Oel, which is too large to be used as a magnetic material for magnetic recording media. For this reason, a part of the Fe of barium ferrite is Co%Nl, Ti, Mn, Zn, In%Ge. A method of lowering the coercive force by substituting with a different element such as Nb has been proposed (Japanese Unexamined Patent Publication No. 1983-67904,
JP-A-59-175707, JP-A-55-881
Publication No. 03, etc.). According to these methods, the coercive force of hexagonal barium ferrite magnetic powder is reduced by controlling the amount of substituted elements, the combination of substituted elements, etc., and the coercive force is controlled to be suitable for magnetic recording media. To do. Can be done. However, hexagonal barium ferrite magnetic powder whose coercive force is controlled by substitution elements (substituted hexagonal barium ferrite magnetic powder) has a problem in that its coercive force fluctuates when used in magnetic recording media. As shown in Table 1,
The problem is that the coercive force of substituted hexagonal barium ferrite magnetic powder when used as a magnetic recording medium is about 1.1 times or more, and sometimes up to about 2.0 times, the coercive force of the magnetic powder used. be. (Left below) In general, the coercive force of magnetic powder varies when it is made into a magnetic recording medium, but due to performance requirements such as output and noise, the permissible range of coercive force variation for M1 magnetic recording media is determined. teeth,
It is required to be within ±20 [Oel, preferably within ±10 [Oel]. Therefore, in order to manufacture a magnetic recording medium with a constant coercive force within ±20 [Oel, preferably within ±10 [Oel], it is necessary to determine the coercive force of the magnetic powder used and its It is necessary to accurately predict in advance the relationship between the coercive force and the coercive force when the magnetic flux is applied, and to manufacture and use magnetic powder that has the coercive force as predicted. Specifically, this is explained in Table 1 of JP-A No. 62-207720.
To explain using the example described in the publication, the setting value is 650±20
In order to produce a tape with a coercive force accurate to [Oe], it is necessary to produce substituted hexagonal barium ferrite with a coercive force of exactly 512±15[Oel]. By the way, the coercive force of hexagonal barium ferrite magnetic powder can be controlled by changing the content of substituting elements, etc., but if the content of substituting elements changes, even if the amount of variation is small, the magnetic powder obtained The coercive force of changes greatly (Nikkei New Materials, April 28, 1986)
(Japanese issue, page 52). Furthermore, because the coercive force varies considerably due to slight changes in the conditions of the manufacturing process, it is extremely difficult to stably produce magnetic powder having the desired coercive force within the narrow tolerance range described above. Moreover, even if magnetic powder with a desired coercive force can be produced, variations in the moisture content of the magnetic powder, surface ion concentration, degree of dispersion, or changes in conditions in the manufacturing process of the magnetic recording medium may affect the quality of the magnetic recording medium. Since the coercive force of the magnetic powder tends to fluctuate greatly, it is difficult to accurately manufacture a magnetic recording medium having a coercive force exactly as set. On the other hand, in order to improve the dispersibility of substituted hexagonal barium ferrite magnetic powder in the magnetic layer of a magnetic recording medium, it has been proposed to use various dispersants or attach organic compounds. For example, a method of encapsulating or grafting ferrite with a radically polymerizable monomer such as acrylic acid (Japanese Unexamined Patent Publication No. 177606/1983)
, a method of attaching a phosphoric acid ester as a dispersant (JP-A-57-56329), lecithin, amine compounds, ammonium compounds, higher fatty acids, metal soaps of higher fatty acids, higher fatty acid esters, alkyl sulfonates,
A method of adhering a dispersant such as polyoxyethylene ether or ester (Japanese Unexamined Patent Publication No. 198605/1983), a method of adsorbing a dispersant such as a phosphate ester type surfactant or higher fatty acid (Japanese Unexamined Patent Publication No. 5590/1983) (Japanese Unexamined Patent Publication No. 132521/1982), method of coating with a carboxylic acid compound having a phosphonic acid group or a salt thereof (Japanese Unexamined Patent Publication No. 132521/1982), and method of supporting thermal decomposition residue of an organic substance on the surface of particles (Japanese Unexamined Patent Publication No. 59/1989). 72-104) and a method of improving dispersibility by coating with an organic acid having 3 to 4 carbon atoms (Japanese Patent Laid-Open No. 61-295237). However, although the dispersibility of the magnetic powder in the magnetic layer is improved by the method of attaching or coating these dispersants, etc., the above-mentioned problem, that is, the set value of the substituted hexagonal barium ferrite magnetic powder, To stably produce magnetic powder having a certain coercive force, and to solve the problem of conventional technology that it is not possible to effectively suppress fluctuations in coercive force when used for magnetic recording media. I can't.

【発明が解決しようとする課題】[Problem to be solved by the invention]

本発明の目的は、制御された保磁力を有するコバルト含
有六方晶系バリウムフェライト磁性粉の製造方法を提供
することにある. また、本発明の目的は、磁気記録媒体に適用した場合、
保磁力の変動幅が小さなコバルト含有六方晶系バリウム
フェライト磁性粉の製造方法を提供することにある. 本発明者らは、前述の問題点を解決すべく鋭意検討した
ところ、驚くべきことに、コバルトを含む六方晶系バリ
ウムフェライト磁性粉に、特定の種類の有機化合物な被
看せしめた後、該有機化合物を蒸発除去せしめると、磁
性粉の保磁力が増大すること、また、処理する有機物質
の種類や組合わせを選択することによって保磁力の増加
幅を1000 (Oe)以下の範囲内で自由に制御でき
ることを見出した. さらに,本発明者らは、このようにして得られた制御さ
れた保磁力を有するコバルト含有バリウムフェライト磁
性粉を磁気記録媒体用として用いた場合に、保磁力の変
動が大幅に抑制され、設定値通りの保磁力を有する磁気
記録媒体を安定して製造できることを見出した. 本発明は、これらの知見に基づいて完成するに至ったも
のである. ところで、前記したとおり、従来、置換六方品系バリウ
ムフェライト磁性粉の分散性を改善するために、各種有
機物質を付着または被覆する方法は知られているが、本
発明の方法はこれら従来法とは異なり、特定の種類の有
機化合物をコバルト含有六方晶系バリウムフェライト磁
性粉に被着せしめた後、該有機化合物を蒸発除去せしめ
ることを特徴としており、かつ、保磁力が制御された磁
性粉を得るという従来知られていなかった目的・効果を
達戒するものである.しかも、この方法は、置換六方晶
系バリウムフェライト磁性粉の中でも,置換元素として
コバルト(Co)を用いたコバルト含有六方晶系バリウ
ムフェライト磁性粉に対してのみ有効であり、選択性を
有するものである.なお、該磁性粉は、必ずしもFeの
一部が理論量のコバルトで置換されている必要はなく、
COが含まれていれば、常に同様の効果を有している. このように、本発明の方法によれば,任意の保磁力を有
するコバルト含有六方晶系バリウムフェライト磁性粉を
用いて、所望の保磁力を有する磁性粉を製造することが
でき、かつ、この制御された保磁力を有する磁性粉は、
磁気記録媒体用に用いた場合,保磁力の変動が抑制され
るという従来技術からは全く予測しえなかった優れた作
用効果を奏する.したがって、本発明の工業的価値は極
めて大である. (ム下余白)
An object of the present invention is to provide a method for producing cobalt-containing hexagonal barium ferrite magnetic powder having a controlled coercive force. Further, an object of the present invention is to: when applied to a magnetic recording medium;
The purpose of this invention is to provide a method for producing cobalt-containing hexagonal barium ferrite magnetic powder with a small variation in coercive force. The present inventors conducted intensive studies to solve the above-mentioned problems, and surprisingly found that after exposing hexagonal barium ferrite magnetic powder containing cobalt to a specific type of organic compound, The coercive force of the magnetic powder increases when the organic compound is removed by evaporation, and the increase in coercive force can be freely controlled within a range of 1000 (Oe) or less by selecting the type and combination of organic substances to be treated. We found that it is possible to control Furthermore, the present inventors have found that when the cobalt-containing barium ferrite magnetic powder having a controlled coercive force obtained in this way is used for magnetic recording media, fluctuations in the coercive force are significantly suppressed and We have discovered that it is possible to stably manufacture magnetic recording media with a reasonable coercive force. The present invention has been completed based on these findings. By the way, as mentioned above, methods of attaching or coating various organic substances to improve the dispersibility of substituted hexagonal barium ferrite magnetic powder are known, but the method of the present invention is different from these conventional methods. Differently, the method is characterized in that a specific type of organic compound is deposited on a cobalt-containing hexagonal barium ferrite magnetic powder, and then the organic compound is evaporated and removed, and a magnetic powder with a controlled coercive force is obtained. It aims to achieve purposes and effects that were previously unknown. Furthermore, among the substituted hexagonal barium ferrite magnetic powders, this method is effective only for cobalt-containing hexagonal barium ferrite magnetic powders using cobalt (Co) as the substitution element, and has selectivity. be. Note that the magnetic powder does not necessarily have to have a part of Fe replaced with a theoretical amount of cobalt,
If CO is included, it always has a similar effect. As described above, according to the method of the present invention, magnetic powder having a desired coercive force can be manufactured using cobalt-containing hexagonal barium ferrite magnetic powder having an arbitrary coercive force, and this control can be performed. Magnetic powder with a coercive force of
When used in magnetic recording media, it exhibits an excellent effect that could not be predicted from conventional technology, such as suppressing fluctuations in coercive force. Therefore, the industrial value of the present invention is extremely large. (bottom margin)

【課題を解決するための手段】[Means to solve the problem]

かくして、本発明によれば、コバルト含有六方晶系バリ
ウムフェライト磁性粉に、リン原子を含まない炭素数1
3以下の有機化合物を被着させたのち、−50℃以上,
SOO℃未満、かつ、該有機化合物の熱分解温度未満の
温度で、葭有機化合物を蒸発除去させることを特徴とす
る制御された保磁力を有するコバルト含有六方晶系バリ
ウムフェライト磁性粉の製造方法が提供される.本発明
の製造方法で得られたコバルト含有六方晶系バリウムフ
ェライト磁性粉を用いることにより、所望の保磁力を精
度よく付与された磁気記録媒体を得ることができる. 以下、本発明の構成について詳述′する.(磁性粉) 本発明において原料として用いるコバルト含有六方晶系
バリウムフェライト磁性粉は、コバルトを含有する六方
晶系バリウムフェライト磁性粉であればよく、特に制限
はないが、高密度磁気記録媒体用に適する平均粒径0,
01〜0.1μm、保磁力200〜2000 [Oel
のコバルト含有六方晶系バリウムフェライト磁性粉は、
本発明の方法が著効を示すため好ましい. 本発明の方
法による特有の効果は、コバルト含有六方晶系バリウム
フェライト磁性粉に限って発現するものであり、コバル
トを含まない六方晶系バリウムフェライト磁性粉は対象
外である. 本発明の方法による保磁力の制御範囲は、原料の磁性粉
の保磁力に対し、大きいもので1 000(Oel程度
の上昇効果をもち、減少効果を示すものはない.したが
って、処理前の原料磁性粉としては、目的とする磁気記
録媒体の保磁力より,1000 [Oe)以下,好まし
くは50〜1000 [Oel 、さらに好ましくは5
0〜800 [Oel程度低い保磁力を有する磁性粉を
選ぶとよい. 本発明で使用されるコバルト含有六方晶系バリウムフェ
ライト磁性粉は、コバルトの他に粉体特性、磁気特性の
向上等の目的で各種元素、例えば、Mg.Sc,Y.V
.S1,Ta%Mo,W,  Re,  Sr.  R
u % Os % Ca.  Rh.Ir.  Pb,
  Pd.  Pt% Ag,  Hg% Ga.G−
 e s  A s %T e %N  i %M n
 %Z n s  T  i 、In,  Nds  
Zr% Cr.  La.  Cu.  Cd.AI,
  Tl.  Sn.  P,  Sb % Bl  
% Se.Ce.Pr.Tb.Gd%Yb%Th%Uな
どから選ばれる一種または二種以上の元素を少量含有さ
せたものであってもよい. また、コバルト含有六方晶系バリウムフェライト磁性粉
の製造方法としては、いかなる方法によるものでもよく
、例えば、共沈法、水熱合戒法、ガラス結晶化法等が例
示される. (有機化合物) 本発明で用いる有機化合物は、リン原子を含まない炭素
数13以下の有機化合物である.具体的には、例えば、
メチルアルコール、エチルアルコール、n−プロビルア
ルコール、イソブロビルアルコール、アリルアルコール
、クロチルアルコール、n−ブチルアルコール、イソブ
チルアルコール、t−ブチルアルコール、n−アミルア
ルコール、イソアミルアルコール、t−アミルアルコー
ル、ネオペンチルアルコール、シクロベンタノール、n
−ヘキシルアルコール、シクロヘキサノール、2−ヘブ
タノール、エチレングリコール、1.2−ブロバンジオ
ールなどの炭素数が7以下のアルコール類;n一吉草酸
、トリメチル酢酸、カプロン酸、n−へブタン酸、カブ
リル酸、ペラルゴン酸、ウンデカン酸、ラウリン酸、安
息香酸などの炭素数が5以上13以下のカルボン酸;無
水酢酸、無水ブロビオン酸、無水n一酩酸、無水コハク
酸,無水マレイン酸,無水安息香酸などの炭素数が4以
上13以下の酸無水物;アセトン、メチルエチルケトン
、メチルn−プロビルケトン、メチルイソブチルケトン
、ジエチルケトン、ヘキサノン−2、ヘキサノン−3、
ビナコロン、ジーn−プロビルケトン、ジイソブロビル
ケトン、ジイソブチルケトン、ジーn−アミルケトン、
ジアセチル、アセチルアセトン、ホロン、シクロベンタ
ノン、シクロヘキサノン、シクロヘブタノン、ホルムア
ルデヒド、アセトアルデヒド、クロラール、グリオキサ
ール,ブロピオンアルデヒド、n−ブチルアルデヒド,
イソブチルアルデヒド、n−バレルアルデヒド、n一カ
ブロンアルデヒド、アクロレイン、クロトンアルデヒド
、ベンズアルデヒド、フルフラールなどの炭素数が13
以下のケトン類およびアルデヒド類;メチルアミン、ジ
メチルアミン、トリメチルアミン、エチルアミン、ジエ
チルアミン、トリエチルアミン、n−プロビルアミン、
ジーn−プロビルアミン、トリーn−プロビルアミン、
n−プチルアミン、n−アミルアミン、n−ヘキシルア
ミン、ラウリルアミン、エチレンジアミン,トリメチレ
ンジアミン、エタノールアミン,トリエタノールアミン
、アリルアミン、アニリン、ビリジン、ビコリン、キノ
リン、アセトアミド、プロビオンアミド、ペンズアミド
、ペンゾニトリルなどの炭素数が13以下の含窒素化合
物;ジメチルエーテル、メチルエチルエーテル、ジェチ
ルエーテル、ジーn−プロビルエーテル、ジイソブロビ
ルエーテル、メチルn−プチルエーテル、エチルn−ブ
チルエーテル、ジーn−ブチルエーテル、ジーn−アミ
ルエーテル、ジイソアミルエーテル、エチレングリコー
ルジメチルエーテル、ジビニルエーテル、ジアリルエー
テル、テトラヒドロフラン、アニソール、ジヒドロビラ
ン、プロピレンオキシド、2.3−エボキシ−1−ブロ
バノールなどの炭素数が13以下のエーテル化合物;ブ
タン、イソブタン、ペンタン、ヘキサン、ヘブタン、オ
クタン、ノナン、デカン,ウンデカン、ドデカン,エチ
レン、プロピレン,プテンー1、ブテンー2、イソブチ
レン、ペンテン−1、ベンテン−2、2−メチルブテン
ー2、ヘキセンー2、ヘプテン−1、オクテン−3、ペ
ンタジェン、ヘキサジエン、ブタジェン、シクロベンク
ン、シクロヘキサン、シクロヘブタン、シクロオクテン
、シクロノネン,シクロベンテン、シクロヘキセン、シ
クロヘプテン、ブロビン、ブチン、ベンチン、ヘキシン
,ヘプチン、オクチンなどの炭素数が4以上13以下の
脂肪族および脂環式炭化水素化合物:ベンゼン、トルエ
ン、キシレン、らトロベンゼン、フェノール,インデン
、ナフタリン、メチルナフタリン、チオフエン、クレゾ
ール、ナフトール、キシレノール、エチルベンゼン、n
−プロビルベンゼン,クメン、n−プチルベンゼン、ス
チレン,アリルベンゼン、スチルベンなどの炭素数が1
3以下の芳香族化合物;蟻酸メチル、蟻酸エチル、酢酸
メチル、酢酸エチル、酢酸ブチル、酢酸アミル,プロビ
オン酸メチル、ブロビオン酸エチル、酩酸エチル、吉草
酸メチル、イソ吉草酸メチル.n−ヘブタン酸エチル,
ペラルゴン酸エチルなどの炭素数が13以下のエステル
化合物;臭化メチル、ヨウ化メチル、塩化エチル、臭化
エチル,ヨウ化エチル、塩化n−プロビル、臭化n−プ
ロビル、ヨウ化n−プロビル、塩化イソブロビル、臭化
イソブロビル、ヨウ化イソブロビル、塩化n−ブチル、
臭化n−ブチル、塩化イソブチル、臭化イソブチル、塩
化Sec−プチル、臭化sec−ブチル、塩化t一ブチ
ル、臭化t−ブチル、臭化n−アミル、臭化イソアミル
、臭化t−アミル、臭化n−へキシル、臭化n−才クタ
デシル、塩化ビニル、臭化ビニル、塩化アリル、臭化ア
リル、ヨウ化アリル、プロムアレン、臭化プロバルギル
、クロルメチルエチルエーテル、塩化ベンゼン、臭化β
−メチルビニル、フッ化アセチル、塩化アセチル、臭化
プロムアセチル,塩化クロルアセチル、塩化プロピオニ
ル、塩化n−ブチリル、塩化イソブチリル、塩化n−バ
レリル、塩化イソバレリル、塩化カブリル、塩化ベンゾ
イル、四塩化炭素,クロロホルム、四臭化炭素、プロモ
ホルム、ヨードホルム、ヨウ化メチレン、奥化メチレン
,塩化メチレン、ジクロルジフルオルメタン、二塩化エ
チレン、二.臭化エチレン、塩化エチリデン、S−テト
ラクロルエタン、ヘキサクロルエタン、S−ジクロルエ
チレン、トリクロルエチレン、臭化トリメチレン、臭化
テトラメチレン、臭化ペンタメチレン、臭化ヘキサメチ
レンなどの炭素数13以下の含ハロゲン化合物;メチル
メルカブタン、エチルメルカブタン、n−プチルメルカ
ブタン、エタンジチオール、イソブチルメルカブタン、
プロビルメルカブタン、ビチェニル、硫化メチルエチル
、硫化ジエチル、チオフェノール、ジメチルスルホキシ
ドなどのスルホン酸を除く炭素数13以下の含イオウ化
合物;等が挙げられる.これらの有機化合物の中でも、
特に沸点が低い炭素数の少ない有機化合物が好ましい. これらの有機化合物は,通常、気体、液体または水溶液
などの形態で使用される.有機化合物は、単独で使用し
てもよく、また、2種以上を混合して用いてもよい.水
溶液として用いる場合には、有機化合物によって水に対
する溶解度が異なるので一概には決めることはできない
が、通常、5重量%以上の濃度とすることが付着作業効
率上好ましい. 使用する有機化合物の種類によって、コバルト含有六方
晶系バリウムフェライト磁性粉の保磁力の増加幅が異な
り、かつ、有機化合物の種類または有機化合物の組合わ
せ・混合比率を選択することにより、原料磁性粉の保磁
力をlO〜1000[Oe)の範囲内で無段階的に上昇
制御することができる.したがって、該磁性粉をどのよ
うな保磁力にまで上昇させるのかにより、好ましい有機
化合物の種類または組合わせ等を選択すればよい. (製造方法) 本発明においては,コバルト含有六方晶系バリウムフェ
ライト磁性粉に、リン原子を含まない炭素数13以下の
有機化合物を被着させたのち、−50℃以上、500℃
未満、かつ、該有機化合物の熱分解温度未満の温度で、
該有機化合物を蒸発させる. 本発明の方法では、まず、原料のコバルト含有六方晶系
バリウムフェライト磁性粉として、目的とする磁気記録
媒体における設定保磁力よりも10〜1ooo [Oe
l小さな保磁力を有する磁性粉を使用する.1000 
[Oel以内の保磁力の差であれば、本発明の方法によ
り上昇制御が可能だからである. 次いで、原料磁性粉の保磁力を設定値通りに上昇させる
ことができる有機化合物または有機化合物の組合わせ(
混合比率を含め)を選択する.本発明の方法は、このよ
うにして選択された有機化合物物質をコバルト含有六方
晶系バリウムフェライト磁性粉に被着させる工程(被着
工程)と、しかる後、該磁性粉から有機化合物を蒸発除
去する工程(蒸発除去工程)とからなる.L豊工1 被着工程では、有機化合物がコバルト含有六方晶系バリ
ウムフェライト磁性粉の全体に均一に被着するようにす
ることが、均一な品質の磁性粉を得るために好ましい. 被着方法は、特に限定されないが、例えば、常温で液体
の有機化合物の場合、直接有機化合物に磁性粉を加えて
撹拌する方法;常温で液体の有機化合物を加熱して気体
状にし,固定床、流動床、移動床などにより磁性粉と接
触させる方法;常温で気体の有機化合物の場合、固定床
、流動床、移動床などにより磁性粉と接触させる方法:
常温で気体の有機化合物を冷却液化してから磁性粉に加
えて撹拌する方法:常温で固体の有機化合物の場台、加
熱して溶解または蒸発させ、あるいは溶媒に溶解させて
から磁性粉と接触させる方法;などを挙げることができ
る. 被着工程で磁性粉に対して過剰量の有機化合物がある場
合は、過剰の有機化合物を濾別等の手段によって取り除
いてもよい. え及亀圭工1 次に、被着工程で被着した有機化合物を蒸発除去せしめ
る. ここで有機化合物の蒸発除去とは、磁性粉に残存する被
着有機化合物の割合が磁性粉に対し、5重量%以下にな
った時の状態をいう. 本工程は、コバルト含有六方晶系バリウムフェライト磁
性粉の改質がなされる重要な工程である. 有機化合物の蒸発除去温度は、−50℃以上、500℃
以下、かつ、該有機化合物の熱分解温度未満の温度であ
る.−50℃未満では、蒸発時間が長くなり操作上不便
であり、効率的ではない.600℃以上または熱分解温
度以上であると、保磁力上昇の目的を達成することがで
きない.特に、500〜700℃の高温での処理では、
磁性粉の保磁力は未処理の原料磁性粉の保磁力にもどり
、また、800℃以上での処理では、磁性粉が焼成され
て保磁力が上昇し、変動する.なお,このように、本発
明の方法によって得られる保磁力が上昇制御された磁性
粉であっても,例えば、500〜700℃の高温で熱処
理を行うと,保磁力が原料磁性粉の保磁力の水準にまで
もどるため、処理済の磁性粉を加熱再生し、再度有機化
合物で処理すれば、異る保磁力を有する磁性粉を得るこ
とができる. 圧力は,通常,0〜lO気圧(絶対圧)で実施される.
常圧で充分に実施できるが、蒸発速度が早い有機化合物
の場合等には、加圧下で、また蒸発速度が遅い有機化合
物の場合等には減圧下で実施される. 蒸発除去を行う場合の雰囲気は、窒素ガスなどの不活性
ガス雰囲気中でもよいが、通常は空気中で行われる.
Thus, according to the present invention, the cobalt-containing hexagonal barium ferrite magnetic powder has a carbon number of 1 and does not contain a phosphorus atom.
After depositing an organic compound of 3 or less, -50℃ or higher,
A method for producing cobalt-containing hexagonal barium ferrite magnetic powder having a controlled coercive force, characterized in that an organic compound is evaporated and removed at a temperature below SOO°C and below the thermal decomposition temperature of the organic compound. Provided. By using the cobalt-containing hexagonal barium ferrite magnetic powder obtained by the production method of the present invention, it is possible to obtain a magnetic recording medium to which a desired coercive force is accurately imparted. The configuration of the present invention will be explained in detail below. (Magnetic powder) The cobalt-containing hexagonal barium ferrite magnetic powder used as a raw material in the present invention may be any cobalt-containing hexagonal barium ferrite magnetic powder, and is not particularly limited. Suitable average particle size 0,
01~0.1μm, coercive force 200~2000 [Oel
The cobalt-containing hexagonal barium ferrite magnetic powder is
The method of the present invention is preferred because it is highly effective. The unique effects achieved by the method of the present invention are limited to cobalt-containing hexagonal barium ferrite magnetic powders, and do not apply to hexagonal barium ferrite magnetic powders that do not contain cobalt. The control range of the coercive force by the method of the present invention has an increasing effect of about 1000 (Oel) with respect to the coercive force of the raw material magnetic powder, and there is no decreasing effect. Therefore, the coercive force of the raw material before treatment The magnetic powder has a coercive force of 1000 [Oe) or less, preferably 50 to 1000 [Oel], more preferably 5
0 to 800 [It is best to choose magnetic powder that has a coercive force as low as Oel. The cobalt-containing hexagonal barium ferrite magnetic powder used in the present invention contains various elements other than cobalt, such as Mg, for the purpose of improving powder properties and magnetic properties. Sc, Y. V
.. S1, Ta%Mo, W, Re, Sr. R
u % Os % Ca. Rh. Ir. Pb,
Pd. Pt% Ag, Hg% Ga. G-
e s A s %T e %N i %M n
%Z n s T i , In, Nds
Zr% Cr. La. Cu. Cd. AI,
Tl. Sn. P, Sb% Bl
% Se. Ce. Pr. Tb. It may contain a small amount of one or more elements selected from Gd%Yb%Th%U, etc. Further, the cobalt-containing hexagonal barium ferrite magnetic powder may be produced by any method, such as a coprecipitation method, a hydrothermal method, a glass crystallization method, and the like. (Organic Compound) The organic compound used in the present invention is an organic compound that does not contain a phosphorus atom and has 13 or less carbon atoms. Specifically, for example,
Methyl alcohol, ethyl alcohol, n-propyl alcohol, isobropyl alcohol, allyl alcohol, crotyl alcohol, n-butyl alcohol, isobutyl alcohol, t-butyl alcohol, n-amyl alcohol, isoamyl alcohol, t-amyl alcohol, neo pentyl alcohol, cyclobentanol, n
-Alcohols with 7 or less carbon atoms such as hexyl alcohol, cyclohexanol, 2-hebutanol, ethylene glycol, 1,2-brobanediol; n-monovaleric acid, trimethylacetic acid, caproic acid, n-hebutanoic acid, cabrylic acid , pelargonic acid, undecanoic acid, lauric acid, benzoic acid, and other carboxylic acids having 5 to 13 carbon atoms; acetic anhydride, brobionic anhydride, n-monocarboxylic anhydride, succinic anhydride, maleic anhydride, benzoic anhydride, etc. Acid anhydrides having 4 to 13 carbon atoms; acetone, methyl ethyl ketone, methyl n-probyl ketone, methyl isobutyl ketone, diethyl ketone, hexanone-2, hexanone-3,
Vinacolone, di-n-propyl ketone, diisobrobyl ketone, diisobutyl ketone, di-n-amyl ketone,
Diacetyl, acetylacetone, holon, cyclobentanone, cyclohexanone, cyclohebutanone, formaldehyde, acetaldehyde, chloral, glyoxal, propionaldehyde, n-butyraldehyde,
Isobutyraldehyde, n-valeraldehyde, n-cabronaldehyde, acrolein, crotonaldehyde, benzaldehyde, furfural, etc. with 13 carbon atoms
The following ketones and aldehydes; methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, n-propylamine,
di-n-probylamine, tri-n-probylamine,
n-butylamine, n-amylamine, n-hexylamine, laurylamine, ethylenediamine, trimethylenediamine, ethanolamine, triethanolamine, allylamine, aniline, viridine, vicoline, quinoline, acetamide, probionamide, penzamide, penzonitrile, etc. Nitrogen-containing compounds having 13 or less carbon atoms; dimethyl ether, methyl ethyl ether, diethyl ether, di-n-propyl ether, diisobrobyl ether, methyl n-butyl ether, ethyl n-butyl ether, di-n-butyl ether, di-n- Ether compounds with 13 or less carbon atoms such as amyl ether, diisoamyl ether, ethylene glycol dimethyl ether, divinyl ether, diallyl ether, tetrahydrofuran, anisole, dihydrobylan, propylene oxide, 2,3-epoxy-1-brobanol; butane, isobutane , pentane, hexane, hebutane, octane, nonane, decane, undecane, dodecane, ethylene, propylene, butene-1, butene-2, isobutylene, pentene-1, bentene-2, 2-methylbutene-2, hexene-2, heptene-1, octene -3, aliphatic group having 4 to 13 carbon atoms such as pentadiene, hexadiene, butadiene, cyclobencune, cyclohexane, cyclohebutane, cyclooctene, cyclononene, cyclobentene, cyclohexene, cycloheptene, brobin, butyne, bentine, hexine, heptyne, octyne, etc. and alicyclic hydrocarbon compounds: benzene, toluene, xylene, latrobenzene, phenol, indene, naphthalene, methylnaphthalene, thiophene, cresol, naphthol, xylenol, ethylbenzene, n
- Probylbenzene, cumene, n-butylbenzene, styrene, allylbenzene, stilbene, etc. with 1 carbon number
Aromatic compounds of 3 or less; methyl formate, ethyl formate, methyl acetate, ethyl acetate, butyl acetate, amyl acetate, methyl propionate, ethyl blobionate, ethyl formate, methyl valerate, methyl isovalerate. n-ethyl hebutanoate,
Ester compounds having 13 or less carbon atoms such as ethyl pelargonate; methyl bromide, methyl iodide, ethyl chloride, ethyl bromide, ethyl iodide, n-propyl chloride, n-propyl bromide, n-propyl iodide, Isobrobyl chloride, isobrobyl bromide, isobrobyl iodide, n-butyl chloride,
n-butyl bromide, isobutyl chloride, isobutyl bromide, sec-butyl chloride, sec-butyl bromide, t-butyl chloride, t-butyl bromide, n-amyl bromide, isoamyl bromide, t-amyl bromide , n-hexyl bromide, n-tadecyl bromide, vinyl chloride, vinyl bromide, allyl chloride, allyl bromide, allyl iodide, promalene, probargyl bromide, chloromethyl ethyl ether, benzene chloride, β bromide
- Methyl vinyl, acetyl fluoride, acetyl chloride, promoacetyl bromide, chloroacetyl chloride, propionyl chloride, n-butyryl chloride, isobutyryl chloride, n-valeryl chloride, isovaleryl chloride, cabryl chloride, benzoyl chloride, carbon tetrachloride, chloroform , carbon tetrabromide, bromoform, iodoform, methylene iodide, methylene chloride, methylene chloride, dichlorodifluoromethane, ethylene dichloride, 2. 13 or less carbon atoms, such as ethylene bromide, ethylidene chloride, S-tetrachloroethane, hexachloroethane, S-dichloroethylene, trichlorethylene, trimethylene bromide, tetramethylene bromide, pentamethylene bromide, hexamethylene bromide, etc. Halogen-containing compounds; methyl mercabutane, ethyl mercabutane, n-butyl mercabutane, ethanedithiol, isobutyl mercabutane,
Examples include sulfur-containing compounds having 13 or less carbon atoms, excluding sulfonic acids, such as probilmerkabutane, bichenyl, methylethyl sulfide, diethyl sulfide, thiophenol, and dimethyl sulfoxide. Among these organic compounds,
In particular, organic compounds with a low boiling point and a small number of carbon atoms are preferred. These organic compounds are usually used in the form of gas, liquid, or aqueous solution. The organic compounds may be used alone or in combination of two or more. When used as an aqueous solution, the solubility in water varies depending on the organic compound, so it cannot be determined unconditionally, but it is usually preferable to have a concentration of 5% by weight or more in terms of adhesion efficiency. The range of increase in coercive force of cobalt-containing hexagonal barium ferrite magnetic powder varies depending on the type of organic compound used, and by selecting the type of organic compound or the combination/mixing ratio of organic compounds, the raw material magnetic powder The coercive force of can be controlled to increase steplessly within the range of lO to 1000 [Oe]. Therefore, the preferred type or combination of organic compounds may be selected depending on how high the coercive force of the magnetic powder is to be raised. (Production method) In the present invention, after coating cobalt-containing hexagonal barium ferrite magnetic powder with an organic compound having 13 or less carbon atoms and not containing a phosphorus atom,
and at a temperature below the thermal decomposition temperature of the organic compound,
Evaporate the organic compound. In the method of the present invention, first, the cobalt-containing hexagonal barium ferrite magnetic powder as a raw material has a coercive force of 10 to 100 [Oe
lUse magnetic powder with a small coercive force. 1000
[This is because if the difference in coercive force is within Oel, increase control is possible by the method of the present invention. Next, an organic compound or a combination of organic compounds (
(including the mixing ratio). The method of the present invention comprises the steps of depositing the organic compound material selected in this way onto cobalt-containing hexagonal barium ferrite magnetic powder (deposition step), and then removing the organic compound from the magnetic powder by evaporation. (evaporation removal process). L Toyoko 1 In the deposition process, it is preferable to uniformly deposit the organic compound over the entire cobalt-containing hexagonal barium ferrite magnetic powder in order to obtain magnetic powder of uniform quality. The deposition method is not particularly limited, but for example, in the case of an organic compound that is liquid at room temperature, magnetic powder is directly added to the organic compound and stirred; For organic compounds that are gaseous at room temperature, contact with magnetic powder using a fixed bed, fluidized bed, moving bed, etc.:
A method in which organic compounds that are gaseous at room temperature are cooled and liquefied and then added to magnetic powder and stirred: For organic compounds that are solid at room temperature, they are dissolved or evaporated by heating, or dissolved in a solvent and then brought into contact with magnetic powder. For example, how to do this. If there is an excess amount of organic compound relative to the magnetic powder during the deposition process, the excess organic compound may be removed by means such as filtration. Eokime Keiko 1 Next, the organic compounds deposited in the deposition process are removed by evaporation. Here, the evaporation removal of organic compounds refers to the state when the proportion of the adhered organic compounds remaining in the magnetic powder becomes 5% by weight or less based on the magnetic powder. This step is an important step in modifying the cobalt-containing hexagonal barium ferrite magnetic powder. The evaporation removal temperature of organic compounds is -50℃ or higher, 500℃
The temperature is below and below the thermal decomposition temperature of the organic compound. If the temperature is lower than -50°C, the evaporation time becomes long, which is inconvenient and inefficient. If the temperature is above 600°C or above the thermal decomposition temperature, the purpose of increasing coercive force cannot be achieved. In particular, when processing at high temperatures of 500 to 700°C,
The coercive force of the magnetic powder returns to the coercive force of the untreated raw material magnetic powder, and when treated at temperatures above 800°C, the magnetic powder is fired and the coercive force increases and fluctuates. As described above, even if the magnetic powder obtained by the method of the present invention has a controlled increase in coercive force, if heat treatment is performed at a high temperature of 500 to 700°C, the coercive force will be lower than the coercive force of the raw material magnetic powder. In order to return to the same level as above, by heating and regenerating the treated magnetic powder and treating it again with an organic compound, it is possible to obtain magnetic powder with a different coercive force. The pressure is usually 0 to 10 atm (absolute pressure).
Although it can be carried out satisfactorily at normal pressure, in the case of organic compounds with a fast evaporation rate, it is carried out under increased pressure, and in the case of organic compounds with a slow evaporation rate, it is carried out under reduced pressure. The atmosphere for evaporation removal may be an inert gas atmosphere such as nitrogen gas, but it is usually carried out in air.

【作 用】[For use]

本発明の製造方法により得られたコバルト含有六方晶系
バリウムフェライト磁性粉は、驚くべきことに、処理前
の原料磁性粉の保磁力より、lO〜1000 [Oel
の範囲で上昇し、しかも有機化合物の種類や組合わせを
選択することにより、保磁力の上昇幅を制御できるので
、目的とする保磁力を有する磁性粉を±20 [Oel
程度の精度で製造することができる. また、本発明の方法にて得られた磁性扮は,これを用い
て磁気記録媒体としても、保磁力の大巾な変化がないた
め、目的とする磁気記録媒体の設定保磁力から容易に磁
性粉に付与すべき保磁力の値を定めることができる. 本発明の製造方法によって、かくも驚くべき効果が発現
する理由は明確ではないが、前記特定の有機化合物をコ
バルト含有六方晶系バリウムフェライト磁性粉に被着せ
しめ、しかる後被着せしめた有機化合物を蒸発除去せし
める段階において、該磁性粉が改質されるためと推定さ
れる.すなわち、磁性粉表面にある活性化されたコバル
ト原子の触媒作用によって、空気中の酸素ないしは磁性
粉表面に強く化学吸着された分子状または原子状の酸素
と、有機化合物とが反応して、使用した有機化合物のそ
れぞれに対応した弱酸性を示す特殊な化合物が生起し、
この特殊化合物が磁性粉表面の水酸基と強く結合するこ
とによって該磁性粉の表面を変性せしめ、その結果、保
磁力が上昇するものと推定される.このため、該磁性粉
の保磁力は,該特殊化合物の種類によって上昇巾が10
〜1000 (Oelの範囲内で任意に制御され、かつ
、該磁性粉を磁気記録媒体に用いた時にも該磁性粉の表
面に特殊化合物が存在するために保磁力変動が抑制され
るものと推測される.このことは、本発明の方法で得ら
れたMi性扮の表面イオン濃度が.未処理の原料磁性粉
のそれよりも、低下すること、本発明の作用効果が、コ
バルト含有六方晶系バリウムフェライトの場合にかぎり
生起すること、炭素数が13を超える分子の大きな有機
化合物では上記作用効果が少いこと、酸化が強く進んで
いる炭素数4以下の脂肪酸でも同様に作用効果が少いこ
と等からも、考え得る推定といえる.ただし、本発明の
技術的範囲は、これらの反応機構等の推定によって制限
されるものではない. また、本発明の方法によって、磁性粉の表面あるいはバ
ルクの一部が還元されているか否かを、後記する実施例
lで得られた磁性粉及び未処理の原料磁性粉について、
X線回折(X R D)及び光電子分光法(ESCA)
で解析したが,処理されたものと未処理のものとの間に
差は認められず,このことから本発明の作用効果である
保磁力の上昇は、磁性粉の還元によるものではないと思
われる. ところで、本発明で得られた磁性粉の保磁力が仮に不適
当であった場合においても、500〜700℃に加熱す
ることにより、処理前の磁性粉と同一特性にもどるため
、改めて処理しなおすことができる.このように再生が
可能であるため,磁性粉の保磁力不適による失敗品がな
い.従来、コバルトの含有量によって磁性粉の保磁力を
制御していたが,コバルトの含有量が変動すると、その
,変動量が微量であっても得られる磁性扮の保磁力は大
きく変動し、その結果磁気記録媒体用として不適となる
磁性粉も多く、これらは再成不可能であったことと比較
すると、実用上の利点は大きい.これは500〜700
℃に強く加熱することによって磁性粉表面上に強く吸着
している上記の如き弱酸性を有する特殊化合物が脱着な
いしは燃焼するためによるものと思われる. (以下余白)
Surprisingly, the cobalt-containing hexagonal barium ferrite magnetic powder obtained by the production method of the present invention has a coercive force of lO to 1000 [Oel] than the coercive force of the raw material magnetic powder before treatment.
By selecting the type and combination of organic compounds, the increase in coercive force can be controlled within a range of ±20 [Oel].
It can be manufactured with a certain degree of precision. Furthermore, when the magnetic material obtained by the method of the present invention is used as a magnetic recording medium, there is no large change in coercive force. It is possible to determine the value of coercive force that should be imparted to the powder. Although the reason why such a surprising effect is achieved by the production method of the present invention is not clear, the specific organic compound is deposited on cobalt-containing hexagonal barium ferrite magnetic powder, and then the organic compound is deposited. This is presumed to be because the magnetic powder is modified during the step of evaporating and removing it. In other words, due to the catalytic action of the activated cobalt atoms on the surface of the magnetic powder, oxygen in the air or molecular or atomic oxygen strongly chemically adsorbed on the surface of the magnetic powder reacts with the organic compound. A special compound exhibiting weak acidity corresponding to each organic compound is generated,
It is presumed that this special compound modifies the surface of the magnetic powder by strongly bonding with the hydroxyl groups on the surface of the magnetic powder, resulting in an increase in coercive force. Therefore, the coercive force of the magnetic powder varies by 10% depending on the type of the special compound.
~1000 (It is assumed that the coercive force fluctuation is controlled arbitrarily within the range of Oel and that even when the magnetic powder is used in a magnetic recording medium, the coercive force fluctuation is suppressed due to the presence of a special compound on the surface of the magnetic powder.) This means that the surface ion concentration of the Mi-based powder obtained by the method of the present invention is lower than that of the untreated raw material magnetic powder, and that the effects of the present invention are lower than that of the untreated raw material magnetic powder. This occurs only in the case of barium ferrite, the above effects are small in organic compounds with large molecules with more than 13 carbon atoms, and the effects are similarly small in fatty acids with carbon atoms of 4 or less, which are highly oxidized. However, the technical scope of the present invention is not limited by these estimations of the reaction mechanism, etc. Furthermore, by the method of the present invention, the surface of magnetic powder or Whether or not a part of the bulk has been reduced was determined for the magnetic powder obtained in Example 1 described later and the untreated raw material magnetic powder.
X-ray diffraction (XRD) and photoelectron spectroscopy (ESCA)
As a result of the analysis, no difference was observed between the treated and untreated samples, which suggests that the increase in coercive force, which is an effect of the present invention, is not due to the reduction of the magnetic powder. It will be done. By the way, even if the coercive force of the magnetic powder obtained in the present invention is inappropriate, by heating it to 500 to 700 ° C., it will return to the same characteristics as the magnetic powder before treatment, so it can be treated again. be able to. Since it is recyclable in this way, there are no failed products due to inadequate coercive force of the magnetic powder. Conventionally, the coercive force of magnetic powder was controlled by the cobalt content, but if the cobalt content fluctuates, the coercive force of the magnetic powder obtained will fluctuate greatly even if the amount of variation is small. As a result, there are many magnetic powders that are unsuitable for use in magnetic recording media, and compared to the fact that they cannot be regenerated, this has a great practical advantage. This is 500-700
This is thought to be due to the fact that the weakly acidic special compounds mentioned above, which are strongly adsorbed on the surface of the magnetic powder, are desorbed or burned when heated strongly to ℃. (Margin below)

【実施例l 以下、本発明について実施例および比較例を挙げて具体
的に説明するが、本発明は実施例のみに限定されるもの
ではない. 〈物性等の測定方法〉 実施例における各種物性等の測定方法は次のとおりであ
る. Hc VSM (振動試料型磁力計)を用い、最大印加磁場1
0 [KOel 、測定温度28℃で測定した. 里圭0L径 透過型電子顕微鏡で得られたコバルト含有六方晶系バリ
ウムフェライト磁性粉の写真から400個の粒子の最大
直径を測定し、算術平均によって算出した. 直iL量羞1 磁性粉60重量部に導電性カーボンブラック3重量部、
シクロヘキサノン10重量部、メチルエチルケトン50
重量部、トルエン30重量部な加えて混合し、さらに磁
気テープバインダー(日本ゼオン■製、商品名 MR−
 1 1 0)を6重量部添加し、混合して磁気塗料と
する.これをロールコーターにてポリエチレンテレフタ
レートフィルム面に無配向塗布し、カレンダーロールに
て平滑化を行ない磁気記録媒体とした. の VSM (振動試料型磁力計)を用い、最大印加磁場5
 [KOelを5mm角の磁気記録媒体の基体面に垂直
に印加し、測定温度28℃で測定した. ン“ JIS  K  5101−1978(顔料試験方法)
の24.のA法に準じて処理後、JISZ−8802 
(pHの測定方法)の7.に準じてpHを測定した. (以下余白) 【実施例1】 保磁力450 [Oel 、飽和磁化57. 0 [e
mu/gl、平均粒径0.05μmの一般組成式BaF
e   Co   T1o.90l9で示される1G.
2    0.9 Co−Ti置換バリウムフェライト磁性粉100gを、
第2表に示した各々の有機化合物であって加圧または加
温により液状としたちの100ml2中に浸漬し、撹拌
して均一に有機化合物を被着させた後、過剰の有機物質
を濾別し、次いで常圧下、空気中で、第2表に示した各
温度条件で6時間、恒温器中に放置して有機化合物を蒸
発除去せしめ、処理した磁性粉を得た.この磁性粉の磁
気特性を測,定した結果を第2表に示す.第2表から分
かるように、有機化合物で処理することにより、コバル
ト含有六方晶系バリウムフェライト磁性粉の保磁力が最
大1000 [Oel程度上昇し、また、有機化合物の
種類によって、保磁力の上昇幅が異なるため、使用する
有機化合物の種類と組合わせを選択することにより、原
料磁性粉の保磁力を1000 [Oel以下の範囲で任
意に上昇させることができる. また、第2表に示したメチルエチルケトンで処理したコ
バルト含有六方晶系バリウムフエライト磁性粉と、処理
前の原料磁性粉とのX線回折図を第l図に示す.第1図
から分かるように、両者間に差異は認められなかった. さらに、各磁性粉の表面イオン濃度(pH)を測定した
.その一例を示すと、有機化合物で処理をしていない磁
性粉のpHは7.5であるのに対し、第2表に示した有
機化合物で処理した磁性粉のpHは、用いた有機化合物
に対応して、メチルイソプチルケトンでは5.O,}ル
エンでは4.6、メチルエチルケトンでは4.5、シク
ロヘキサノンでは5.6、酢酸ブチルでは4.3、アセ
トンでは4.7、ジエチルエーテルでは4.9、及びメ
チルアルコールでは5.2であった. このように有機化合物で処理を行なったコバルト含有六
方晶系バリウムフェライト磁性粉の表面は弱酸性を示す
ことがわかる. 第2表 (1) 第2表 (2) 第2表 (3) 第2表 (5) 第2表 (4) 第2表 (6) 第2表 (7) 第2表 (9) 第2表 (8) 第2表 (10)
[Example 1] Hereinafter, the present invention will be specifically explained with reference to Examples and Comparative Examples, but the present invention is not limited to the Examples. <Methods for measuring physical properties, etc.> The methods for measuring various physical properties, etc. in the examples are as follows. Using Hc VSM (vibrating sample magnetometer), the maximum applied magnetic field 1
0 [KOel, measured at a measurement temperature of 28°C. The maximum diameter of 400 particles was measured from a photograph of a cobalt-containing hexagonal barium ferrite magnetic powder obtained using a 0L-diameter transmission electron microscope, and calculated by the arithmetic mean. Direct iL quantity 1: 60 parts by weight of magnetic powder, 3 parts by weight of conductive carbon black,
10 parts by weight of cyclohexanone, 50 parts by weight of methyl ethyl ketone
parts by weight and 30 parts by weight of toluene were added and mixed, and a magnetic tape binder (manufactured by Nippon Zeon, trade name MR-) was added.
Add 6 parts by weight of 110) and mix to make a magnetic paint. This was applied in a non-oriented manner onto the surface of a polyethylene terephthalate film using a roll coater, and smoothed using a calendar roll to form a magnetic recording medium. Using a VSM (vibrating sample magnetometer) with a maximum applied magnetic field of 5
[KOel was applied perpendicularly to the substrate surface of a 5 mm square magnetic recording medium, and the measurement temperature was 28°C. "JIS K 5101-1978 (Pigment test method)
24. After processing according to method A, JISZ-8802
(Method of measuring pH) 7. pH was measured according to. (Left below) [Example 1] Coercive force 450 [Oel, saturation magnetization 57. 0 [e
mu/gl, average particle size 0.05 μm general composition formula BaF
e Co T1o. 1G.90l9.
2 0.9 100g of Co-Ti substituted barium ferrite magnetic powder,
Each of the organic compounds shown in Table 2 is immersed in 100 ml of liquid Toshichichi by pressure or heating, stirred to coat the organic compound uniformly, and then filtered off excess organic substances. Then, the powder was left in a constant temperature chamber under normal pressure and air at each temperature shown in Table 2 for 6 hours to evaporate and remove organic compounds, thereby obtaining treated magnetic powder. Table 2 shows the results of measuring the magnetic properties of this magnetic powder. As can be seen from Table 2, by treatment with an organic compound, the coercive force of cobalt-containing hexagonal barium ferrite magnetic powder increases by about 1000 Oel at most, and the extent of increase in coercive force varies depending on the type of organic compound. Therefore, by selecting the type and combination of organic compounds used, the coercive force of the raw magnetic powder can be increased arbitrarily within the range of 1000 Oel or less. Figure 1 shows the X-ray diffraction patterns of the cobalt-containing hexagonal barium ferrite magnetic powder treated with methyl ethyl ketone shown in Table 2 and the raw material magnetic powder before treatment. As can be seen from Figure 1, no difference was observed between the two. Furthermore, the surface ion concentration (pH) of each magnetic powder was measured. As an example, the pH of magnetic powder that has not been treated with an organic compound is 7.5, while the pH of magnetic powder that has been treated with an organic compound shown in Table 2 is 7.5. Correspondingly, 5. for methyl isobutyl ketone. O,} was 4.6 for toluene, 4.5 for methyl ethyl ketone, 5.6 for cyclohexanone, 4.3 for butyl acetate, 4.7 for acetone, 4.9 for diethyl ether, and 5.2 for methyl alcohol. Ta. It can be seen that the surface of cobalt-containing hexagonal barium ferrite magnetic powder treated with organic compounds exhibits weak acidity. Table 2 (1) Table 2 (2) Table 2 (3) Table 2 (5) Table 2 (4) Table 2 (6) Table 2 (7) Table 2 (9) 2 Table (8) Table 2 (10)

【実施例2】 実施例lで用いたCo−Ti置換バリウムフエライト磁
性粉に、第3表に示す有機化合物を用いて、実施例1と
同様の処理を行なった.その結果を第3表に示す.また
,有機化合物で処理した各々の磁性粉な用いて磁気記録
媒体を製造し、その垂直方向の保磁力を測定し、その結
果を併せて第3表に示した. 第3表から、本発明の製造方法で得たコバルト含有六方
晶系バリウムフエライト磁性粉と、それを用いた磁気記
録媒体との保磁力の比が小さく、従来より大幅に改善さ
れていることが分かる.(以下余白)
Example 2 The Co--Ti substituted barium ferrite magnetic powder used in Example 1 was treated in the same manner as in Example 1 using the organic compounds shown in Table 3. The results are shown in Table 3. In addition, magnetic recording media were manufactured using each of the magnetic powders treated with an organic compound, and the coercive force in the perpendicular direction was measured. The results are also shown in Table 3. Table 3 shows that the ratio of coercive force between the cobalt-containing hexagonal barium ferrite magnetic powder obtained by the production method of the present invention and the magnetic recording medium using the same is small, and is significantly improved compared to the conventional one. I understand. (Margin below)

【実施例3】 第4表に示す一般組成式を有するコバルト含有八方晶系
バリウムフェライト磁性粉の各々について、有機化合物
としてシクロヘキサノンを用いて実施例1と同様に処理
を行なった. 物性の結果を第4表に示す.なお、各々の磁性粉の処理
前の保磁力は第4表の比較例lに示されているとおりで
あり(ただし、「処理後の磁性粉の保磁力」の欄に記載
)、飽和磁化は、第4表中最下段の試料については5g
.0 [emu/gl、下から2段目の試料については
57.5[emu/gl、その他の比較例1の試料につ
いては57.O [emu/glで、平均粒径はいずれ
も0.05μmである.
Example 3 Each of the cobalt-containing octagonal barium ferrite magnetic powders having the general composition formula shown in Table 4 was treated in the same manner as in Example 1 using cyclohexanone as the organic compound. Table 4 shows the results of physical properties. The coercive force of each magnetic powder before treatment is as shown in Comparative Example 1 in Table 4 (note in the column "Coercive force of magnetic powder after treatment"), and the saturation magnetization is , 5g for the sample at the bottom of Table 4
.. 0 [emu/gl, 57.5 [emu/gl for the second row sample from the bottom, 57.5 [emu/gl for the other samples of Comparative Example 1] O [emu/gl, and the average particle size is 0.05 μm in both cases.

【比較例IJ 実施例1及び実施例3で用いたコバルト含有六方晶系バ
リウムフェライト磁性粉について、有機化合物による処
理を行なわないで実施例3と同様の操作により、磁気記
録媒体を製造した.結果を第4表に併せて示した. 第4表の比較例1に示されているように、有機化合物に
よる処理をしていないコバルト含有六方晶系バリウムフ
ェライト磁性粉は,これを磁気記録媒体とした時、その
保磁力は約1.2〜約2.0倍程度も変動しており、し
かも磁性粉ごとにその上昇度合いもまちまちであること
が分かる. したがって,従来のコバルト含有六方晶系バリウムフェ
ライト磁性粉では,これを磁気記録媒体とした時に、磁
気記録媒体として要求される保磁力の変動許容範囲であ
る±20 [Oel以内になるように原料磁性粉の保磁
力を設定することは実質的に困難であることが分かる. (以下余白) 【実施例4J 第5表に示す一般組成式を有する各種のコバルト含有六
方晶系バリウムフェライト磁性粉を用いて、実施例lと
同様の処理を行なった.結果を第5表に示す. [比較例2】 第5表に示す一般組成式を有する置換元素としてコバル
トを含有しない置換六方品系バリウムフェライト磁性粉
を用いて、実施例lと同様の処理を行なった.結果を併
せて第5表に示す.第5表から分かるように、置換元素
としてコバルトを含有している六方晶系バリウムフェラ
イト磁性粉に限って保磁力の上昇制御がされるという本
発明の効果が認められることがわかる.(以下余白) [比較例3] 実施例lで用いたコバルト含有六方品系バリウムフエラ
イト磁性粉に、有機化合物としてメチルイソブチルケト
ンを被着させ、しかる後、蒸発除去した。このとき蒸発
除去温度を第6表に示す温度に変えたことを除いて実施
例1と同様の手順に従って処理を行なった.得られた結
果を第6表に示す。 第6表に示すように、500℃〜700℃の温度では、
処理後の磁性粉の磁気特性は原料磁性粉のそれと同じに
なる。また、800℃以上にまで温度を上げると、磁性
粉は焼或されて保磁力が上昇し,変動する. このように、制御された保磁力を有する磁性粉を得るた
めには、有機化合物の蒸発除去を500℃以下の温度で
実施することが必要であることが分かる. また、この事実から、ある特定の有機化合物で処理して
、仮に目的とする制御された保磁力が得られなかった場
合には、500〜700℃の温度で熱処理して、原料磁
性粉を再生することができ、再度有機化合物による処理
を行なうことができることが分かる. (以下余白)
[Comparative Example IJ] A magnetic recording medium was produced using the cobalt-containing hexagonal barium ferrite magnetic powder used in Examples 1 and 3 in the same manner as in Example 3 without performing any treatment with an organic compound. The results are also shown in Table 4. As shown in Comparative Example 1 in Table 4, when the cobalt-containing hexagonal barium ferrite magnetic powder that has not been treated with an organic compound is used as a magnetic recording medium, its coercive force is about 1. It can be seen that it fluctuates by a factor of 2 to about 2.0, and that the degree of increase varies depending on the magnetic powder. Therefore, when using conventional cobalt-containing hexagonal barium ferrite magnetic powder as a magnetic recording medium, the raw material magnetic It can be seen that it is practically difficult to set the coercive force of powder. (Left below) [Example 4J] The same treatment as in Example 1 was carried out using various cobalt-containing hexagonal barium ferrite magnetic powders having the general composition formula shown in Table 5. The results are shown in Table 5. Comparative Example 2 The same treatment as in Example 1 was carried out using substituted hexagonal barium ferrite magnetic powder having the general composition formula shown in Table 5 and containing no cobalt as a substituted element. The results are also shown in Table 5. As can be seen from Table 5, the effect of the present invention in controlling the increase in coercive force is observed only in hexagonal barium ferrite magnetic powders containing cobalt as a substituent element. (The following is a blank space) [Comparative Example 3] Methyl isobutyl ketone was deposited as an organic compound on the cobalt-containing hexagonal barium ferrite magnetic powder used in Example 1, and then removed by evaporation. At this time, the same procedure as in Example 1 was followed except that the evaporation removal temperature was changed to the temperature shown in Table 6. The results obtained are shown in Table 6. As shown in Table 6, at temperatures between 500°C and 700°C,
The magnetic properties of the magnetic powder after treatment are the same as those of the raw magnetic powder. Furthermore, when the temperature is raised to 800°C or higher, the magnetic powder is burned out and the coercive force increases and fluctuates. Thus, it can be seen that in order to obtain magnetic powder with a controlled coercive force, it is necessary to evaporate and remove organic compounds at a temperature of 500°C or lower. In addition, based on this fact, if the desired controlled coercive force cannot be obtained by treatment with a specific organic compound, heat treatment at a temperature of 500 to 700°C may be used to regenerate the raw magnetic powder. It can be seen that treatment with organic compounds can be performed again. (Margin below)

【実施例5】 有機化合物としてトルエンとシクロヘキサノンの混合物
100ml2を用い、実施例1で用いたコバルト含有六
方晶系バリウムフェライト磁性粉100gを該混合物中
に浸漬し、撹拌して均一に被着させた.過剰の有機化合
物を濾別した後、乾燥器中、常圧下、150℃の温度で
6時間放置し、有機化合物を蒸発除去せしめ、トルエン
とシクロヘキサノンの混合物で処理したCo−TL置換
六方晶系バリウムフェライト磁性粉を得た.ただし、ト
ルエンとシクロヘキサノンの混合物は、その混合重量比
[Example 5] Using 100 ml of a mixture of toluene and cyclohexanone as an organic compound, 100 g of the cobalt-containing hexagonal barium ferrite magnetic powder used in Example 1 was immersed in the mixture and stirred to coat it uniformly. .. After filtering off excess organic compounds, the Co-TL substituted hexagonal barium was left in a dryer at a temperature of 150° C. under normal pressure for 6 hours to evaporate the organic compounds and treated with a mixture of toluene and cyclohexanone. Ferrite magnetic powder was obtained. However, the mixture weight ratio of toluene and cyclohexanone is

【(シクロヘキサノンの重量)/(トルエンの重量十
シクロヘキサノンの重量)】をO、0.25、0.5、
0.75、1.0に変化させたものを用いた. これらの処理された磁性粉の保磁力を測定した.その結
果を第2図に示す. 第2図に示すように、トルエンとシクロヘキサノンの混
合重量比率の変化に比例して、得られる磁性粉の保磁力
は連続的に変化する.シタがって有機化合物の種類や組
合せ(混合物比率を含め)を選択することによって、原
料磁性粉から、その保磁力を1000 [Oelまでの
範囲内で任意に上昇させ、制御した保磁力を有する磁性
粉の得られることがわかる.
[(Weight of cyclohexanone)/(Weight of toluene + weight of cyclohexanone)] is O, 0.25, 0.5,
The values changed to 0.75 and 1.0 were used. The coercive force of these treated magnetic powders was measured. The results are shown in Figure 2. As shown in Figure 2, the coercive force of the resulting magnetic powder changes continuously in proportion to changes in the mixing weight ratio of toluene and cyclohexanone. By carefully selecting the type and combination of organic compounds (including the mixture ratio), the coercive force of the raw magnetic powder can be increased arbitrarily within the range up to 1000 [Oel], and the coercive force can be controlled. It can be seen that magnetic powder can be obtained.

【発明の効果】【Effect of the invention】

本発明の製造方法によれば、コバルト含有六万晶系バリ
ウムフェライト磁性粉の保磁力を10〜1000 [O
elの範囲内で任意に上昇制御した磁性粉を得ることが
でき、かつ、該磁性粉を磁気記録媒体にしても、その保
磁力の変動は抑制され、設定値通りの保磁力を有する磁
気記録媒体を安定して製造することができる. また、本発明の方法で得られた磁性粉は、500℃〜7
00℃の温度で処理することにより再生することができ
る. 本発明により高密度磁気記録媒体用に適する保磁力を有
する磁性粉を、±20 [Oel以内の精度で得られる
ようになった.従来、制御された保磁力を有する六方晶
系バリウムフェライト磁性粉を得ることが困難であった
こと、また、磁気記録媒体用に用いた場合の保磁力の変
動を抑制することが困難であったことを考えると、本発
明の工業技術的価値は極めて大きい.
According to the production method of the present invention, the cobalt-containing hexagonal barium ferrite magnetic powder has a coercive force of 10 to 1000 [O
It is possible to obtain magnetic powder whose increase is controlled arbitrarily within the range of el, and even when the magnetic powder is used as a magnetic recording medium, the fluctuation of the coercive force is suppressed, and the magnetic recording has the coercive force according to the set value. Media can be stably manufactured. In addition, the magnetic powder obtained by the method of the present invention can be used at temperatures ranging from 500°C to 7.
It can be regenerated by processing at a temperature of 00°C. According to the present invention, magnetic powder having a coercive force suitable for use in high-density magnetic recording media can be obtained with an accuracy of within ±20 [Oel]. Conventionally, it has been difficult to obtain hexagonal barium ferrite magnetic powder with a controlled coercive force, and it has also been difficult to suppress fluctuations in coercive force when used for magnetic recording media. Considering this, the industrial and technological value of the present invention is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)は、450 [Oelの保磁力を有する処
理前のコバルト含有六方晶系バリウムフェライト磁性粉
のx1回折図であり、第1図(B)は、該磁性粉にメチ
ルエチルケトンを被着させた後、蒸発除去して得られた
磁性粉のX線回折図である. 第2図は、450 [Oelの保磁力を有するコバルト
含有六方晶系バリウムフェライト磁性粉にシクロヘキサ
ノン及びトルエンの混合物を被着した後、蒸発除去して
得られる磁性粉の保磁力とシクロヘキサノン及びトルエ
ンの重量混合比率との関係を示す図である.
FIG. 1(A) is a x1 diffraction diagram of an untreated cobalt-containing hexagonal barium ferrite magnetic powder having a coercive force of 450 Oel, and FIG. 1(B) is a x1 diffraction diagram of the magnetic powder coated with methyl ethyl ketone. This is an X-ray diffraction diagram of magnetic powder obtained by evaporation and removal after deposition. Figure 2 shows the relationship between the coercive force of the magnetic powder obtained by depositing a mixture of cyclohexanone and toluene on a cobalt-containing hexagonal barium ferrite magnetic powder having a coercive force of 450 Oel, and then removing it by evaporation. It is a diagram showing the relationship with weight mixing ratio.

Claims (2)

【特許請求の範囲】[Claims] (1)コバルト含有六方晶系バリウムフェライト磁性粉
に、リン原子を含まない炭素数13以下の有機化合物を
被着させたのち、−50℃以上、500℃未満、かつ、
該有機化合物の熱分解温度未満の温度で、該有機化合物
を蒸発除去させることを特徴とする制御された保磁力を
有するコバルト含有六方晶系バリウムフェライト磁性粉
の製造方法。
(1) Cobalt-containing hexagonal barium ferrite magnetic powder is coated with an organic compound containing no phosphorus atoms and having a carbon number of 13 or less, and then heated to -50°C or higher and lower than 500°C, and
A method for producing cobalt-containing hexagonal barium ferrite magnetic powder having a controlled coercive force, characterized in that the organic compound is removed by evaporation at a temperature below the thermal decomposition temperature of the organic compound.
(2)請求項1記載の製造方法で得られたコバルト含有
六方晶系バリウムフェライト磁性粉を用いた磁気記録媒
体。
(2) A magnetic recording medium using cobalt-containing hexagonal barium ferrite magnetic powder obtained by the manufacturing method according to claim 1.
JP1280299A 1989-03-30 1989-10-27 Manufacture of hexagonal system barium ferite magnetic powder containing cobalt Pending JPH0320002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1280299A JPH0320002A (en) 1989-03-30 1989-10-27 Manufacture of hexagonal system barium ferite magnetic powder containing cobalt

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7648889 1989-03-30
JP1-76488 1989-03-30
JP1280299A JPH0320002A (en) 1989-03-30 1989-10-27 Manufacture of hexagonal system barium ferite magnetic powder containing cobalt

Publications (1)

Publication Number Publication Date
JPH0320002A true JPH0320002A (en) 1991-01-29

Family

ID=26417638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1280299A Pending JPH0320002A (en) 1989-03-30 1989-10-27 Manufacture of hexagonal system barium ferite magnetic powder containing cobalt

Country Status (1)

Country Link
JP (1) JPH0320002A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6358432B1 (en) * 1999-10-27 2002-03-19 Murata Manufacturing Co., Ltd. Composite magnetic material and inductor element
JP2015130493A (en) * 2013-12-04 2015-07-16 Tdk株式会社 Ferrite sintered magnet
WO2016121699A1 (en) * 2015-01-28 2016-08-04 パウダーテック株式会社 Ferrite particles for filter material which have outer shell structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6358432B1 (en) * 1999-10-27 2002-03-19 Murata Manufacturing Co., Ltd. Composite magnetic material and inductor element
JP2015130493A (en) * 2013-12-04 2015-07-16 Tdk株式会社 Ferrite sintered magnet
WO2016121699A1 (en) * 2015-01-28 2016-08-04 パウダーテック株式会社 Ferrite particles for filter material which have outer shell structure
JP2016137448A (en) * 2015-01-28 2016-08-04 パウダーテック株式会社 Ferrite grain for filter medium having outer shell structure
US10603614B2 (en) 2015-01-28 2020-03-31 Powdertech Co., Ltd. Ferrite particles having outer shell structure used for filtering medium

Similar Documents

Publication Publication Date Title
DE602005005466T2 (en) Improved compensation of nonstoichiometric oxygen for thin films
DE112016006243T5 (en) MAGNETIC RECORDING MEDIUM
US3139354A (en) Magnetic recording element containing magnetic particles treated with werner-type complex compound and method of manufacture thereof
JPH0320002A (en) Manufacture of hexagonal system barium ferite magnetic powder containing cobalt
JPH03120704A (en) Method for processing ferromagnetic metal powder and magnetic recording medium
JPH0270003A (en) Method for treating ferromagnetic iron powder
JPH0459620A (en) Magnetic powder for magnetic recording and magnetic recording medium therefrom
JPH02296303A (en) Magnetic powder for magnetic record medium
JPS62202822A (en) Magnetic powder for high-density magnetic recording
JPS60163233A (en) Magnetic recording medium and its production
WO2002021545A1 (en) Magnetic component
JPH03292617A (en) Ferromagnetic metal particle for magnetic recording medium
JPS5853681B2 (en) Metal magnetic powder and its processing method
JPH02120237A (en) Ferrite powder for high density recording having small temperature dependency of coercive force
JPH07121862A (en) Coating type magnetic recording medium
JPH07111773B2 (en) Magnetic recording medium
JPH03244107A (en) Ferromagnetic metal powder, manufacture thereof and magnetic recording medium using the same powder
JPH05250661A (en) Ferromagnetic metal fine particle for magnetic recording medium and magnetic recording using this particle
JPS6376304A (en) Manufacture of ferromagnetic metal powder
JPH0234989B2 (en)
JPH01112525A (en) Magnetic powder and magnetic recording medium using same
JPH02267122A (en) Magnetic powder for magnetic recording medium
JPH02138708A (en) Hexagonal system ferrite magnetic powder and magnetic recording medium
JPH02260608A (en) Fine partice of ferromagnetic metallic iron, manufacture thereof, and magnetic recording medium using same
JPH03147520A (en) Production of magnetic recording medium