JPH0319378A - Manufacture of solar cell - Google Patents

Manufacture of solar cell

Info

Publication number
JPH0319378A
JPH0319378A JP1152402A JP15240289A JPH0319378A JP H0319378 A JPH0319378 A JP H0319378A JP 1152402 A JP1152402 A JP 1152402A JP 15240289 A JP15240289 A JP 15240289A JP H0319378 A JPH0319378 A JP H0319378A
Authority
JP
Japan
Prior art keywords
adhesive
photoelectric conversion
electrode layer
adhesive tape
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1152402A
Other languages
Japanese (ja)
Inventor
Soichiro Kawakami
総一郎 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1152402A priority Critical patent/JPH0319378A/en
Publication of JPH0319378A publication Critical patent/JPH0319378A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To enable the formation of two or more photoelectric conversion regions isolated from each other without causing any damage to a substrate even if a flexible insulating substrate is employed by a method wherein a part where a semiconductor layer and a second electrode layer partially overlap a first electrode layer is covered with a releasable adhesive member, the semiconductor layer and the second electrode layer are formed, and then the adhesive member is separated. CONSTITUTION:A first electrode pattern 101 of two-layered structure of Al/Cr is formed on a film 100 through an evaporation mask, and a adhesive tape 103, whose adhesive agent includes polyimide as a base material and is so compounded as to make the tape releasable, is pressure-bonded to the pattern 101. Then, a pin junction amorphous silicon semiconductor layer 104 is formed, a second electrode layer 105 is formed through an electron beam evaporation method, and adhesive type 103 is released, two or more photoelectric conversion regions isolated from each other, are formed and then conductive resin pastes 106 are screen-printed to connect the photoelectric conversion regions together in series.

Description

【発明の詳細な説明】 [産業上の利用分野J 本発明は光エネルギーを直接電気エネルギーに変換する
複数個の光電変換領域を有する太陽電池の架造方法に関
するものである. [従来の技術] 世界的にエネルギー危機が問題となり,無公害で無尽蔵
の太陽光エネルギーを利用して発電する太陽電池が,注
目されている.しかし、現状では原子力、水力,火力i
m等の発電コストに比較して太陽電池の発電コストは高
い.この発電コストを下げるためには太陽電池の製造コ
ストの低減化がさらに必要である. そこで、太陽電池の製造工程の簡略化により、コストを
下げる方法がいくつか考案されている. PIN接合を有するアモルファスシリコン太陽電池の単
セル(光電変換領域)の出力電圧は1v程度であり、用
途によって単セルを複数個,直列に接続しなげればなら
ない. アモルファスシリコン太陽電池の単セルとしての光電変
換領域をレーザービームで、多数個分離形成し、かつ光
電変換領域を複数個接続できる工程が特開昭57−12
568号及び特開昭60−31258号で提案されてい
る.この方法は具体的には第6図においてガラス基板等
の絶縁基体600に酸化スズ一酸化インジウム(1!1
203−Sn02 )等の透明酸化物電極材の第1の電
極層60l,レーザービームによる損傷を抑えるための
導電保護層602.PIN接合を有するアモルファスシ
リコン等の半導体暦603を順次形成した後(第6図a
),レーザービーム604で分離すべき部分の第1電極
層601と半導体層603を除去し(第6図b),次に
第21!極層の金属層605を蒸着して(第6図C)、
余分な第2電極層605をレーザービーム604で除去
する(第6図d)という方法である. 上記製造方法は、絶縁基体600がガラス基体である場
合には、有効であるが,安価な樹脂基体等の可撓性絶縁
基体を用いる場合には、特に第6図bの工程で、レーザ
ーのパワー制御がむずかしいため,基体はレーザービー
ムによる損傷を受ける. レーザービームを電子ビームに替えた分離方法でも樹脂
基体を用いる場合には損傷を受ける.また,フォトリソ
グラフィーによる光電変換領域分離方法でも,ウェット
工程があるため、樹脂基体のll1l!!l・収縮を避
けることができず,半導体層や電極層の膜はがれが起こ
り,複数個の光電変換領域を直列,並列に接続して太陽
電池を製造する方法としては,適当ではない.a械式ス
クラビングによる分離方法も下地の樹脂基体にキズを付
けてしまうので,やはり有効な方法ではない.また、金
属等のマスクを用いて半導体層や第2の電極層を選択的
に堆積させて、複数個の光電変換領域を形威する方法も
考案されている.しかしながら、上記方法ではマスクと
基体とが完全に密着できないため,半導体層をプラズマ
CVD等の方法で堆積する場合は、マスクと基体との間
にプラズマがまわり込み、余分な部分に堆m膜を形成し
てしまうことがあるという問題がある.このため、複数
回のマスク工程を行おうとすると、マスクと基体との位
置合わせが難しくなることがあるという問題がある. また,マスクの除去時に溶剤が用いられるため、基体や
半導体層を痛め,特性を変えてしまうことがあるという
問題もある. さらに、上述した問題点を改善しようとすると、工程が
複雑、煩雑になるという問題もある.したがって,樹脂
フィルム等の可撓性基体を用いた太陽電池の製造法とし
ては,基体上に第1の電極層,半導体層、第2の電極層
の光電変換領域構造を構成した後、所望の電流を発生す
る大きさの単セルを複数個切り出し、該複数個の単セル
を直列及び/又は並列に接続する方法が一般的であった
・ [発明が解決しようとしている課W1]前述した様に,
従来の、可撓性絶縁基体を用いる太陽電池の製造法では
、半導体層を形成した後で、複数の単セル(光電変換領
域)を切り出し、さらに,切り出した単セルを接続する
工程が必要となり、コスト●ダウンが難しいという問題
点がある. また従来,ガラス基体に対して行われているレーザービ
ームを用いた光電変換領域の分離法等を,可撓性絶縁基
体に対して用いようとすると、可撓性絶縁基体に損傷を
与えてしまうという問題点がある. また、マスクを用いる従来の方式では、前述した様にマ
スクと基体との隙間に余分な堆m膜が形成され、複数回
のマスキング工程では、マスクト基体との位置合わせが
楚しくなり、また、マスク除去時に使用される溶剤によ
って、基体や半導体層の特性が変化する恐れがあるとい
う問題点がある. [発明のa的] 本発明は,上述した,従来考案されている薄膜太陽電池
製造の光電変換領域分離工程の問題点を克服し,安価な
.可撓性絶縁基体に適用できる光電変換領域分離工程を
含む太陽電池の製造方法を提供することにある. [課題を解決するための手段] 本発明は,前述した課題を解決するための手段として、 基体上に設けられた第1の電極層と重なる様に粘着性部
材を前記基体上に設ける工程と、それらの上に半導体層
及び第2の電極層を設ける工程と、 前記粘着性部材を前記基体上から剥離して、複数の光電
変換領域を形威する工程と、 前記複数の各光電変換領域に配線を施す工程と,を有す
ることを特徴とする太陽電池の製造方法を提供するもの
である. 本発明の第1の特徴は、例えばガス放出を極力抑えた再
剥離可能な粘着性部材を第1の電極層の一部と重ねて圧
着し,半導体層及び第2の電極層として透明電極層を形
威した後に、該粘着性部材を剥離することにより、複数
の光電変換領域を分離する工程にある.使用する粘着性
部材としては,ガス放出の少ない材料からなるものを用
いることにより、半導体層形成時に混入する不純物の低
減ができ、良質な半導体層を形成できる.また、粘着性
部材として,薄膜状の粘着テープを用い,該粘着テープ
の厚みを2ミクロン以上とすることによって、粘着テー
プと基体との段差部の、半導体層と透明電極材の被覆率
を低下させ,粘着テープの剥離と光電変換領域分離を容
易にすることができる. 粘着テープの構威としては,基材となるテープと感圧接
着剤からなるものが例示されている.上述の様に,使用
する粘着テープとしては放出ガスが少ないことが重要で
ある.放出ガスは耐熱温度とも関連するため,粘着テー
プの基材の耐熱温度は100℃以上,より好ましくは1
50℃以上であることが望ましい.この様な基材の材質
としては、ポリイミド、ポリフ4ニレンサルファイド,
テフロン,ポリエステル等のフィルム及び各種金属フィ
ルムが用いられる.上記樹脂フイルムを粘着テープの基
材として用いる場合,感圧接着剤の塗布面と反対側の面
にはガス放出と半導体層の堆積中の樹脂成分のスパッタ
リングを抑えるために、金属,セラミックス等のガス放
出の少ない材料が蒸着されていることが望ましい.また
、感圧接着剤としては粘着主剤、粘着補強剤,可塑剤、
充てん剤を混合したものが用いられる.該混合比率と材
料の選別は再剥離が容易で,かつ放出ガスが極力少なく
なるように調整される. また、粘着テープは,本発明に用いられる第1電極パタ
ーンが形成された可撓性基体に圧着した後、剥離試験を
行なって、粘着剤および第1電極パターンの破壊が起こ
らないものを選ぶことが好ましく,同時にこの剥離試験
により、本発明の粘着テープの剥離条件の最適化も行な
うことができる.上記剥離試験には粘着テープを180
’に折り返して、一定速度または一定荷重で剥離するP
gel Textと、ロール状に一定条件で捲き取られ
た粘着テープを一定荷重または一定速度で剥離するRo
ll Textを用いるのが好ましい.第5図はPee
l Textに用いる振子型試験機の一例を示す概略図
である.第5図において,501は粘着テープ、502
は粘着層(感圧接着剤),503は本発明に用いられる
第1の電極パターンを形成した可撓性基体、504は第
1の電極パターンである.剥離試験は,第1の電極パタ
ーンを形成した可撓性基体503に粘着テープ501を
圧着した後、粘着テープ501を180°に折り返し,
一定速度、または一定荷重で剥離して行なう. 本発明に用いられる可撓性絶縁基体としては耐熱温度が
100℃以上,より好ましくは150℃以上であること
が望ましく、具体例としてはポリエステル,ポリイミド
,ポリパラフェニレンサルファイド等の樹脂,及び該樹
脂にSiO2, AI2039i3N4等のセラミック
スをコーティングしたものが挙げられる. 第1電極層の金属の材質としては,AI,Or,^g,
旧, Au , Cu , Ti ,W , )Ia等
が挙げられる.第1電極層のパターンを形成するには,
例えば、第1′IIL極層の反転パターンの金属マスク
を上記基体に密着させて,抵抗加熱法、電子ビーム法あ
るいはスパッタ法等によって金属を蒸着させて形成する
ことができる.金属マスクの代わりに上記粘着テープを
用いてもかまわない.またマスクにする樹脂パターンを
印刷した後,電解メッキし、樹脂マスクを除去し,@l
の電極パターンを形成する方法もある. 光電変換部の半導体層としてはアモルファスシリコン、
アモルファスシリコンゲルマニウム,CulnSe2,
GaAsなどの化合物半導体等が用いられる.また形成
手法としては,プラズマCVD(ChemicalVa
por Dapogitian) ,スパッタ法.MO
 C V D (Metal Qrganfc Che
mical Vapar DepoziLion)等が
ある. 第2電極層の透明電極の材質としては、!3n02 ,
In20s−Sn02等が用いられ、蒸着方法としては
抵抗加熱法,電子ビーム法、スバッタ法等が用いられる
. 分離した複数個の光電変換領域の接続は,力一ポン、C
u , Agなどを含有する導電性樹脂ペーストを用い
たスクリーン印刷を用いることにより、簡単に配線する
ことができる.また、金属微粉末をホットメルトタイプ
の樹脂中に混入した異方導電性接着剤で配線パターンを
形成し、シート状にしたものを複数個の光電変換領域に
熱圧着する方法もある. [作用1 上述の様に、光電変換領域の分離工程に粘着テープ等の
粘着性部材を用いることにより.可撓性絶縁基体に対し
ても、確実に密着して正確な分離マスクを形成すること
が可能となる.また,分離工程にレーザービーム,電子
ビーム等を使用する必要がな〈なるため,基体を傷つけ
る心配がなくなる. また,使用する粘着テープに、あらかじめ,剥離試験に
合格したものを使用することにより,剥離工程がより確
実なものとなり、また,放出ガスの少ない材料を使用す
ることにより、不純物の放出による半導体層等の汚染が
防止できる.[実施例J 以下本発明を実施例に基づいて詳細に説明する. 第1図(a)から(e)までは本発明を実施するための
工程を説明する図である.第1図においてl00はボリ
フエニレンサルファイドフィルムを用いた可撓性絶縁基
体101は第1の電極層、102は第1の電極層のM3
1r用のマスク,103は粘着テープ、104は半導体
層、105は第2の電極層.106は接続用配線である
. まず、ポリフエニレンサルファイドフィルムioo上に
蒸着マスク102を使用して,AI/Orの2層構成の
第1の電極パターンlotを形戊し(第l図a)、基材
がポリイミドで、再剥離が可能になるように粘着剤を調
合した粘着テープ103を2kg/c會2の荷重で圧着
した(第l図b),次に,シランガスとシボランガス,
シランガス、シランガスとホスフィンガスの各々のプラ
ズマCvDにより、pin m合アモルファスシリコン
半導体層104を形成し、第2の電極層In203 −
Sn02105を電子ビーム蒸着法で形成した(第1図
C).次に、粘着テープ103を剥離し、複数個の光電
変換領域を分離形成した後、A.の導電性樹脂ペースト
106をスクリーン印刷して光電変換領域を直列接続し
た(第1図d). 第l図eは上述の工程により製造した太陽電池の平面図
で、第l図dは第l図eのA−A ’部分の断面図を示
したものである.なお,第1図a〜eは構成を筒単にし
て説明しやすくするために、光電変換領域を3個に分離
し、直列接続した場合を示したが、本発明はこれに限定
されるものではない. 第2図は第1図の工程に用いた粘着テープl03の形態
と,圧着時の工程を示した模式図である. 第2図aは3木の粘着テープ103と、それを供給する
粘着テープロール107を示し、第2図bは,この粘着
テープロール107から、粘着テープ103を基体10
0上に圧着する工程を示す概念図である.図において、
粘着テープ103は粘着テープロール107のC方向へ
の回転と、基体l00のD方向への移動に伴い,圧着ロ
ーラ108により,基体lOO上に圧着されていく.第
l図bは第2図bのB−8 ’の断面を示した図となる
. なお,上記粘着テープは本発明における粘着性部材の一
例を示すものであり、本発明は上記の粘着テープに限定
されることはない.例えば,$2図Cは格子状の粘着テ
ープ103を示すものであり,上記と同様に基体100
上に圧着されて使用される. また,粘着テープ103の剥離時には,粘着テープロー
ル107を逆回転して巻き取ることもできるし、剥離時
専用のロールを別に用いても良い. 第3図はこの実施例で用いた粘着テープの構造を示した
ものである.同図において,300は粘着テープ基材で
あり、ここではポリエステルフィルムを用いた.30l
は蒸着金属のCr、302は再剥離可能な感圧按着剤で
ある. 第4図は上記工程に用いたロール●ツー●ロール型堆積
装置の概念図である.同図において、400は、可撓性
樹脂フィルム基体、401は粘着テープを基体に圧着す
るための圧着ローラー403は粘着テープ、404,4
05,406はそれぞれ、第1.第2,第3のプラズマ
CVD堆積室、407は第2電極の蒸着室、408は基
体ロール.409は粘着テープの供給を行なうロールで
あり,4lOは剥離時に粘着テープを巻き取るためのロ
ールである.なお第1の電極パターンの形成装置,直列
接続配線のための装置は省略してある. 本実施例ではアモルファスシリコンpin!合の単層構
成の場合の製造方法を説明したが,木発明の光電変換領
域の構成はこれに限定されるものではない. [発明の効果] 本発明は、以上説明してきたように,第1の電極層と一
部重なる位置を,再剥離可能な粘着性部材で被覆して,
半導体層及び第2の電極層を形成した後,粘着性部材を
剥離する工程を用いることによって.基体として,樹脂
基体等の可撓性絶縁基体を使用した場合にも、基体に損
傷を与えることなしに、容易に複数個の光電変換領域の
分離形成ができる. また、粘着剤により,基体との密着性が良いため,正確
な堆mMを作成することができ、また,放出ガスの少な
い粘着性部材を使用することにより、素子の特性を変化
させることが少なくなる.また工程が簡略化でき,安価
な樹脂基体の使用が可能になり,従来のものに劣らない
特性を持つ太陽電池を安価に製造することができる.
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application J] The present invention relates to a method for constructing a solar cell having a plurality of photoelectric conversion regions that directly converts light energy into electrical energy. [Conventional technology] The energy crisis has become a problem worldwide, and solar cells, which generate electricity using non-polluting and inexhaustible solar energy, are attracting attention. However, at present, nuclear power, hydropower, thermal power i
The power generation cost of solar cells is high compared to the power generation cost of m. In order to reduce this power generation cost, it is necessary to further reduce the manufacturing cost of solar cells. Therefore, several methods have been devised to reduce costs by simplifying the manufacturing process of solar cells. The output voltage of a single cell (photoelectric conversion region) of an amorphous silicon solar cell with a PIN junction is approximately 1 V, and depending on the application, multiple single cells must be connected in series. Japanese Patent Laid-Open No. 57-12 describes a process in which a large number of photoelectric conversion regions as a single cell of an amorphous silicon solar cell can be separated and formed using a laser beam, and a plurality of photoelectric conversion regions can be connected.
No. 568 and Japanese Patent Application Laid-Open No. 60-31258. Specifically, in this method, as shown in FIG. 6, tin oxide and indium monoxide (1!1
203-Sn02) or the like, and a conductive protective layer 602 for suppressing damage caused by the laser beam. After sequentially forming a semiconductor layer 603 made of amorphous silicon or the like having a PIN junction (FIG. 6a)
), the first electrode layer 601 and the semiconductor layer 603 in the portion to be separated are removed using a laser beam 604 (FIG. 6b), and then the 21st! Depositing the metal layer 605 of the pole layer (FIG. 6C),
This method involves removing the excess second electrode layer 605 using a laser beam 604 (FIG. 6d). The above manufacturing method is effective when the insulating substrate 600 is a glass substrate, but when using a flexible insulating substrate such as an inexpensive resin substrate, especially in the step of FIG. Because power control is difficult, the substrate is damaged by the laser beam. Even with separation methods that replace laser beams with electron beams, damage occurs when resin substrates are used. In addition, even in the photoelectric conversion region separation method using photolithography, there is a wet process, so ll1l! of the resin substrate! ! This method is not suitable for manufacturing solar cells by connecting multiple photoelectric conversion regions in series or parallel because shrinkage cannot be avoided and peeling of the semiconductor layer and electrode layer occurs. A Separation method using mechanical scrubbing also scratches the underlying resin base, so it is not an effective method. Furthermore, a method has been devised in which a semiconductor layer or a second electrode layer is selectively deposited using a mask made of metal or the like to form a plurality of photoelectric conversion regions. However, in the above method, the mask and the substrate cannot be brought into perfect contact with each other, so when depositing a semiconductor layer by a method such as plasma CVD, plasma wraps around between the mask and the substrate, leaving a deposited film on the excess area. The problem is that they may form. For this reason, when attempting to perform the masking process multiple times, there is a problem in that it may become difficult to align the mask and the substrate. Another problem is that since a solvent is used when removing the mask, it can damage the substrate or semiconductor layer and change its characteristics. Furthermore, when attempting to improve the above-mentioned problems, there is also the problem that the process becomes complicated and complicated. Therefore, as a method for manufacturing a solar cell using a flexible substrate such as a resin film, after configuring the photoelectric conversion region structure of the first electrode layer, semiconductor layer, and second electrode layer on the substrate, the desired A common method was to cut out a plurality of single cells large enough to generate current and connect the plurality of single cells in series and/or in parallel. [Problem W1 that the invention seeks to solve] As mentioned above. To,
Conventional solar cell manufacturing methods using flexible insulating substrates require a step of cutting out multiple single cells (photoelectric conversion regions) after forming a semiconductor layer, and then connecting the cut out single cells. The problem is that it is difficult to reduce costs. Furthermore, if a conventional method for separating photoelectric conversion regions using a laser beam, which has been applied to glass substrates, is applied to a flexible insulating substrate, the flexible insulating substrate will be damaged. There is a problem. In addition, in the conventional method using a mask, as described above, an extra deposit film is formed in the gap between the mask and the substrate, and in multiple masking steps, alignment with the masked substrate becomes difficult. There is a problem in that the properties of the substrate and semiconductor layer may change depending on the solvent used when removing the mask. [Objectives of the Invention] The present invention overcomes the above-mentioned problems of the conventional photoelectric conversion region separation process for manufacturing thin film solar cells, and provides an inexpensive method. The object of this invention is to provide a method for manufacturing a solar cell that includes a photoelectric conversion region separation process that can be applied to a flexible insulating substrate. [Means for Solving the Problems] As a means for solving the above-mentioned problems, the present invention provides the steps of: providing an adhesive member on the substrate so as to overlap the first electrode layer provided on the substrate; , a step of providing a semiconductor layer and a second electrode layer thereon; a step of peeling off the adhesive member from the base to form a plurality of photoelectric conversion regions; and a step of forming a plurality of photoelectric conversion regions, each of the plurality of photoelectric conversion regions. The present invention provides a method for manufacturing a solar cell, comprising the steps of: providing wiring to the solar cell; The first feature of the present invention is that, for example, a removable adhesive member that suppresses gas release as much as possible is overlapped and pressure-bonded with a part of the first electrode layer, and a transparent electrode layer is formed as the semiconductor layer and the second electrode layer. After forming the image, the adhesive member is peeled off to separate the plurality of photoelectric conversion regions. By using an adhesive member made of a material that releases less gas, impurities mixed in during the formation of the semiconductor layer can be reduced, and a high-quality semiconductor layer can be formed. In addition, by using a thin film of adhesive tape as the adhesive member and making the thickness of the adhesive tape 2 microns or more, the coverage of the semiconductor layer and the transparent electrode material at the step between the adhesive tape and the substrate is reduced. This makes it easier to peel off the adhesive tape and separate the photoelectric conversion region. An example of an adhesive tape structure is one consisting of a tape as a base material and a pressure-sensitive adhesive. As mentioned above, it is important for the adhesive tape used to emit little gas. Since the released gas is also related to the heat resistance temperature, the heat resistance temperature of the base material of the adhesive tape is 100℃ or more, and more preferably 1
It is desirable that the temperature is 50°C or higher. Materials for such base materials include polyimide, polyphenylene sulfide,
Films such as Teflon, polyester, and various metal films are used. When using the above resin film as a base material for an adhesive tape, the surface opposite to the pressure-sensitive adhesive coated surface should be coated with metal, ceramics, etc. to suppress gas release and sputtering of the resin component during deposition of the semiconductor layer. It is desirable that a material that releases less gas be deposited. In addition, pressure-sensitive adhesives include adhesive base, adhesive reinforcing agent, plasticizer,
A mixture of fillers is used. The mixing ratio and selection of materials are adjusted so that re-peeling is easy and the amount of gas released is as low as possible. Furthermore, after the adhesive tape is pressure-bonded to the flexible substrate on which the first electrode pattern used in the present invention is formed, a peel test is performed to select one that will not cause destruction of the adhesive and the first electrode pattern. is preferable, and at the same time, the peeling conditions for the adhesive tape of the present invention can be optimized through this peeling test. For the above peel test, adhesive tape was used at 180
Fold back to ' and peel off at a constant speed or constant load.
Gel Text and Ro, which peels off adhesive tape rolled up into a roll under certain conditions under a constant load or at a constant speed.
It is preferable to use ll Text. Figure 5 shows Pee
1 is a schematic diagram showing an example of a pendulum-type testing machine used for 1 Text. In FIG. 5, 501 is adhesive tape, 502
503 is a flexible substrate on which a first electrode pattern used in the present invention is formed, and 504 is a first electrode pattern. In the peel test, the adhesive tape 501 was pressure-bonded to the flexible substrate 503 on which the first electrode pattern was formed, and then the adhesive tape 501 was folded back at 180°.
Peeling is done at a constant speed or with a constant load. The flexible insulating substrate used in the present invention preferably has a heat resistance temperature of 100°C or higher, more preferably 150°C or higher, and specific examples include resins such as polyester, polyimide, polyparaphenylene sulfide, and the like. Examples include those coated with ceramics such as SiO2 and AI2039i3N4. The metal material of the first electrode layer includes AI, Or, ^g,
Old, Au, Cu, Ti, W, )Ia, etc. To form the pattern of the first electrode layer,
For example, it can be formed by bringing a metal mask with an inverted pattern of the 1'IIL pole layer into close contact with the substrate and depositing metal by a resistance heating method, an electron beam method, a sputtering method, or the like. The above adhesive tape may be used instead of the metal mask. In addition, after printing a resin pattern to be used as a mask, electrolytic plating is performed, and the resin mask is removed.
There is also a method of forming an electrode pattern. Amorphous silicon is used as the semiconductor layer of the photoelectric conversion section.
Amorphous silicon germanium, CulnSe2,
Compound semiconductors such as GaAs are used. In addition, as a formation method, plasma CVD (Chemical Vapor
por Dapogitian), sputtering method. M.O.
C V D (Metal Qrganfc Che
mical vapor depozilion), etc. The material of the transparent electrode of the second electrode layer is! 3n02,
In20s-Sn02 or the like is used, and the vapor deposition method is a resistance heating method, an electron beam method, a spatter method, or the like. A plurality of separated photoelectric conversion regions can be connected by one force, C
Wiring can be easily done by using screen printing using a conductive resin paste containing u, Ag, etc. Another method is to form a wiring pattern using an anisotropically conductive adhesive containing fine metal powder mixed in a hot-melt type resin, and then thermocompress the sheet into multiple photoelectric conversion regions. [Effect 1] As mentioned above, by using an adhesive member such as an adhesive tape in the separation process of the photoelectric conversion region. Even on flexible insulating substrates, it is possible to form accurate separation masks with reliable adhesion. Additionally, since there is no need to use laser beams, electron beams, etc. in the separation process, there is no need to worry about damaging the substrate. In addition, by using an adhesive tape that has passed a peel test in advance, the peeling process becomes more reliable, and by using a material that releases less gas, the semiconductor layer It can prevent contamination such as [Example J] The present invention will be explained in detail based on an example below. FIGS. 1(a) to 1(e) are diagrams illustrating steps for carrying out the present invention. In FIG. 1, 100 is a flexible insulating substrate 101 using a polyphenylene sulfide film, and 102 is the M3 of the first electrode layer.
1r mask, 103 is an adhesive tape, 104 is a semiconductor layer, 105 is a second electrode layer. 106 is a connection wiring. First, a first electrode pattern lot with a two-layer structure of AI/Or is formed on a polyphenylene sulfide film ioo using a vapor deposition mask 102 (Fig. 1a), and the base material is polyimide. Adhesive tape 103 prepared with an adhesive so that it could be peeled off was compressed with a load of 2 kg/c (Fig. 1b). Next, silane gas and ciborane gas,
A pin m composite amorphous silicon semiconductor layer 104 is formed by plasma CVD of silane gas, silane gas and phosphine gas, and a second electrode layer In203 -
Sn02105 was formed by electron beam evaporation (Figure 1C). Next, after peeling off the adhesive tape 103 and forming a plurality of photoelectric conversion regions separately, A. A conductive resin paste 106 was screen printed to connect the photoelectric conversion regions in series (Fig. 1d). Figure 1e is a plan view of the solar cell manufactured by the above-described process, and Figure 1d is a cross-sectional view taken along line A-A' in Figure 1e. In addition, although FIGS. 1 a to 1 e show the case where the photoelectric conversion region is separated into three and connected in series in order to simplify the structure and make it easier to explain, the present invention is not limited to this. isn't it. Figure 2 is a schematic diagram showing the form of the adhesive tape 103 used in the process of Figure 1 and the process of pressure bonding. FIG. 2a shows the three-wood adhesive tape 103 and the adhesive tape roll 107 that supplies it, and FIG. 2b shows the adhesive tape 103 from this adhesive tape roll 107 to the substrate
1 is a conceptual diagram showing the process of crimping onto 0. In the figure,
The adhesive tape 103 is pressed onto the base lOO by the pressure roller 108 as the adhesive tape roll 107 rotates in the C direction and the base l00 moves in the D direction. Figure 1b is a cross-sectional view taken along B-8' in Figure 2b. Note that the above-mentioned adhesive tape shows an example of the adhesive member in the present invention, and the present invention is not limited to the above-mentioned adhesive tape. For example, $2 Figure C shows a grid-like adhesive tape 103, and the base 100 is similar to the above.
It is used by being crimped onto the top. Further, when peeling the adhesive tape 103, the adhesive tape roll 107 can be reversely rotated and wound up, or a separate roll exclusively used for peeling may be used. Figure 3 shows the structure of the adhesive tape used in this example. In the figure, 300 is an adhesive tape base material, and here a polyester film was used. 30l
is a vapor-deposited metal of Cr, and 302 is a removable pressure-sensitive adhesive. Figure 4 is a conceptual diagram of the roll-to-roll type deposition equipment used in the above process. In the figure, 400 is a flexible resin film substrate, 401 is a pressure roller 403 for pressing the adhesive tape onto the substrate, is an adhesive tape, 404, 4
05 and 406 respectively. 2nd and 3rd plasma CVD deposition chambers, 407 a deposition chamber for the second electrode, 408 a base roll. 409 is a roll for supplying the adhesive tape, and 41O is a roll for winding up the adhesive tape during peeling. Note that the device for forming the first electrode pattern and the device for series connection wiring are omitted. In this example, amorphous silicon pin! Although we have explained the manufacturing method for a single-layer structure, the structure of the photoelectric conversion region of the wood invention is not limited to this. [Effects of the Invention] As explained above, the present invention covers a position that partially overlaps with the first electrode layer with a removable adhesive member,
By using a step of peeling off the adhesive member after forming the semiconductor layer and the second electrode layer. Even when a flexible insulating substrate such as a resin substrate is used as the substrate, multiple photoelectric conversion regions can be easily separated and formed without damaging the substrate. In addition, since the adhesive has good adhesion to the substrate, it is possible to create accurate deposits, and by using an adhesive material that releases less gas, there is less change in the characteristics of the element. Become. It also simplifies the process and allows the use of inexpensive resin substrates, making it possible to inexpensively manufacture solar cells with properties comparable to conventional ones.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の製造方法を工程順に説明するための図
、 第2図は本発明により使用される粘着性部材の一例と圧
着工程を示す模式図, 第3図は本発明の実施例に用いた粘着テープの一例の断
面図, 第4図は本発明の実施例に用いた堆a装置の一例の概念
構成図, 第5図は、粘着テープの剥離試験に用いた振子型試験機
の概略図である. 第6図は、レーザービームを用いた従来の太陽電池の製
造方法である. 0,400,600・・・絶縁基体、 1,601・・・第1の電極層、 5,605・・・第2の電極層, 4,603・・・半導体層, 6・・・配線、 2・・・蒸着マスク、 103,403,501・・・粘着テープ、301・・
・蒸着金属, 300・・・粘着テープ基材, 302 ,502・・・感圧接着剤、 108,401・・・圧着ローラー 402・・・粘着テープ圧着済基体, 4 0 4 , 4 0 5 , 4 0 6 ・・・
プラズマCVD堆積室 407・・・蒸着室, 408・・・絶縁基体ロール、 107,409,410・・・粘着テープロール,50
1・・・粘着剤, 503・・・第1の電極パターンを形成した可撓性基体
, 504・・・第1の電極パターン.
Fig. 1 is a diagram for explaining the manufacturing method of the present invention step by step, Fig. 2 is a schematic diagram showing an example of the adhesive member used in the present invention and the pressure bonding process, and Fig. 3 is an example of the present invention. 4 is a conceptual configuration diagram of an example of a sedimentation apparatus used in an example of the present invention. FIG. 5 is a pendulum-type testing machine used in a peel test of the adhesive tape. This is a schematic diagram. Figure 6 shows a conventional solar cell manufacturing method using a laser beam. 0,400,600... Insulating base, 1,601... First electrode layer, 5,605... Second electrode layer, 4,603... Semiconductor layer, 6... Wiring, 2... Vapor deposition mask, 103,403,501... Adhesive tape, 301...
- Vapor-deposited metal, 300... Adhesive tape base material, 302, 502... Pressure sensitive adhesive, 108, 401... Pressure roller 402... Adhesive tape crimped base, 4 0 4, 4 0 5, 4 0 6...
Plasma CVD deposition chamber 407... Vapor deposition chamber, 408... Insulating base roll, 107, 409, 410... Adhesive tape roll, 50
DESCRIPTION OF SYMBOLS 1... Adhesive, 503... Flexible base on which the first electrode pattern was formed, 504... First electrode pattern.

Claims (6)

【特許請求の範囲】[Claims] (1)基体上に設けられた第1の電極層と重なる様に粘
着性部材を前記基体上に設ける工程と、それらの上に半
導体層及び第2の電極層を設ける工程と、 前記粘着性部材を前記基体上から剥離して、複数の光電
変換領域を形成する工程と、 前記複数の各光電変換領域に配線を施す工程と、を有す
ることを特徴とする太陽電池の製造方法。
(1) a step of providing an adhesive member on the substrate so as to overlap with a first electrode layer provided on the substrate; a step of providing a semiconductor layer and a second electrode layer thereon; A method for manufacturing a solar cell, comprising the steps of: peeling off a member from the base to form a plurality of photoelectric conversion regions; and providing wiring to each of the plurality of photoelectric conversion regions.
(2)上記基体が可撓性を持つことを特徴とする請求項
1に記載の太陽電池の製造方法。
(2) The method for manufacturing a solar cell according to claim 1, wherein the base has flexibility.
(3)上記粘着性偉材の厚みが2ミクロン以上であるこ
とを特徴とする請求項1に記載の太陽電池の製造方法。
(3) The method for manufacturing a solar cell according to claim 1, wherein the adhesive material has a thickness of 2 microns or more.
(4)上記粘着性部材が基材に感圧接着剤を塗布したも
のであることを特徴とする請求項1に記載の太陽電池の
製造方法。
(4) The method for manufacturing a solar cell according to claim 1, wherein the adhesive member is a base material coated with a pressure-sensitive adhesive.
(5)上記粘着性部材が、接着剤塗布面とは反対側の面
に金属または、セラミックスが蒸着されている樹脂フィ
ルムであることを特徴とする請求項4に記載の太陽電池
の製造方法。
(5) The method for manufacturing a solar cell according to claim 4, wherein the adhesive member is a resin film on which a metal or ceramic is vapor-deposited on the surface opposite to the surface to which the adhesive is applied.
(6)上記粘着性部材の基材が金属であることを特徴と
する請求項4に記載の太陽電池の製造方法。
(6) The method for manufacturing a solar cell according to claim 4, wherein the base material of the adhesive member is metal.
JP1152402A 1989-06-16 1989-06-16 Manufacture of solar cell Pending JPH0319378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1152402A JPH0319378A (en) 1989-06-16 1989-06-16 Manufacture of solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1152402A JPH0319378A (en) 1989-06-16 1989-06-16 Manufacture of solar cell

Publications (1)

Publication Number Publication Date
JPH0319378A true JPH0319378A (en) 1991-01-28

Family

ID=15539730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1152402A Pending JPH0319378A (en) 1989-06-16 1989-06-16 Manufacture of solar cell

Country Status (1)

Country Link
JP (1) JPH0319378A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001127318A (en) * 1999-10-29 2001-05-11 Fuji Electric Corp Res & Dev Ltd Method of forming patterned thin-film layer
JP2004086192A (en) * 2002-06-28 2004-03-18 Toppan Printing Co Ltd Information display member and its manufacturing method
TWI649893B (en) * 2016-08-17 2019-02-01 位元奈米科技股份有限公司 A method for manufacturing a photoelectric conversion composite layer structure of a photovoltaic cell.

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001127318A (en) * 1999-10-29 2001-05-11 Fuji Electric Corp Res & Dev Ltd Method of forming patterned thin-film layer
JP2004086192A (en) * 2002-06-28 2004-03-18 Toppan Printing Co Ltd Information display member and its manufacturing method
JP4539039B2 (en) * 2002-06-28 2010-09-08 凸版印刷株式会社 Information display member and manufacturing method thereof
TWI649893B (en) * 2016-08-17 2019-02-01 位元奈米科技股份有限公司 A method for manufacturing a photoelectric conversion composite layer structure of a photovoltaic cell.

Similar Documents

Publication Publication Date Title
US4243432A (en) Solar cell array
US6278053B1 (en) Decals and methods for providing an antireflective coating and metallization on a solar cell
JP2016536808A (en) Metallization of solar cells using metal foil
JP2000068548A (en) Photovoltaic cell and manufacture thereof
JP3653800B2 (en) Method for manufacturing integrated thin film solar cell
GB1575888A (en) Solar cell array
JPH06318724A (en) Electrode and photovoltaic element
JPH0319378A (en) Manufacture of solar cell
JPH05259487A (en) Manufacture of solar cell
JP2000150929A (en) Photovoltaic element and manufacture thereof
JPS59208789A (en) Solar cell
JPH01105581A (en) Manufacture of photovoltaic device
JPH0319379A (en) Solar cell
JPS622713B2 (en)
JP2000340811A (en) Integrated thin-film solar cell, manufacture and manufacturing device thereof
JPS61193488A (en) Manufacture of amorphous solar cell
JPS61112384A (en) Solar battery and manufacture thereof
JP3115790B2 (en) Solar cell electrode manufacturing method
JPS62113483A (en) Thin-film solar cell
JP3332487B2 (en) Method for manufacturing photovoltaic device
JPH0370184A (en) Photovoltaic device
KR950008415B1 (en) Photo energy tarnsducer and mannfacturing method thereof
JPS62147784A (en) Amorphous solar cell and manufacture thereof
JPH10321882A (en) Solar battery element
JPH0878712A (en) Formation of pattern film and manufacture of photoelectromotive device