JPH03184724A - Electrode material for electric discharge machining and manufacture thereof - Google Patents

Electrode material for electric discharge machining and manufacture thereof

Info

Publication number
JPH03184724A
JPH03184724A JP32172789A JP32172789A JPH03184724A JP H03184724 A JPH03184724 A JP H03184724A JP 32172789 A JP32172789 A JP 32172789A JP 32172789 A JP32172789 A JP 32172789A JP H03184724 A JPH03184724 A JP H03184724A
Authority
JP
Japan
Prior art keywords
electrode
carbonaceous
discharge machining
electric discharging
sol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32172789A
Other languages
Japanese (ja)
Inventor
Shigeru Inabe
稲辺 茂
Sakae Ikegami
池上 栄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP32172789A priority Critical patent/JPH03184724A/en
Publication of JPH03184724A publication Critical patent/JPH03184724A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the work surface roughness necessary for a precision processing, to increase the processing speed and to reduce the electrode consumption ratio by combining Al and/or Si component with the dispersion uniformly in a carbonaceous structure. CONSTITUTION:An electric discharging electrode material is manufactured by executing a heating treatment under non-oxidizing atmosphere, after impregrating forcibly Al2O3 and/or SiO2 sol at the temperature of 40+ or -10 deg.C in a carbonaceous material. The Al and/or Si component uniformly distributed in the carbonaceous structure composing an electrode is interposed with its dispersion on the electric discharging face with the decomposition at electric discharging time, the state of the electric discharging being stabilized in the work face whole zone is formed and also it functions for reducing a peak current. Consequently, the improvement of the work speed and the reduction of an electrode consumption degree can be realized.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は、加工仕上げ面、加工速度および電極消耗比の
改善を図った放電加工用電極材とその製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an electrode material for electric discharge machining that improves the machined surface, machining speed, and electrode consumption ratio, and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

形彫り方式の放電加工電極には、電極の製作が容易であ
ること、電極消耗比が小さいこと、加工速度が早いこと
、被加工物の面粗さが小さいこと、電極変形が少ないこ
と、等の性能が要求される。
Die-sinker electrical discharge machining electrodes have the following advantages: easy to manufacture, low electrode consumption ratio, fast machining speed, low surface roughness of the workpiece, low electrode deformation, etc. performance is required.

従来、これらの要求に沿う材質としてCu、Cu−W系
などの金属電極が用いられてきたが、近時、上記の要求
性能をより満足する電極材質として黒鉛のような炭素質
材料で構成されたものの使用比率が増大している。
Conventionally, metal electrodes such as Cu and Cu-W have been used as materials that meet these requirements, but recently, carbonaceous materials such as graphite have been used as electrode materials that better satisfy the above-mentioned performance requirements. The proportion of products used is increasing.

しかし、炭素質電極においても、例えばアーク発生が少
ない安定な放電の確保、ピーク電流が小さい場合の低電
極消耗化など多くの改善課題が残されている。とくに微
細な精密加工に対しては、被加工物の仕上げ面を向上さ
せるための放電安定化が不可欠の要件となる。
However, even with carbonaceous electrodes, many issues remain to be improved, such as ensuring stable discharge with little arcing and reducing electrode wear when the peak current is small. Particularly for fine precision machining, stabilization of electric discharge is an essential requirement to improve the finished surface of the workpiece.

すなわち、−Mに被加工物における仕上げ面の良否は、
放電面全体で均一に放電されるかどうかによって定まる
とされている。このような放電の安定化を図るには、電
極の材質組織を微細化する必要があり、このため粒子径
の細かなフィラー原料を用いて気孔のない均質緻密の組
織に形成した等方性黒鉛材が最良の材質とされている。
In other words, -M indicates the quality of the finished surface of the workpiece.
It is said that it is determined by whether the discharge is uniform across the entire discharge surface. In order to stabilize such discharge, it is necessary to refine the material structure of the electrode, and for this purpose, isotropic graphite is formed into a homogeneous and dense structure without pores using a filler material with a fine particle size. The material is considered to be the best.

ところが、黒鉛材は全て3000℃付近の黒鉛化処理を
介して製造されるため、この加熱過程での揮発成分の逸
散に伴う気孔の生成1よ避けられない。したがって、高
精度加工時の電極性能として十分に満足できないばかり
でなく、電極消耗の面にも問題がある。
However, since all graphite materials are manufactured through graphitization treatment at around 3000° C., the formation of pores due to the dissipation of volatile components during this heating process is unavoidable. Therefore, not only is the electrode performance unsatisfactory during high-precision machining, but there is also a problem in terms of electrode wear.

加工仕上げ面の改善に関しては、Cu電極を用いる放電
加工において加工液中にSi、Aj!、黒鉛等の粉末を
混入しておくことが効果的で、加工時間も短縮できると
の報告がある(機械技術、第37巻、第5号6〜10頁
)。
Regarding the improvement of the machined surface, Si and Aj! It has been reported that mixing powder such as graphite is effective and can shorten processing time (Mechanical Technology, Vol. 37, No. 5, pp. 6-10).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、前記の方法では炭素質材料に比べて電極
性能の劣るCu電極を用いているうえにSi、A/!等
の粉末を加工液中に均一分散させることに困難性があり
、良好な加工仕上げ面の確保に必要な安定放電の度合を
得るには自ずから限界がある。
However, the above method uses a Cu electrode, which has poor electrode performance compared to carbonaceous materials, and also uses Si, A/! There is a difficulty in uniformly dispersing such powders in a machining fluid, and there is a natural limit to obtaining the degree of stable electrical discharge necessary to ensure a good machined surface.

本発明は、炭素質電極の組織にA/!、Si等の成分を
均質に複合化することによって高度の安定放電性能を付
与するとともに、加工速度ならびに電極消耗度を改善し
た放電加工用電極およびその製造方法の提供を目的とす
るものである。
The present invention provides an A/! structure of a carbonaceous electrode. The object of the present invention is to provide an electrode for electrical discharge machining, which provides highly stable discharge performance by homogeneously compositing components such as , Si, and the like, and which improves machining speed and degree of electrode wear, and a method for manufacturing the same.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するための本発明による放電加工用電
極は、炭素質組織中にAlおよび/またはSi成分を含
有してなることを構成上の特徴としている。
The electrode for electric discharge machining according to the present invention for achieving the above object is characterized in that it contains Al and/or Si components in the carbonaceous structure.

炭素質組織とは、非晶質の炭素材から黒鉛結晶が発達し
た黒鉛材までの材質を指すが、微粒子系で均質な組織性
状を有していることが望ましい。
The carbonaceous structure refers to materials ranging from amorphous carbon materials to graphite materials in which graphite crystals have developed, but it is desirable that the carbonaceous structure is a fine particle system and has a homogeneous structure.

本発明において好適な構造態様は、AlまたはSiもし
くはこれら両成分が前記の炭素質組織に均質分布する微
小な気孔を充填する状態に含有されていることである。
A preferred structural aspect of the present invention is that Al or Si or both of these components are contained in the carbonaceous structure so as to fill minute pores that are homogeneously distributed.

このような構造態様の放電加工用電極材は、炭素質素材
に、Autosおよび/またはStowゾルを40+1
0℃の温度で強制含浸したのち、非酸化性雰囲気中で加
熱処理する方法によって製造することができる。
The electrode material for electric discharge machining having such a structure is made by adding 40+1 Autos and/or Stow sol to the carbonaceous material.
It can be manufactured by a method in which forced impregnation is performed at a temperature of 0° C. and then heat treatment is performed in a non-oxidizing atmosphere.

Al2O3ゾルには、粒子径10〜20−μの微粉体が
コロイド化した粘度(25℃)20cp程度のもの、ま
たSin、ゾルとしては、粒子径10〜20m+μの微
粉体がコロイド化した粘度5cp程度のものがそれぞれ
効果的に用いられる。
The Al2O3 sol has a viscosity of about 20 cp (25°C), which is a colloid of fine powder with a particle size of 10 to 20-μ, and the Sin sol has a viscosity of about 5 cp, which has a colloid of fine powder with a particle size of 10 to 20 m+μ. Each degree can be used effectively.

これらのゾルは単独もしくは共用し、40±lO℃の温
度域で炭素質素材に強制含浸する。含浸時の温度が40
±10″Cの範囲を外れる場合には、ゲル成分が炭素質
素材の組織中に円滑に浸透しなくなる。
These sols may be used alone or in combination to forcibly impregnate the carbonaceous material at a temperature range of 40±10°C. Temperature during impregnation is 40
If the temperature is outside the range of ±10″C, the gel component will not penetrate smoothly into the structure of the carbonaceous material.

強制含浸は、例えばオートクレーブのような圧力容器に
流入したゾルに炭素質素材を浸漬し、系内を真空減圧し
たのち加圧する方法によっておこなうことができる。
Forced impregnation can be carried out, for example, by immersing the carbonaceous material in a sol that has flowed into a pressure vessel such as an autoclave, reducing the pressure in the system to vacuum, and then increasing the pressure.

含浸処理後の炭素質素材は、引き続きN、、Arなとの
非酸化性雰囲気中で加熱処理を施すことによって含浸物
を焼結固定する。この際の温度は約1100℃とするこ
とが適当で、これ以上の高温域になると含浸成分が炭素
質素材と反応して脆弱な炭化物に転化する現象が発生す
る。
After the impregnation treatment, the carbonaceous material is subsequently heat treated in a non-oxidizing atmosphere of N, Ar, etc. to sinter and fix the impregnated material. The temperature at this time is suitably about 1100° C. If the temperature is higher than this, a phenomenon occurs in which the impregnating component reacts with the carbonaceous material and converts into a brittle carbide.

〔作 用] 本発明の放電加工用電極によれば、電極を構成する炭素
質組織中に均質分布するAl2および/またはSi成分
が放電時に分解して放電面に分散介在し、放電が加工面
全域で安定化する状態を形成するとともにピーク電流を
低下するために機能する。また、A/!、Si成分は炭
素質組織中の微細な気孔まで充填するから、°全体的に
緻密な複合構造を呈する。
[Function] According to the electrode for electric discharge machining of the present invention, Al2 and/or Si components homogeneously distributed in the carbonaceous structure constituting the electrode are decomposed during discharge and dispersed on the discharge surface, and the discharge is caused to spread over the machined surface. It functions to create a stable state over the entire region and to reduce the peak current. Also, A/! Since the Si component fills even the minute pores in the carbonaceous structure, the overall structure exhibits a dense composite structure.

これらの構造およびその作用を介して、面粗さの小さい
良好な仕上げ面を付与する精密加工を可能とし、同時に
加工速度の向上、電極消耗度の低下など放電加工用電極
材としての要求性能が満足される。
Through these structures and their effects, precision machining that provides a good finished surface with low surface roughness is possible, and at the same time, it meets the required performance as an electrode material for electrical discharge machining, such as improving machining speed and reducing electrode wear. be satisfied.

このような高性能の放電加工用電極材は、AI!。Such high-performance electrode materials for electrical discharge machining are manufactured by AI! .

! 03 、  S i Ox等をゾル状態で炭素質素
材に強制含浸し加熱処理する本発明の方法によって製造
され、中心部分までAj!、Si成分が浸透した複合組
織の電極材を効率的に得ることができる。
! 03, S i Ox etc. are forcibly impregnated into a carbonaceous material in a sol state and heat treated by the method of the present invention, and Aj! , it is possible to efficiently obtain an electrode material having a composite structure in which the Si component is permeated.

〔実施例] 以下、本発明を実施例に基づいて説明する。〔Example] Hereinafter, the present invention will be explained based on examples.

実施例1、比較例 見掛比重1. 82g/cm’ 、気孔率15%の組織
特性を備える等方性黒鉛素材をオートクレーブの圧力容
器に入れ、これに粒子径10〜20mμのアルミナを2
0重量%の濃度でコロイド化させた比重1.17.粘度
(25℃)20cpのAlzOsゾルを流入して ゾル
中に黒鉛素材を浸漬した。
Example 1, comparative example apparent specific gravity 1. An isotropic graphite material with a texture of 82 g/cm' and a porosity of 15% was placed in an autoclave pressure vessel, and alumina with a particle size of 10 to 20 mμ was added to it.
Specific gravity 1.17 when colloidized at a concentration of 0% by weight. An AlzOs sol with a viscosity (25° C.) of 20 cp was introduced, and the graphite material was immersed in the sol.

ついで、ゾル温度を40℃に保持した状態で、圧力容器
を−740mdHの減圧下に2時間処理したのち、9 
、 5 kg/cm2の加圧下に4時間処理して黒鉛素
材の組織中にAlzO3ゾルを強制含浸させた。A E
 z○、の含浸率は1. 6重量%であった。
Next, while maintaining the sol temperature at 40°C, the pressure vessel was treated under reduced pressure of -740mdH for 2 hours, and then
The graphite material was treated under a pressure of 5 kg/cm2 for 4 hours to forcibly impregnate the AlzO3 sol into the structure of the graphite material. A E
The impregnation rate of z○ is 1. It was 6% by weight.

含浸処理した黒鉛素材をAr雰囲気に保たれた電気炉に
移し、1100℃まで昇温させて加熱処理を施し、含浸
ゲル成分を焼結固定した。
The impregnated graphite material was transferred to an electric furnace maintained in an Ar atmosphere, heated to 1100° C., and heat treated to sinter and fix the impregnated gel components.

このようにして得られた黒鉛素材を加工して放電加工用
電極とし、次の条件で放電加工試験をおこなった。
The graphite material thus obtained was processed into an electrode for electric discharge machining, and an electric discharge machining test was conducted under the following conditions.

パルス幅  : 20μs ピーク電流 :5A 電極の極性 : + 放電面積  :  5cm” 被加工材質 : 5K−5(炭素工具!l1l)デユー
ティファクタ=50% 放電加工試験の結果を表1に示した。なお、比較のため
に素材に用いた等方性黒鉛材から放電加工用電極を作製
して同一条件により放電加工試験をおこなった結果を比
較例として表1に併載した。
Pulse width: 20 μs Peak current: 5 A Electrode polarity: + Discharge area: 5 cm” Workpiece material: 5K-5 (carbon tool! l1l) Duty factor = 50% The results of the electric discharge machining test are shown in Table 1. For comparison, an electrode for electrical discharge machining was prepared from the isotropic graphite material used as the raw material, and an electrical discharge machining test was conducted under the same conditions. The results are also listed in Table 1 as a comparative example.

表  1 表1の結果から、実施例の放電加工用電極は比較例のも
のと比べて加工速度、加工面粗さ(仕上面の良好度)、
電極消耗比ともに改善されていることが認められる。
Table 1 From the results in Table 1, the electrical discharge machining electrode of the example has a higher machining speed, machined surface roughness (quality of the finished surface), and better processing speed than the comparative example.
It is recognized that both the electrode consumption ratio has been improved.

実施例2 AN203ゾルの代わりに、粒子径10〜20−μのシ
リカ微粉を30!ii%の濃度でコロイド化した比重1
.20、粘度(25℃)  6cpの5i(hゾルを用
いたほかは実施例1と同一条件で含浸処理をおこなった
。この場合の含浸率は、2.0重量%であった。含浸処
理後の黒鉛材を実施例1と同様に加熱処理したのち放電
加工用電極に加工形成し、同一条件で放電加工試験をし
た。
Example 2 Instead of AN203 sol, 30% of silica fine powder with a particle size of 10 to 20 μm was used. Specific gravity 1 colloidized at a concentration of ii%
.. 20. Impregnation treatment was carried out under the same conditions as in Example 1 except that 5i(h sol with a viscosity (25°C) of 6 cp was used. The impregnation rate in this case was 2.0% by weight. After the impregnation treatment The graphite material was heat treated in the same manner as in Example 1, then processed into an electrode for electrical discharge machining, and subjected to an electrical discharge machining test under the same conditions.

その結果は、加工速度0 、 04 g/ll1in、
、加工面粗さR蒙axlOμm、電極消耗比)6vof
f%であり、良好な電極性能を示した。
The results show that the machining speed is 0, 04 g/ll1in,
, machined surface roughness Rmm axlOμm, electrode wear ratio) 6vof
f%, indicating good electrode performance.

実施例3 実施例1のAlto3ゾルと実施例2のSin。Example 3 Alto3 sol of Example 1 and Sin of Example 2.

ゾルを同量配合した混合ゾルを用い、実施例1と同一の
条件で含浸、加熱処理を施した。この材料を放電加工用
電極に加工し、実施例1に倣って放電加工試験をおこな
ったところ、加工速度0.05 g/1llin、、加
工面粗さRmaxl 、I/II 、 を極消耗比5v
o1%で、良好な電極性能を示した。
Impregnation and heat treatment were performed under the same conditions as in Example 1 using a mixed sol containing the same amount of sol. This material was processed into an electrode for electrical discharge machining, and an electrical discharge machining test was conducted in accordance with Example 1.The machining speed was 0.05 g/1llin, the machined surface roughness Rmaxl, I/II, and the extreme wear ratio were 5v.
Good electrode performance was shown at o1%.

〔発明の効果〕〔Effect of the invention〕

以上のとおり、本発明によれば炭素質組織にAlおよび
/またはSi成分を均質に分散複合化することにより、
精密加工に必要な加工面粗さの改善、加工速度の増大お
よび電極消耗比の軽減化を図ることができる。したがっ
て、要求性能を満足する放電加工用電極材とその製造方
法として極めて有用である。
As described above, according to the present invention, by uniformly dispersing and compounding Al and/or Si components in a carbonaceous structure,
It is possible to improve the machined surface roughness necessary for precision machining, increase the machining speed, and reduce the electrode wear ratio. Therefore, the present invention is extremely useful as an electrode material for electrical discharge machining that satisfies the required performance and a method for manufacturing the same.

Claims (1)

【特許請求の範囲】 1、炭素質組織中にAlおよび/またはSi成分を含有
してなる放電加工用電極材。 2、炭素質素材に、Al_2O_3および/またはSi
O_2ゾルを40±10℃の温度で強制含浸したのち、
非酸化性雰囲気中で加熱処理することを特徴とする放電
加工用電極材の製造方法。
[Claims] 1. An electrode material for electric discharge machining containing Al and/or Si components in a carbonaceous structure. 2. Al_2O_3 and/or Si in the carbonaceous material
After forced impregnation with O_2 sol at a temperature of 40±10℃,
A method for producing an electrode material for electrical discharge machining, which comprises heat-treating in a non-oxidizing atmosphere.
JP32172789A 1989-12-12 1989-12-12 Electrode material for electric discharge machining and manufacture thereof Pending JPH03184724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32172789A JPH03184724A (en) 1989-12-12 1989-12-12 Electrode material for electric discharge machining and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32172789A JPH03184724A (en) 1989-12-12 1989-12-12 Electrode material for electric discharge machining and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH03184724A true JPH03184724A (en) 1991-08-12

Family

ID=18135768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32172789A Pending JPH03184724A (en) 1989-12-12 1989-12-12 Electrode material for electric discharge machining and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH03184724A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5369240A (en) * 1992-02-05 1994-11-29 Mitsubishi Denki Kabushiki Kaisha Graphite matrix electrode with dispersed silicon particles
JP2005297082A (en) * 2004-04-07 2005-10-27 Tokai Carbon Co Ltd Graphite electrode for electric discharge machining and its manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58114820A (en) * 1981-12-26 1983-07-08 Ibiden Co Ltd Graphite electrode for die-sinking by wire-cut electric discharge machine
JPS58140379A (en) * 1982-02-09 1983-08-20 イビデン株式会社 Graphite electrode for electric discharge shaping work
JPS6133819A (en) * 1984-07-24 1986-02-17 Naotake Mori Electric discharge machining electrode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58114820A (en) * 1981-12-26 1983-07-08 Ibiden Co Ltd Graphite electrode for die-sinking by wire-cut electric discharge machine
JPS58140379A (en) * 1982-02-09 1983-08-20 イビデン株式会社 Graphite electrode for electric discharge shaping work
JPS6133819A (en) * 1984-07-24 1986-02-17 Naotake Mori Electric discharge machining electrode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5369240A (en) * 1992-02-05 1994-11-29 Mitsubishi Denki Kabushiki Kaisha Graphite matrix electrode with dispersed silicon particles
JP2005297082A (en) * 2004-04-07 2005-10-27 Tokai Carbon Co Ltd Graphite electrode for electric discharge machining and its manufacturing method

Similar Documents

Publication Publication Date Title
DE69927854T2 (en) METHOD FOR PRODUCING A SILICON CARBIDE COMPOSITE
WO2017022012A1 (en) Aluminum-silicon-carbide composite and method of manufacturing same
EP0080213B1 (en) Highly heat-conductive ceramic material
JPH03184724A (en) Electrode material for electric discharge machining and manufacture thereof
JPH0513116B2 (en)
US3802851A (en) Tungsten alloy products
JP2010508228A (en) Semi-solid TiB2 precursor mixture
JPS61214424A (en) Heat-resisting jig and its manufacture
JPH08175871A (en) Silicon carbide-based sintered body and its production
JP2000141022A (en) Silicon carbide composite body and its manufacture
US3791851A (en) Process for heat treating plasma-consolidated beryllium
JP2001348288A (en) Particle-dispersed silicon material and method of producing the same
JPS5937731B2 (en) sliding member
JPH02111663A (en) Porous conductive material
JP2020196932A (en) Manufacturing method of aluminum alloy-based composite material
GB2177421A (en) Sintered body of silicon carbide
JPS61163180A (en) High size precision and anti-abrasivity silicon carbide composite body and manufacture
JP6452969B2 (en) Aluminum-silicon carbide composite and method for producing the same
DE3440346A1 (en) MATERIAL FROM PARTICLES CONTAINING REACTION-RESISTANT FROM CARBON, ELEMENTAL SILICON AND METHOD FOR THE PRODUCTION THEREOF
JP3847009B2 (en) Method for producing silicon carbide composite
JP2004323291A (en) Aluminum-ceramic composite and its producing method
JPH01115888A (en) Production of jig for producing semiconductor
DE102004035364B4 (en) Material based on SiAIONes
JP2000017351A (en) Production of metal-ceramics composite material
JP3636514B2 (en) Hexagonal BN sintered body, manufacturing method thereof, and substrate for semiconductor