JP3115790B2 - Solar cell electrode manufacturing method - Google Patents

Solar cell electrode manufacturing method

Info

Publication number
JP3115790B2
JP3115790B2 JP07111768A JP11176895A JP3115790B2 JP 3115790 B2 JP3115790 B2 JP 3115790B2 JP 07111768 A JP07111768 A JP 07111768A JP 11176895 A JP11176895 A JP 11176895A JP 3115790 B2 JP3115790 B2 JP 3115790B2
Authority
JP
Japan
Prior art keywords
solar cell
transparent substrate
electrode
diffusion layer
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07111768A
Other languages
Japanese (ja)
Other versions
JPH08306946A (en
Inventor
聡 田中
徹 布居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP07111768A priority Critical patent/JP3115790B2/en
Publication of JPH08306946A publication Critical patent/JPH08306946A/en
Application granted granted Critical
Publication of JP3115790B2 publication Critical patent/JP3115790B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、太陽電池の電極製造方
法に関し、特に太陽電池モジュールの製造に好適な電極
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an electrode for a solar cell, and more particularly to a method for manufacturing an electrode suitable for manufacturing a solar cell module.

【0002】[0002]

【従来の技術】通常、太陽電池の電極形成は、導電性ペ
ーストの印刷によっておこなわれている。しかし、この
方法は、スクリーンマスクを用いた印刷、600℃程度
の焼成および表面保護や直列配線のための半田コートの
工程が必要であるため、工程が複雑であるとともに、充
分なコスト低減を実現することができなかった。そこ
で、特開昭59−115524に記載のように、半導体
表面に直接金属細線を加熱下圧接することにより、電気
的および機械的な接続を取る方法が提案されている。
2. Description of the Related Art Generally, electrodes of a solar cell are formed by printing a conductive paste. However, this method requires the steps of printing using a screen mask, baking at about 600 ° C., and solder coating for surface protection and serial wiring, so that the process is complicated and sufficient cost reduction is realized. I couldn't. Therefore, as described in JP-A-59-115524, there has been proposed a method of making electrical and mechanical connection by directly pressing a thin metal wire on a semiconductor surface under heating and pressure.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来の方法では、金属細線にかける圧力は、200から3
00Kg/cm2と非常に大きく、セル割れが多発して
いた。特に、サイズが100mm角で、裏面にBSF層
形成用のアルミペースト電極をもつ太陽電池セルにおい
ては、ペースト電極の厚みのばらつきが100から20
0ミクロン程度あるため、全数セル割れを起こしてい
た。さらに、金属細線の半導体に対する接着強度が充分
でなく電極剥離が頻発しており、従来の技術は現実には
殆ど実施されてはいなかった。
However, in the above conventional method, the pressure applied to the thin metal wire is 200 to 3
It was as large as 00 kg / cm 2, and cell cracking occurred frequently. In particular, in a solar battery cell having a size of 100 mm square and having an aluminum paste electrode for forming a BSF layer on the back surface, the variation in the thickness of the paste electrode is 100 to 20.
Since the diameter is about 0 μm, all cells cracked. Furthermore, the adhesive strength of the thin metal wire to the semiconductor is not sufficient, and electrode peeling frequently occurs, so that the conventional technology has hardly been practiced in practice.

【0004】本発明の目的は、極めて簡単で安価な工程
で、電極の形成を、太陽電池セルに対し歩留まり良く形
成できる太陽電池の電極製造方法を提供することにあ
る。
An object of the present invention is to provide a method of manufacturing an electrode for a solar cell in which an electrode can be formed with a very simple and inexpensive process at a high yield to a solar cell.

【0005】[0005]

【課題を解決するための手段】請求項1に記載の太陽電
池の電極製造方法は、透明基板に金属線を当接して固定
する工程と、太陽電池セルの拡散層のテクスチャ面を上
記金属線に当接する工程と、上記透明基板及び上記太陽
電池セルの周囲に封止樹脂を固着して、封止領域を形成
する工程と、加熱すると共に、上記封止領域を排気して
上記太陽電池セルを上記透明基板に対し加圧し、上記拡
散層と上記金属線とのオーミック接触を得る工程と、を
有することを特徴とする。
According to a first aspect of the present invention, there is provided a method for manufacturing an electrode for a solar cell, comprising the steps of: abutting and fixing a metal wire on a transparent substrate; A step of forming a sealing region by fixing a sealing resin around the transparent substrate and the solar cell, and heating and exhausting the sealing region to form the solar cell. And pressurizing the transparent substrate to obtain ohmic contact between the diffusion layer and the metal wire.

【0006】また、上記太陽電池の電極製造方法におい
て、請求項2に記載の太陽電池の電極製造方法は、上記
太陽電池セルは、上記凹凸表面の形状を反映した薄膜絶
縁層を上記拡散層上に有することを特徴とする。
In the above method for manufacturing an electrode for a solar cell, the method for manufacturing an electrode for a solar cell according to claim 2, wherein the solar cell includes a thin film insulating layer on the diffusion layer reflecting the shape of the uneven surface. It is characterized by having.

【0007】さらに、上記太陽電池の電極製造方法にお
いて、請求項3に記載の太陽電池の電極製造方法は、上
記透明基板は、該透明基板上に樹脂シート、ガラスクロ
ス層の順に有することを特徴とする。
Further, in the above method for manufacturing an electrode for a solar cell, the method for manufacturing an electrode for a solar cell according to the third aspect is characterized in that the transparent substrate has a resin sheet and a glass cloth layer on the transparent substrate in this order. And

【0008】[0008]

【作用】請求項1に記載の発明は、太陽電池セルの裏面
から直接加圧されるのでなく、大気圧程度の比較的低圧
力で加圧、加熱され、太陽電池セルの拡散層表面にテク
スチャ処理が施されているので、低圧力でも、良好なコ
ンタクトが得られ、電極剥離が生じない。なお、透明基
板を用いているので、本工程をへた太陽電池セルは、そ
のままで太陽電池モジュールとして使用可能である。
According to the first aspect of the present invention, the pressure is not directly applied from the back surface of the solar cell but is applied under a relatively low pressure of about atmospheric pressure and heated, and the surface of the diffusion layer of the solar cell is textured. Since the treatment is performed, good contact can be obtained even at a low pressure, and no electrode peeling occurs. In addition, since the transparent substrate is used, the solar cell that has gone through this step can be used as it is as a solar cell module.

【0009】請求項2に記載の発明は、テクスチャ面の
先端部の絶縁膜は極めて薄くなっており、先端部に対し
て微小な接触点、いわゆるマイクロコンタクトが数多く
取れることにより、請求項1と同様な作用を奏する。
According to the second aspect of the present invention, the insulating film at the tip of the textured surface is extremely thin, and a large number of minute contact points with the tip, so-called microcontacts, can be obtained. It has a similar effect.

【0010】請求項3に記載の発明は、樹脂シートを透
明基板と太陽電池セルの間に介在させて加熱・加圧を行
うことにより、一旦、溶融後固化した樹脂シートが太陽
電池セルと金属線を完全に固定し、当該金属線とセルと
の界面へは直接外力がかからなくなるので、電極剥離が
生じない。この際、樹脂シートの表面にガラスクロス層
をもたせた場合には、加熱・加圧中溶融した樹脂をガラ
スクロス層が吸収するため、樹脂がセルと金属線群界面
に入り込み絶縁シートとなることを防止する役割をも
つ。なお、この場合も、そのまま太陽電池モジュールと
して使用可能である。
According to a third aspect of the present invention, the resin sheet once melted and solidified is formed by interposing a resin sheet between the transparent substrate and the solar cell and applying heat and pressure. Since the wire is completely fixed and no external force is applied directly to the interface between the metal wire and the cell, electrode peeling does not occur. At this time, if a glass cloth layer is provided on the surface of the resin sheet, the glass cloth layer absorbs the molten resin during heating and pressurization, so that the resin enters the interface between the cell and the metal wire group and becomes an insulating sheet. Has the role of preventing. In this case, the solar cell module can be used as it is.

【0011】[0011]

【実施例】【Example】

(実施例1)図1に、本実施例における一工程の平面図
を、図2に、図1のA12での断面図をそれぞれ示す。
以下、図1、図2に基づいて本実施例の製造工程を説明
する。
(Embodiment 1) FIG. 1 is a plan view of one process in this embodiment, and FIG. 2 is a cross-sectional view taken along line A 1 A 2 of FIG.
Hereinafter, the manufacturing process of this embodiment will be described with reference to FIGS.

【0012】まず、テクスチャ処理により大きさ約10
μmの多数の微小ピラミッド形状からなるテクスチャ面
2をP型シリコン基板1上に形成し、接合深さ約0.3
μm、表面濃度1018cm-2以上のN型拡散層3を形成
し、裏面電極4としてアルミペーストを印刷、焼成して
BSF層5を形成した100mm角の太陽電池セル6を
準備する。
First, a size of about 10 is obtained by texture processing.
A texture surface 2 having a number of micro-pyramidal shapes of μm is formed on a P-type silicon substrate 1 and has a junction depth of about 0.3.
An N-type diffusion layer 3 having a thickness of 10 μm or more and a surface concentration of 10 18 cm −2 or more is formed, and an aluminum paste is printed and fired as a back electrode 4 to prepare a 100 mm square solar cell 6 having a BSF layer 5 formed.

【0013】次に、板厚3.2mmの白板強化ガラス7
の片面の両端に両面テープ8をはりつけ、それを利用し
て電線状の直径100μmの電極となるアルミワイヤ9
を4mmピッチで固定する(図1,2共にアルミワイヤ
本数は正確でなく、模式的に示されている)。この時、
アルミワイヤ9は、白板強化ガラス7の片端から30m
m出しておく。
Next, a white plate tempered glass 7 having a thickness of 3.2 mm
A double-sided tape 8 is attached to both ends of one side of the aluminum wire, and the aluminum wire 9 is used as an electric wire-shaped electrode having a diameter of 100 μm.
Are fixed at a pitch of 4 mm (the number of aluminum wires is not accurate and is schematically shown in both FIGS. 1 and 2). At this time,
The aluminum wire 9 is 30 m from one end of the tempered glass 7
m.

【0014】そして、この太陽電池セル6を、上記のア
ルミワイヤ9の固定された白板強化ガラス7上へテクス
チャ面2を下にして、太陽電池セル6の四辺にセル固定
用のEVA樹脂(エチレンービニルアセテート樹脂)1
0をかぶせて、140℃に温度調節され、軟らかいゴム
シートで仕切られた2つの真空室を有する2重真空方式
のラミネータの一方の真空室のヒータ11上に置く。次
に、ラミネータの扉をしめ、封止された空間領域12を
含めラミネータの2つの真空室内部の空気を10分間真
空引きを行った(図示せず)後、他方の真空を解除する
ことにより太陽電池セル6全体に大気圧Pを1分間かけ
る。本実施例では、加圧を大気圧で行ったが、太陽電池
セル6の割れの発生がなく、良好なオーミックコンタク
トをとるためには、加圧は、1〜5kg/cm2の範囲
が望ましく、また、ヒータによる加熱は、110〜15
0℃、加圧時間は、0.5〜3分が望ましい。なお、封
止された空間領域12は、封止が完全でないので、真空
引きを行うのに支障はない。
Then, the solar cell 6 is placed on the four sides of the solar cell 6 with the textured surface 2 facing down onto the tempered glass plate 7 on which the aluminum wires 9 are fixed, and EVA resin (ethylene -Vinyl acetate resin) 1
0, the temperature is adjusted to 140 ° C., and the heater is placed on the heater 11 in one vacuum chamber of a double vacuum laminator having two vacuum chambers separated by a soft rubber sheet. Next, the door of the laminator is closed, the air in the two vacuum chambers of the laminator including the sealed space area 12 is evacuated for 10 minutes (not shown), and then the other vacuum is released. Atmospheric pressure P is applied to the entire solar cell 6 for one minute. In this embodiment, the pressurization is performed at the atmospheric pressure. However, in order to prevent the occurrence of cracks in the solar cell 6 and to obtain a good ohmic contact, the pressurization is preferably in the range of 1 to 5 kg / cm 2. The heating by the heater is 110 to 15
0 ° C. and the pressurization time are desirably 0.5 to 3 minutes. Since the sealed space region 12 is not completely sealed, there is no problem in performing the evacuation.

【0015】以上の工程により、N型拡散層3とアルミ
ワイヤ9との間に良好なオーミックコンタクトが得ら
れ、アルミワイヤ9の剥離、太陽電池セル6の割れ共に
生じなかった。白板強化ガラス7からはみ出しているア
ルミワイヤ9を束ねてリード線として、この太陽電池モ
ジュールの電流電圧特性を測定したところ、短絡電流は
3473mA、開放電圧は601mV、曲線因子は0.
72、変換効率は15.0%であった。
Through the above steps, a good ohmic contact was obtained between the N-type diffusion layer 3 and the aluminum wire 9, and neither peeling of the aluminum wire 9 nor cracking of the solar cell 6 occurred. The current-voltage characteristics of this solar cell module were measured by bundling the aluminum wires 9 protruding from the white-plate tempered glass 7 and using them as lead wires. The short-circuit current was 3473 mA, the open-circuit voltage was 601 mV, and the fill factor was 0.
72. Conversion efficiency was 15.0%.

【0016】(実施例2)図3に、本実施例の一工程の
断面図を示す。本実施例では、実施例1との違いはN型
拡散層3を形成した後、約70nmのTiO2反射防止
膜13を常圧CVD装置により堆積する点のみである。
なお、この場合、TiO2反射防止膜13は薄いので、
多数の微小ピラミッド形状からなるテクスチャ面2の形
状は反映されたままである。本実施例においても、良好
なオーミックコンタクトが得られ、アルミワイヤ9の剥
離、太陽電池セル6の割れ共に生じなかった。良好なオ
ーミックコンタクトが得られるのは、TiO2反射防止
膜は、微小なピラミッドの先端部等では薄いので、マイ
クロコンタクトが多数取れるからと推測される。
(Embodiment 2) FIG. 3 is a sectional view showing one step of this embodiment. The present embodiment is different from the first embodiment only in that after forming the N-type diffusion layer 3, a TiO 2 antireflection film 13 of about 70 nm is deposited by a normal pressure CVD apparatus.
In this case, since the TiO 2 antireflection film 13 is thin,
The shape of the texture surface 2 composed of a large number of micro pyramids remains reflected. Also in this example, a good ohmic contact was obtained, and neither peeling of the aluminum wire 9 nor cracking of the solar cell 6 occurred. It is presumed that a good ohmic contact is obtained because the TiO 2 antireflection film is thin at the tip of a minute pyramid or the like, so that a large number of microcontacts can be obtained.

【0017】以上の工程により作製された太陽電池モジ
ュールの電流電圧特性を測定したところ、短絡電流は3
610mA、開放電圧は603mV、曲線因子は0.7
1、変換効率は15.5%であった。
When the current-voltage characteristics of the solar cell module manufactured by the above steps were measured, the short-circuit current was 3
610 mA, open circuit voltage 603 mV, fill factor 0.7
1. The conversion efficiency was 15.5%.

【0018】(実施例3)図4に、本実施例の一工程の
断面図を、図5に、図4の加圧後の断面図をそれぞれ示
す。
(Embodiment 3) FIG. 4 shows a cross-sectional view of one step of this embodiment, and FIG. 5 shows a cross-sectional view of FIG. 4 after pressing.

【0019】まず、実施例2で用いた太陽電池セル6を
準備する。なお、実施例1で用いた太陽電池セル6を用
いても良い。
First, the solar cell 6 used in the second embodiment is prepared. The solar cell 6 used in the first embodiment may be used.

【0020】次に、直径約10μmのガラス繊維を用い
た不織布である約120μm厚のガラスクロス層14を
片面にもつ厚み600μmのEVAシート15を、板厚
3.2mmの白板強化ガラス7の上に載せる。ガラスク
ロス層14の両端に両面テープ8をはりつけ、それを利
用して直径100μmのアルミワイヤ9を4mmピッチ
で固定する。この時、アルミワイヤ9は、白板強化ガラ
ス7の片端から30mm出しておく。
Next, a 600 μm thick EVA sheet 15 having a glass cloth layer 14 having a thickness of about 120 μm, which is a non-woven fabric using glass fibers having a diameter of about 10 μm, is placed on a 3.2 mm thick white sheet reinforced glass 7. Put on. A double-sided tape 8 is attached to both ends of the glass cloth layer 14, and an aluminum wire 9 having a diameter of 100 μm is fixed at a pitch of 4 mm using the tape. At this time, the aluminum wire 9 extends 30 mm from one end of the white sheet tempered glass 7.

【0021】そして、上記実施例と同様に、この太陽電
池セル6のテクスチャ面2を下にしてアルミワイヤ9の
上にのせ、太陽電池セル6及び白板強化ガラス7の周囲
にEVA樹脂をかぶせ、加熱する共に、真空引きをおこ
ない、加圧する。
Then, similarly to the above-described embodiment, the solar cell 6 is placed on the aluminum wire 9 with the textured surface 2 facing down, and the solar cell 6 and the white sheet reinforced glass 7 are covered with EVA resin. While heating, evacuate and pressurize.

【0022】以上の工程により、テクスチャ面2とガラ
スクロス層14とが接すると共に、N型拡散層3とアル
ミワイヤ9との間に良好なオーミックコンタクトが得ら
れアルミワイヤ9の剥離、太陽電池セル6の割れ共に生
じなかった。なお、ガラスクロス層14の厚みは、コス
ト、作業性(重量)、性能の面からみて、120μmが
最適である。なぜなら、ガラスクロス層14の厚みが6
0μm、90μmの場合での、同上の実験の結果、曲線
因子は0.5以下と不十分であった。白板強化ガラス7
からはみ出しているアルミワイヤ9を束ねてリード線と
して、この太陽電池モジュールの電流電圧特性を測定し
たところ、短絡電流は3625mA、開放電圧は604
mV、曲線因子は0.72、変換効率は15.8%であ
った。
Through the above steps, the textured surface 2 and the glass cloth layer 14 are in contact with each other, and a good ohmic contact between the N-type diffusion layer 3 and the aluminum wire 9 is obtained. None of the cracks of No. 6 occurred. The thickness of the glass cloth layer 14 is optimally 120 μm from the viewpoint of cost, workability (weight), and performance. Because the thickness of the glass cloth layer 14 is 6
As a result of the above experiment at 0 μm and 90 μm, the fill factor was insufficient at 0.5 or less. White board tempered glass 7
When the current-voltage characteristics of the solar cell module were measured by bundling the protruding aluminum wires 9 and using them as lead wires, the short-circuit current was 3625 mA and the open-circuit voltage was 604.
mV, fill factor was 0.72, and conversion efficiency was 15.8%.

【0023】以上の実施例においては、接着する電極と
接着される太陽電池セル側で種々の組み合わせが可能で
ある。電極側では、形状的には、ワイヤを織ったクロス
ワイヤ、エキスパンドメタルあるいはこれらを表面にも
った樹脂シート等があり、材質的には、Ag,Ni,A
u,CuおよびCuのNiメッキ等各種メッキ品等があ
る。また接着される太陽電池セルにおいてもシリコンを
例に取れば、シリコン基板表面が露出した太陽電池セ
ル、またはリンチタネートガラス、リンシリケートガラ
ス、チタネートガラス、シリケートガラス等の絶縁性薄
膜、ITO,SnO2等の透明導電膜がシリコン基板表
面に形成された太陽電池セルなどがある。シリコン基板
表面の微小凹凸形状としては、ピラミッド形状のみなら
ず、グルーブ面でもよい。なお、微小凹凸形状は、化学
的処理または機械的処理により作製される。
In the above embodiment, various combinations are possible on the electrode to be bonded and the solar cell side to be bonded. On the electrode side, in terms of shape, there are a cross-wire woven wire, expanded metal or a resin sheet having these on the surface, and the material is Ag, Ni, A
There are various plated products such as u, Cu and Ni plating of Cu. In the case of silicon as an example of a solar cell to be bonded, a solar cell with an exposed silicon substrate surface, an insulating thin film such as phosphor titanate glass, phosphor silicate glass, titanate glass, silicate glass, ITO, SnO 2 And the like, in which a transparent conductive film such as that described above is formed on the surface of a silicon substrate. The microscopic unevenness on the silicon substrate surface may be not only a pyramid shape but also a groove surface. Note that the minute unevenness is formed by a chemical treatment or a mechanical treatment.

【0024】[0024]

【発明の効果】これまで、金属ペーストの印刷、焼成、
半田コートおよび手作業によるリード線のコテ付けとい
った、複雑で低コスト化の妨げとなっていた電極とリー
ド線の形成を、極めて簡単に同時に形成できるようにな
り、大面積でセル厚みのバラツキをもった太陽電池セル
に対しても、電極剥がれがなく、太陽電池セル割れの発
生がなく、電極の金属線に対して良好なコンタクトが得
ることができる。従って太陽電池セル、モジュール製造
工程が簡略化され、太陽電池モジュールの低コスト化が
図れる。
According to the present invention, printing and firing of a metal paste have been performed.
Electrodes and lead wires, which have been complicated and hindered cost reduction, such as solder coating and manual ironing of lead wires, can now be formed very easily at the same time, resulting in large areas and variations in cell thickness. Even for a solar cell having a problem, there is no peeling of the electrode, no cracking of the solar cell, and good contact with the metal wire of the electrode can be obtained. Therefore, the manufacturing process of the solar cell and the module is simplified, and the cost of the solar cell module can be reduced.

【0025】また、透明基板上の樹脂シート上にガラス
クロス層を設けているので、太陽電池セルと金属線との
固定がより強固になる。
Further, since the glass cloth layer is provided on the resin sheet on the transparent substrate, the fixing between the solar cell and the metal wire is further strengthened.

【0026】さらに、本発明において、加圧を行うにあ
たっては、現在太陽電池モジュール製造工程で使用され
ているラミネータがそのまま使用可能であるため、新た
な設備、装置を何ら必要としないので、設備投資も最小
限に抑えられる。
Furthermore, in the present invention, when pressurizing, the laminator currently used in the solar cell module manufacturing process can be used as it is, so that no new equipment or equipment is required, so that capital investment is not required. Is also minimized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1に係る一工程を示す平面図で
ある。
FIG. 1 is a plan view showing one process according to Embodiment 1 of the present invention.

【図2】本発明の実施例1に係る一工程を示す断面図で
ある。
FIG. 2 is a cross-sectional view showing one process according to the first embodiment of the present invention.

【図3】本発明の実施例2に係る一工程を示す断面図で
ある。
FIG. 3 is a cross-sectional view illustrating one process according to a second embodiment of the present invention.

【図4】本発明の実施例3に係る一工程を示す断面図で
ある。
FIG. 4 is a cross-sectional view showing one step according to a third embodiment of the present invention.

【図5】本発明の実施例3に係る一工程を示す断面図で
ある。
FIG. 5 is a cross-sectional view showing one process according to a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 P型シリコン基板 2 テクスチャ面 3 N型拡散層 4 裏面電極 5 BSF層 6 太陽電池セル 7 白板強化ガラス 8 両面テープ 9 アルミワイヤ 10 EVA樹脂 11 ヒータ 12 空間領域 13 TiO2反射防止膜 14 ガラスクロス層 15 EVAシートREFERENCE SIGNS LIST 1 P-type silicon substrate 2 Textured surface 3 N-type diffusion layer 4 Back electrode 5 BSF layer 6 Solar cell 7 White plate reinforced glass 8 Double-sided tape 9 Aluminum wire 10 EVA resin 11 Heater 12 Spatial area 13 TiO 2 anti-reflective coating 14 Glass cloth Layer 15 EVA sheet

フロントページの続き (56)参考文献 特開 昭56−10979(JP,A) 特開 昭60−4270(JP,A) 特開 昭60−214550(JP,A) 特開 昭62−237765(JP,A) 特開 平1−206671(JP,A) 特開 平5−95124(JP,A) 特開 平5−291597(JP,A) 特開 平6−275858(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 31/04 - 31/078 Continuation of front page (56) References JP-A-56-10979 (JP, A) JP-A-60-4270 (JP, A) JP-A-60-214550 (JP, A) JP-A-62-237765 (JP) JP-A-1-2066671 (JP, A) JP-A-5-95124 (JP, A) JP-A-5-291597 (JP, A) JP-A-6-275858 (JP, A) (58) Field surveyed (Int.Cl. 7 , DB name) H01L 31/04-31/078

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 透明基板に金属線を当接して固定する工
程と、 太陽電池セルの拡散層のテクスチャ面を上記金属線に当
接する工程と、 上記透明基板及び上記太陽電池セルの周囲に封止樹脂を
固着して、封止領域を形成する工程と、 加熱すると共に、上記封止領域を排気して上記太陽電池
セルを上記透明基板に対し加圧し、上記拡散層と上記金
属線とのオーミック接触を得る工程と、 を有することを特徴とする太陽電池の電極製造方法。
1. A step of contacting and fixing a metal wire to a transparent substrate, a step of contacting a textured surface of a diffusion layer of a solar cell with the metal line, and sealing around a periphery of the transparent substrate and the solar cell. Fixing the sealing resin to form a sealing region; heating and evacuating the sealing region to press the solar cell against the transparent substrate, thereby forming a gap between the diffusion layer and the metal wire. A method for producing an ohmic contact, comprising:
【請求項2】 上記太陽電池セルは、上記テクスチャ面
の形状を反映した薄膜絶縁層を上記拡散層上に有するこ
とを特徴とする請求項1に記載の太陽電池の電極製造方
法。
2. The method according to claim 1, wherein the solar cell has a thin-film insulating layer reflecting the shape of the textured surface on the diffusion layer.
【請求項3】 上記透明基板は、該透明基板上に樹脂シ
ート、ガラスクロス層の順に有することを特徴とする請
求項1または請求項2に記載の太陽電池の電極製造方
法。
3. The method for manufacturing a solar cell electrode according to claim 1, wherein the transparent substrate has a resin sheet and a glass cloth layer on the transparent substrate in this order.
JP07111768A 1995-05-10 1995-05-10 Solar cell electrode manufacturing method Expired - Fee Related JP3115790B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07111768A JP3115790B2 (en) 1995-05-10 1995-05-10 Solar cell electrode manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07111768A JP3115790B2 (en) 1995-05-10 1995-05-10 Solar cell electrode manufacturing method

Publications (2)

Publication Number Publication Date
JPH08306946A JPH08306946A (en) 1996-11-22
JP3115790B2 true JP3115790B2 (en) 2000-12-11

Family

ID=14569692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07111768A Expired - Fee Related JP3115790B2 (en) 1995-05-10 1995-05-10 Solar cell electrode manufacturing method

Country Status (1)

Country Link
JP (1) JP3115790B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0714680U (en) * 1993-08-12 1995-03-10 河村電器産業株式会社 Box for storing electrical equipment

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2862427B1 (en) * 2003-11-18 2006-01-20 Apollon Solar METHOD FOR MANUFACTURING A PHOTOVOLTAIC MODULE AND MODULE OBTAINED
EP1614165A2 (en) * 2003-04-16 2006-01-11 Apollon Solar Photovoltaic module and production method thereof
JP4250488B2 (en) 2003-09-16 2009-04-08 キヤノン株式会社 Thermocompression bonding method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0714680U (en) * 1993-08-12 1995-03-10 河村電器産業株式会社 Box for storing electrical equipment

Also Published As

Publication number Publication date
JPH08306946A (en) 1996-11-22

Similar Documents

Publication Publication Date Title
US4127424A (en) Photovoltaic cell array
JP2744847B2 (en) Improved solar cell and method for manufacturing the same
KR100242852B1 (en) Photovoltaic cell and method of making the same
US4254546A (en) Photovoltaic cell array
JP2939075B2 (en) Solar cell module
JP3888939B2 (en) Solar cell module
EP2267794A1 (en) Solar cell module and solar cell
JP4425917B2 (en) Solar cell and manufacturing method thereof
EP0807980A2 (en) Photovoltaic device and process for the production thereof
KR19980071511A (en) Solar modules
US6146483A (en) Decals and methods for providing an antireflective coating and metallization on a solar cell
WO2014069118A1 (en) Solar cell and solar cell module
WO2015147225A1 (en) Solar cell module and method for manufacturing same
JP2013225712A (en) Manufacturing method of thin film solar cell
JP2004127987A (en) Solar cell and method for manufacturing same
JP4075410B2 (en) Solar cell
JP5516063B2 (en) Combination mask and method for manufacturing solar cell
JP6807462B2 (en) Solar cell elements and solar cell modules
JP3115790B2 (en) Solar cell electrode manufacturing method
EP2835835A1 (en) Crystal system solar battery module and method for manufacturing same
JPH05259487A (en) Manufacture of solar cell
JP2001177119A (en) Manufacturing method and device of solar cell module
JP5171653B2 (en) Solar cell and manufacturing method thereof
JP3006711B2 (en) Solar cell module
KR101306375B1 (en) Solar cell module and method of fabricating the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080929

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080929

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130929

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees