JPS6376304A - Manufacture of ferromagnetic metal powder - Google Patents

Manufacture of ferromagnetic metal powder

Info

Publication number
JPS6376304A
JPS6376304A JP61219155A JP21915586A JPS6376304A JP S6376304 A JPS6376304 A JP S6376304A JP 61219155 A JP61219155 A JP 61219155A JP 21915586 A JP21915586 A JP 21915586A JP S6376304 A JPS6376304 A JP S6376304A
Authority
JP
Japan
Prior art keywords
compounds
metal powder
ferromagnetic metal
iron hydroxide
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61219155A
Other languages
Japanese (ja)
Inventor
Kiyotake Morita
森田 潔武
Hiroshi Kato
寛 加藤
Joji Morizaki
森崎 譲治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP61219155A priority Critical patent/JPS6376304A/en
Publication of JPS6376304A publication Critical patent/JPS6376304A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the retention of a shape, the prevention of sintering and the stability by a method wherein, after the surface of a needleshaped iron hydroxide material has been coated with one or more than two kinds of compounds selected from a group composed of aluminum compounds and silicon compounds, the iron hydroxide material is treated hydrothermally at a prescribed pressure and at a prescribed temperature and is then reduced. CONSTITUTION:After the surface of a needle-like iron hydroxide material has been coated with one or more than two kinds of compounds selected from a group composed of aluminum compounds and silicon compounds, the iron hydroxide material is treated hydrothermally at a pressure of more than 2 kg/cm<3> and at a temperature of more than 100 deg.C, and is then reduced by means of a reducing gas. The aluminum compounds and the silicon compounds refer to inorganic compounds or organic compounds composed of an oxide, a hydroxide, a nitrate, a carbonate or the like. For the coating, e.g. a method is used in such a way that the iron hydroxide material is mixed with a solution in which water-soluble compounds of aluminum compounds and/or silicon compounds as dissolved. Through this constitution, a film can be coated closely, and it is possible to realize the retention of a shape and the prevention of sintering.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高密度記録に適した磁気記録媒体に於ける磁
性素材としての強磁性金属粉微粒子の製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing fine ferromagnetic metal powder particles as a magnetic material in a magnetic recording medium suitable for high-density recording.

〔従来の技術〕[Conventional technology]

磁気記碌用磁性素材については、広い記録波長域での高
出力および低ノイズ化のために、均一性の高い微細形状
粒子で、高い保磁力(I−I c )を有し、飽和磁化
(σS)・残留磁化(σr)共に太き(、かつ角形比(
ILs=σ「lσS)も可及的に大きい磁気特性が基本
的に要求される。このうち、磁性素材としての磁性粉に
ついては、強磁性金属粉が、その優れた磁気特性から、
まずオーディオ用磁気テープの素材として実用化され、
又、8間ビデオ用素材として実用化されている。鉄を主
要成分とした針状性金属粉微粒子の場合、Hc値及びσ
S値の充分な高さに基づく優れた磁気的ポテンシャリテ
イが利用されている事となる訳であるが、磁気記録用素
材としては、さらに、磁気テープを作成する際に、強磁
性金属粉が樹脂と溶剤の混合系において良好な分散性を
示すこと、および強磁性金属粉が空気中において充分安
定であることが必須の特性である。
In order to achieve high output and low noise in a wide recording wavelength range, magnetic materials for magnetic recording are made of finely shaped particles with high uniformity, have high coercive force (I-I c ), and have low saturation magnetization ( Both σS) and residual magnetization (σr) are thick (and the squareness ratio (
ILs = σ "lσS" is also basically required to have as large a magnetic property as possible. Among these, as for magnetic powder as a magnetic material, ferromagnetic metal powder is the best because of its excellent magnetic properties.
First put into practical use as a material for audio magnetic tape,
It has also been put into practical use as a material for 8-minute videos. In the case of acicular metal powder particles containing iron as the main component, the Hc value and σ
This means that excellent magnetic potential based on a sufficiently high S value is utilized, but ferromagnetic metal powder is also used as a magnetic recording material when making magnetic tape. The essential characteristics are that the ferromagnetic metal powder exhibits good dispersibility in a mixed system of resin and solvent, and that the ferromagnetic metal powder is sufficiently stable in the air.

ここでいう、金属粉末の分散性の良否は、この金属粉末
の針状形の形状保持の良否や焼結回避の良否に大きく左
右されると考えられる。
The quality of the dispersibility of the metal powder here is considered to be largely influenced by the quality of maintaining the acicular shape of the metal powder and the quality of avoiding sintering.

上記のごと(磁気記録素材としての特性をそなえた強磁
性金属粉末を得る方法として、従来より(1)  出発
原料である針状オキシ水酸化鉄を合成するにあたり、鉄
以外の金属を導入する方法、(2)針状オキシ水酸化鉄
の表面に、鉄以外の金属化合物の被膜を形成させる方法 等が知られている。
As described above (methods for obtaining ferromagnetic metal powder with properties as a magnetic recording material), (1) a method of introducing metals other than iron when synthesizing acicular iron oxyhydroxide as a starting material; (2) A method of forming a film of a metal compound other than iron on the surface of acicular iron oxyhydroxide is known.

(1)に属する方法としては、例えば、特公昭47−3
0477、57−5803.59−17161.59−
19165および59−19169、並びに特開昭56
−11483などが挙げられる。
As a method belonging to (1), for example,
0477, 57-5803.59-17161.59-
19165 and 59-19169, and JP-A-1983
-11483 and the like.

(2)に属する方法としては、例えば特公昭56−28
967、57−29523.並びに特開昭56−259
01.58−91102および58−93806などが
挙げられる。
As a method belonging to (2), for example,
967, 57-29523. and JP-A-56-259
01.58-91102 and 58-93806.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記(1)の方法として挙げられる、出発原料である針
状オキシ水酸化鉄の合成時K、鉄以外の金属を導入する
方法では、この出発物を用いて加熱還元することにより
還元金属粉を製造する過程で、オキシ水酸化鉄の合成時
に導入された、鉄以外の金属が、鉄の微細結晶の粒界に
析出したり、針状粒子の表層部に析出したりすることに
より、形状保持や焼結防止、安定性向上に寄与はあった
。しかし、鉄以外の金属を、オキシ水酸化鉄の合成時に
導入する方法では、導入された鉄以外の金属が、粒子内
部に拡散したり、また後工程の被着により導入された他
の金属に被覆されてしまい、その効果の発現に限界があ
ったことは否定できない。
In the method mentioned in (1) above, in which a metal other than iron is introduced during the synthesis of acicular iron oxyhydroxide as a starting material, reduced metal powder is produced by heating and reducing this starting material. During the manufacturing process, metals other than iron introduced during the synthesis of iron oxyhydroxide precipitate at the grain boundaries of fine iron crystals or on the surface layer of acicular particles, resulting in shape retention. It also contributed to preventing sintering and improving stability. However, in the method in which metals other than iron are introduced during the synthesis of iron oxyhydroxide, the introduced metals may diffuse into the inside of the particles or be mixed with other metals introduced during deposition in the subsequent process. It is undeniable that there was a limit to the effect that could be achieved.

また、前記(2)の方法として挙げられる、針状オキシ
水酸化鉄の表面K、鉄以外の金属化合物の被膜を形成さ
せる方法では、前記(1)の方法に比べ、導入された金
属化合物が粒子の表面に存在しているため、形状保持や
焼結防止、安定性向上への寄与は大きい。しかしながら
、この方法においては、オキシ水酸化鉄の表面に形成さ
れた被膜の効果は、該被膜がいかに緻密な膜として形成
されているかどうかに依存しているといえる。
Furthermore, in the method (2) above, in which a film of a metal compound other than iron is formed on the surface of the acicular iron oxyhydroxide, compared to the method (1) above, the introduced metal compound is Since it exists on the surface of particles, it greatly contributes to shape retention, prevention of sintering, and improved stability. However, in this method, it can be said that the effectiveness of the film formed on the surface of iron oxyhydroxide depends on how dense the film is formed.

従来技術の方法では、形状保持や焼結防止、安定性向上
への寄与は、十分ではな(、この原因は表面に形成され
た被膜が必らずしも充分緻密ではなかったためと推定さ
れる。
Conventional methods do not sufficiently contribute to shape retention, prevention of sintering, and improved stability (this is presumed to be because the film formed on the surface was not necessarily dense enough). .

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等は上記の問題点を解決するためK、種々の検
討を加えた結果、針状オキシ水酸化鉄の表面に、アルミ
ニウム化合物およびケイ素化合物よりなる群から選ばれ
た1種または2種以上の化合物な被着させたのち、2 
Ky/c1以上の圧力下、100℃以上の温度において
水熱処理を行ない、しかるのちに還元性ガスを用いて還
元することにより、形状保持や焼結防止にすぐれ、安定
性のより一層向上した強磁性金属粉末が得られることを
見い出し本発明に到達した。
In order to solve the above problems, the present inventors made various studies and found that one or two compounds selected from the group consisting of aluminum compounds and silicon compounds were added to the surface of acicular iron oxyhydroxide. After applying the above compound, 2
By performing hydrothermal treatment at a pressure of Ky/c1 or higher and a temperature of 100°C or higher, and then reducing it using a reducing gas, it is possible to create a strong structure with excellent shape retention and sintering prevention, and even greater stability. The present invention was achieved by discovering that magnetic metal powder can be obtained.

本発明忙おいて、アルミニウム化合物およびケイ素化合
物は、酸化物、水酸化物、硝酸塩、炭酸塩などの無機化
合物であっても、また有機化合物であってもよい。
In the present invention, the aluminum compound and silicon compound may be inorganic compounds such as oxides, hydroxides, nitrates, carbonates, etc., or may be organic compounds.

被着方法としては、アルミニウム化合物およびlまたは
ケイ素化合物の水溶性化合物を溶解した溶液と、オキシ
水酸化鉄を混合する方法、アルミニウム化合物および!
またはケイ素化合物の難溶性化合物を含むケーキ中にオ
キシ水酸化鉄を混合する方法、アルミニウム化合物、ケ
イ素化合物の有機化合物をトルエン、ベンゼンなどの有
機溶媒中に溶解させたのち、オキシ水酸化鉄と混合する
方法等を用いることができ、特に限定されない。
The deposition method includes a method of mixing iron oxyhydroxide with a solution of an aluminum compound and a water-soluble compound of l or a silicon compound, and a method of mixing the aluminum compound and!
Alternatively, a method of mixing iron oxyhydroxide into a cake containing a poorly soluble silicon compound, or a method of dissolving an organic compound such as an aluminum compound or a silicon compound in an organic solvent such as toluene or benzene, and then mixing it with iron oxyhydroxide. There are no particular limitations, and a method such as that can be used.

水熱処理を行う圧力条件は、2Kg/att以上が必要
であるが、より好ましくは5 Kg/c1以上がよい。
The pressure conditions for the hydrothermal treatment must be 2 Kg/att or more, more preferably 5 Kg/c1 or more.

2Kg/cIft未満の圧力では処理の効果を発揮しな
い。
If the pressure is less than 2 Kg/cIft, the treatment will not be effective.

300 KgICllを以上は、装置が大型化するばか
りで、効果の向上は期待できない。水熱処理の温度条件
は、100℃以上が必要であるが、より好ましくは15
0℃以上がよい。100℃未満の温度では処理の効果を
発揮しない。
If the amount exceeds 300 Kg ICll, the device will simply become larger and no improvement in effectiveness can be expected. The temperature condition for the hydrothermal treatment requires a temperature of 100°C or higher, more preferably 15°C.
The temperature should preferably be 0°C or higher. At temperatures below 100°C, the treatment will not be effective.

〔作  用〕[For production]

本発明において、オキシ水酸化鉄の表面に被着されたア
ルミニウム化合物およびlまたはケイ素化合物は、水熱
処理を受けることにより、被膜形成物の結晶変化、溶出
再析出のくり返えしによる粒成長などKより、高度に緻
密化された被膜が形成されるものと考えられる。
In the present invention, the aluminum compound and l or silicon compound deposited on the surface of iron oxyhydroxide are subjected to hydrothermal treatment, resulting in crystal changes in the film formation, grain growth due to repeated elution and reprecipitation, etc. It is thought that a highly densified film is formed from K.

この被膜の緻密化の効果として、形状保持や焼結防止が
より一層向上し、安定性が良好になるものと考えられる
。形状保持や焼結防止の向上は、Hcやシート角形比の
向上となって表わされ、安定性の向上は、恒温恒湿下で
劣化試験を行うことにより判定できる。
It is thought that the effect of this densification of the film is that shape retention and sintering prevention are further improved, and stability is improved. Improvements in shape retention and sintering prevention are expressed as improvements in Hc and sheet squareness ratio, and improvements in stability can be determined by conducting a deterioration test under constant temperature and humidity.

〔実 施 例〕〔Example〕

以下実施例、比較例により更に詳細に本発明の方法及び
効果を説明する。
The method and effects of the present invention will be explained in more detail below using Examples and Comparative Examples.

実施例1゜ (オキシ水酸化物への被着) 一次粒子の長軸の平均粒径帆20μm、軸比12のゲー
サイト(α−F e OOH)粒子を用意した。
Example 1 (Adhesion to oxyhydroxide) Goethite (α-F e OOH) particles having an average primary particle long axis diameter of 20 μm and an axial ratio of 12 were prepared.

アルミニウム化合物として、アルミン酸ソーダ、ケイ素
化合物としてケイ酸ソーダを含むpH11の水溶液10
01に、該ゲーサイト粒子を3を混合し、硫酸で中和し
たのち、8時間混合した。その後、この懸濁液を濾過し
た(以下この被着方法をAと称する。)。
Aqueous solution 10 with a pH of 11 containing sodium aluminate as an aluminum compound and sodium silicate as a silicon compound
The goethite particles were mixed with No. 01 and No. 3, neutralized with sulfuric acid, and mixed for 8 hours. This suspension was then filtered (hereinafter this deposition method will be referred to as A).

本実施例においては、被着されたアルミニウム及びケイ
素の組成比は、Al /Fe = 4.0(wt%)、
Si/Fe = 1.0 (wt%)であった。
In this example, the composition ratio of deposited aluminum and silicon is Al /Fe = 4.0 (wt%),
Si/Fe = 1.0 (wt%).

(水熱処理) 前記被着ケーキを、オートクレーブに仕込み、ついで、
280℃、55 Kg/crdの飽和スチームに導入し
、温度、圧力を3時間保持した後、冷却した。
(Hydrothermal treatment) The adhered cake was placed in an autoclave, and then,
It was introduced into saturated steam at 280° C. and 55 Kg/crd, maintained at temperature and pressure for 3 hours, and then cooled.

(還  元) 前記水熱処理ケーキを、乾燥したのち、水素流通下、4
00℃で8時間還元することにより、強磁性金属粉末を
得た。
(Reduction) After drying the hydrothermally treated cake, under hydrogen flow, 4
A ferromagnetic metal powder was obtained by reducing at 00°C for 8 hours.

(強磁性金属粉の評価) 前記強磁性金属粉をトルエンに浸漬後、風乾により空気
になじませて粉体として空気中に取り出したのち、この
金属粉末の磁気特性なVSMにより測定したところ、H
c = 15500e 、 as = 138 gmu
/r。
(Evaluation of ferromagnetic metal powder) The ferromagnetic metal powder was immersed in toluene, air-dried, and taken out into the air as a powder.The magnetic properties of this metal powder were measured by VSM.
c = 15500e, as = 138 gmu
/r.

σr/σS = 0.52であった。ついで、前記強磁
性金属粉を、塩化ビニル−酢酸ビニル共重合樹脂及びト
ルエン、メチルエチルケトン(MEK)の混合系によく
分散させたのち、シートに塗布し、磁場配向させ、つい
で乾燥、裁断して磁気シートを得た。
σr/σS = 0.52. Next, the ferromagnetic metal powder is well dispersed in a mixed system of vinyl chloride-vinyl acetate copolymer resin, toluene, and methyl ethyl ketone (MEK), applied to a sheet, oriented in a magnetic field, dried, cut, and magnetically applied. Got a sheet.

この磁気シートを磁場下でヒステリシスループを測定し
、角形比(飽和磁束密度に対する残留磁束密度の比)と
して0.85を得た。さらに、該強磁性金属粉を、50
℃、80%RHの恒温恒湿槽に放置して劣化試験を行っ
た。ω時間経過後、この処理金属粉末を恒温恒湿槽から
取り出し磁気特性を測定したところ、飽和磁化(σS)
は、112 emulfであった。
The hysteresis loop of this magnetic sheet was measured under a magnetic field, and a squareness ratio (ratio of residual magnetic flux density to saturation magnetic flux density) of 0.85 was obtained. Furthermore, 50% of the ferromagnetic metal powder
A deterioration test was conducted by leaving it in a constant temperature and humidity chamber at 80% RH. After ω time, the treated metal powder was taken out of the constant temperature and humidity chamber and its magnetic properties were measured, and it was found that the saturation magnetization (σS)
was 112 emulf.

以上の評価結果から、該強磁性金属粉は、磁気記録用と
してHcが充分高く、シート角形比が充分高い値を示し
ており、かつ、充分な安定性を有する強磁性金属粉末で
あることが判明した。
From the above evaluation results, it is confirmed that the ferromagnetic metal powder has a sufficiently high Hc and a sufficiently high sheet squareness ratio for magnetic recording, and has sufficient stability. found.

実施例2〜7゜ 実施例1において、ゲーサイト粒子の表面に被着するア
ルミニウム、ケイ素の組成比及び水熱処理の条件を表1
に記載の条件にかえた以外は実施例と同一の条件により
実施した。評価結果を表1に示す。
Examples 2 to 7 In Example 1, the composition ratio of aluminum and silicon deposited on the surface of goethite particles and the conditions of hydrothermal treatment are shown in Table 1.
The experiment was carried out under the same conditions as in the example except that the conditions were changed to those described in . The evaluation results are shown in Table 1.

実施例1と同じく、各々の実施例で得られた強磁性金属
粉は、Hcが充分高く、シート角形比が充分高い値を示
しており、かつ、充分な安定性を有することが判明し、
磁気記録用としての特性にすぐれていることがわかった
As in Example 1, it was found that the ferromagnetic metal powder obtained in each example had a sufficiently high Hc, a sufficiently high sheet squareness ratio, and sufficient stability.
It was found that it has excellent characteristics for magnetic recording.

実施例8゜ 一次粒子の長軸の平均粒径0.20μm、軸比12のゲ
ーサイト(α−F e OOH)粒子を用意した。
Example 8 Goethite (α-F e OOH) particles having an average diameter of 0.20 μm along the long axis of primary particles and an axial ratio of 12 were prepared.

アルミニウム化合物として擬ベーマイトの結晶形態を有
するアルミナゾルな用いた。
As an aluminum compound, an alumina sol having a pseudo-boehmite crystal form was used.

該ゲーサイト粒子に約70%程度水分を含有させてケー
キ状とし、上記アルミナゾルを添加して混練した(以下
この被着方法なりと称する。)。
The goethite particles were made to contain about 70% water to form a cake, and the above alumina sol was added and kneaded (hereinafter referred to as this deposition method).

本実施例においては、被着されたアルミニウムの組成比
は、Al/Fe = 4.0 (wt%)であった。
In this example, the composition ratio of the deposited aluminum was Al/Fe = 4.0 (wt%).

水熱処理、還元、強磁性金属粉の評価は、実施例1と同
一方法で行なわれた。これらの条件、評価結果を表IK
示す。
Hydrothermal treatment, reduction, and evaluation of the ferromagnetic metal powder were performed in the same manner as in Example 1. These conditions and evaluation results are shown in Table IK.
show.

実施例1と同じく、実施例8で得られた強磁性金属粉は
、Hcが充分高く、シート角形比が充分高い値を示して
おり、かつ、充分な安定性を有することが判明し、磁気
記録用としての特性にすぐれていることがわかった。
As in Example 1, the ferromagnetic metal powder obtained in Example 8 was found to have a sufficiently high Hc, a sufficiently high sheet squareness ratio, and sufficient stability. It was found that it has excellent characteristics for recording purposes.

実施例9゜ 一次粒子の長軸の平均粒径0.20μm、軸比12のゲ
ーサイト粒子を用意した。アルミニウム化合物としてA
I (iso −0C3H7) aを用いた。該ゲーサ
イト粒子をトルエン中に懸濁させ、上記アルミニウム化
合物を添加したのち、よく攪拌し、その後、N2雰囲気
下で乾燥した。(以下この被着方法なCと称する。) 本実施例においては、被着されたアルミニウムの組成比
は、Al/Fe = 4.0 (wt%)であった。
Example 9 Goethite particles having an average particle diameter of 0.20 μm along the major axis of primary particles and an axial ratio of 12 were prepared. A as an aluminum compound
I(iso-0C3H7)a was used. The goethite particles were suspended in toluene, and the aluminum compound was added thereto, followed by thorough stirring and then drying under an N2 atmosphere. (Hereinafter, this deposition method will be referred to as C.) In this example, the composition ratio of the deposited aluminum was Al/Fe = 4.0 (wt%).

水熱処理、還元、強磁性金属粉の評価は、実施例1と同
一の方法で行なわれた。これらの条件、評価結果を表I
K示す。
Hydrothermal treatment, reduction, and evaluation of the ferromagnetic metal powder were performed in the same manner as in Example 1. These conditions and evaluation results are shown in Table I.
Show K.

実施例1と同じく、本実施例で得られた強磁性金属粉は
、Hcが充分高く、シート角形比が充分高い値を示して
おり、かつ、充分な安定性を有することが判明し、磁気
記録用としての特性にすぐれていることがわかった。
As in Example 1, the ferromagnetic metal powder obtained in this example was found to have a sufficiently high Hc, a sufficiently high sheet squareness ratio, and sufficient stability. It was found that it has excellent characteristics for recording purposes.

比較例1゜ (オキシ水酸化鉄への被着) 実施例1と同一の方法で行なった。Comparative example 1゜ (Adhesion to iron oxyhydroxide) The same method as in Example 1 was used.

(水熱処理) 本比較例においては水熱処理を実施しなかった。(hydrothermal treatment) In this comparative example, no hydrothermal treatment was performed.

(還  元) 前記オキシ水酸化鉄への被着ケーキを乾燥したのち、実
施例1と同一の方法で還元を行なった。
(Reduction) After drying the adhering cake to the iron oxyhydroxide, reduction was performed in the same manner as in Example 1.

(強磁性金属粉の評価) 実施例1と同一の方法で評価を行なった。表−1にその
評価結果を示す。
(Evaluation of ferromagnetic metal powder) Evaluation was performed in the same manner as in Example 1. Table 1 shows the evaluation results.

実施例1に比較し、Hcが低く、シート角形比が劣って
おり、かつ、安定性においても、劣っていることが判明
した。
Compared to Example 1, it was found that Hc was lower, the sheet squareness ratio was inferior, and the stability was also inferior.

比較例2゜ 水熱処理を行なわなかった点を除いて実施例8と同一の
条件で実施した。表−1にその評価結果を示す。
Comparative Example 2 It was carried out under the same conditions as in Example 8, except that no hydrothermal treatment was performed. Table 1 shows the evaluation results.

実施例8に比較し、l−1cが低く、シート角形比が劣
っており、かつ、安定性においても、劣っていることが
判明した。
Compared to Example 8, it was found that l-1c was lower, the sheet squareness ratio was inferior, and the stability was also inferior.

比較例3゜ 水熱処理の条件を圧力1.5Kg/d、温度’Kllと
した以外は実施例6と同一の条件で実施した。表−1に
その評価結果を示す。
Comparative Example 3 The hydrothermal treatment was carried out under the same conditions as in Example 6 except that the pressure was 1.5 Kg/d and the temperature was 'Kll'. Table 1 shows the evaluation results.

実施例6に比較し、Hcが低く、シート角形比が劣って
おり、かつ、安定性においても、劣っていることがわか
った。
Compared to Example 6, it was found that Hc was lower, the sheet squareness ratio was inferior, and the stability was also inferior.

Claims (1)

【特許請求の範囲】[Claims]  針状オキシ水酸化鉄の表面に、アルミニウム化合物お
よびケイ素化合物よりなる群から選ばれた1種又は2種
以上の化合物を被着させたのち、2Kg/cm^2以上
300Kg/cm^2以下の圧力下、100℃以上の温
度において水熱処理を行ない、しかるのちに還元性ガス
を用いて還元することを特徴とする強磁性金属粉の製造
方法。
After depositing one or more compounds selected from the group consisting of aluminum compounds and silicon compounds on the surface of acicular iron oxyhydroxide, a A method for producing ferromagnetic metal powder, which comprises performing hydrothermal treatment under pressure at a temperature of 100° C. or higher, and then reducing the powder using a reducing gas.
JP61219155A 1986-09-19 1986-09-19 Manufacture of ferromagnetic metal powder Pending JPS6376304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61219155A JPS6376304A (en) 1986-09-19 1986-09-19 Manufacture of ferromagnetic metal powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61219155A JPS6376304A (en) 1986-09-19 1986-09-19 Manufacture of ferromagnetic metal powder

Publications (1)

Publication Number Publication Date
JPS6376304A true JPS6376304A (en) 1988-04-06

Family

ID=16731059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61219155A Pending JPS6376304A (en) 1986-09-19 1986-09-19 Manufacture of ferromagnetic metal powder

Country Status (1)

Country Link
JP (1) JPS6376304A (en)

Similar Documents

Publication Publication Date Title
JPS63109105A (en) Production of fine ferromagnetic metal particle
JPS6242337B2 (en)
JPS6250890B2 (en)
JPH0544163B2 (en)
JPH059922B2 (en)
JPS6376304A (en) Manufacture of ferromagnetic metal powder
JP3337046B2 (en) Spindle-shaped metal magnetic particles containing cobalt and iron as main components and method for producing the same
JPS6122604A (en) Magnetic metal powder and manufacture thereof
JPH0271502A (en) Needle-shaped feromagnetic metallic particle mainly composed of iron and its manufacture
JPS6132259B2 (en)
JPH0125211B2 (en)
JPH02175806A (en) Manufacture of metal magnetic powder for magnetic recorder
JPH0794310A (en) Needle-like alloy magnetic fine powder having iron as main ingredient and manufacture thereof
JPS60162707A (en) Production of magnetic particle powder consisting of needle crystal iron alloy for magnetic recording
JPS63140005A (en) Production of fine ferromagnetic metal particle powder
JPH0234989B2 (en)
JPS6323139B2 (en)
JPS61229305A (en) Manufacture of magnetic metal powder
JPS59144035A (en) Magnetic recording medium
JPS63265823A (en) Method for coating metal compound on fine particles of acicular iron oxyhydroxide or the like
JPH01168801A (en) Manufacture of metal magnetic powder
JPH0532421A (en) Production of needlelike magnetic iron oxide grain powder
JPH0157482B2 (en)
JPH05101917A (en) Manufacture of metallic magnetic powder, and coating for magnetic record medium
JPS58126905A (en) Production of magnetic metal powder consisting of iron or essentially of iron