JPS58140379A - Graphite electrode for electric discharge shaping work - Google Patents

Graphite electrode for electric discharge shaping work

Info

Publication number
JPS58140379A
JPS58140379A JP57019430A JP1943082A JPS58140379A JP S58140379 A JPS58140379 A JP S58140379A JP 57019430 A JP57019430 A JP 57019430A JP 1943082 A JP1943082 A JP 1943082A JP S58140379 A JPS58140379 A JP S58140379A
Authority
JP
Japan
Prior art keywords
graphite
electrode
machining
discharge machining
electrical discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57019430A
Other languages
Japanese (ja)
Other versions
JPH0151470B2 (en
Inventor
直美 高橋
青山 好次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibigawa Electric Industry Co Ltd
Original Assignee
Ibigawa Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibigawa Electric Industry Co Ltd filed Critical Ibigawa Electric Industry Co Ltd
Priority to JP57019430A priority Critical patent/JPS58140379A/en
Publication of JPS58140379A publication Critical patent/JPS58140379A/en
Publication of JPH0151470B2 publication Critical patent/JPH0151470B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明はlJ1彰り放電加工機に使用する黒鉛電極に係
るものであり、その目的は15ミクロン以下の放電加工
仕上げ面粗度を高能率で得ることができる黒鉛電4ii
を晶供することにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a graphite electrode used in an IJ1 electric discharge machine, and its purpose is to provide a graphite electrode that can efficiently obtain an electric discharge machining surface roughness of 15 microns or less. 4ii
It is to offer crystals.

従来、黒鉛を極(以下単に電極という)を使用し、1゛
5ミクロン以下の放電加工仕上は面粗度(以下単に仕上
面という)を得るためには電極極性を陽極とし、ピーク
電流値°を5A以下にすると同時に、被加工物の放電加
工仕上り寸法精度を確保するためにパルス08時間中を
150μ畠・6以上の電極が消耗しないパルス08時間
中を設定し、1つ1つの放電から被加工物へ与える電気
エネルギーを小さくし、その結果得られる放電痕跡を小
さくする必要がある。
Conventionally, graphite was used as an electrode (hereinafter simply referred to as an electrode), and in order to obtain a surface roughness (hereinafter simply referred to as a finished surface) by electric discharge machining of 1.5 microns or less, the electrode polarity was set as an anode, and the peak current value ° At the same time, in order to ensure the dimensional accuracy of the finished electrical discharge machining of the workpiece, we set the pulse 08 hour period to 150 μm, so that electrodes of 6 or more are not consumed, and from each discharge. It is necessary to reduce the electrical energy applied to the workpiece and the resulting discharge traces.

しかしながら、上記放電加工条件における電極の放電加
工仕上は極めて不安定であることから、15ミクロン以
下の仕上面を得るためには長時間を要し、その結果得ら
れた仕上面には、同一個所で放電が繰返えされたと思わ
れる四部が見敗される結果、15ミクロン以下の仕上面
を得ることができなかった。このため電極は使用上の制
約を受はプラスチック金型等の細かい仕上面の要求され
る分計では使用されていないなどの不都合があった。
However, the electrical discharge machining finish of the electrode under the above-mentioned electrical discharge machining conditions is extremely unstable, and it takes a long time to obtain a finished surface of 15 microns or less. As a result, a finished surface of 15 microns or less could not be obtained as a result of the failure of four parts where the discharge was thought to have been repeated. For this reason, the electrodes are subject to limitations in use, and are inconvenient in that they are not used in micrometers that require a finely finished surface, such as in plastic molds.

本発明者等は、5A以下の低ピーク電流による放電加工
状態の不安定になる連山を次の通り推察し新たに知見し
た。放電加工中の電極と被加工物との放電間隙は極間の
抵抗によって支配される。
The inventors of the present invention have inferred and newly discovered the following reasons why the electric discharge machining state becomes unstable due to a low peak current of 5A or less. The discharge gap between the electrode and the workpiece during electrical discharge machining is controlled by the resistance between the poles.

極間抵抗は通常単位面積当りの加工速度すなわちピーク
電流値とパルスON時間巾に支配されることKなる、パ
ルスON時間巾は電極消耗に大きく影−することから放
電間隙はピーク電流値の減少と共に急激に狭くなり、5
八以下の低ピーク電流値における放電加工中においては
発生する加工チッソ”および加工液の分解により生じ友
究泡の逸散が急くなることが予測できる。その結果、5
A以上の放電加工中にみられる放電点が次から次へと移
動する安定放電ではなく、放電点は比較的に同一個所に
集中して発生するために不安定な放電状況になるものと
考えられる。一般に、加工チップの排出は電極の強制上
下動(ジャンピングとぎう)Kより比較的に容易に排出
される。万一排出できないときは、アーク現象に至り放
電加工は進行しないことから、チップ排出の開−は15
ミクロン以下の仕上面を得るための阻害要因ではないと
考えられる。15ミクロン以下の仕上面を得るための最
大の阻害要因は電極表面への気泡の吸着と考えられる。
The resistance between the electrodes is usually controlled by the machining speed per unit area, that is, the peak current value, and the pulse ON time width.Since the pulse ON time width has a large effect on electrode wear, the discharge gap reduces the peak current value. It narrows rapidly with 5
It can be predicted that during electrical discharge machining at a low peak current value of 8 or less, the dissipation of the bubbles generated due to the decomposition of machining fluid and machining fluid will be rapid.
It is thought that the discharge points are relatively concentrated in the same location, resulting in an unstable discharge situation, rather than the stable discharge that occurs during electrical discharge machining of A or higher, where the discharge points move from one to the next. It will be done. In general, machining chips can be ejected relatively easily by forced vertical movement (jumping) of the electrode. If chip ejection is not possible, arcing will occur and electrical discharge machining will not proceed, so the opening time for chip ejection is 15
It is considered that this is not an impediment to obtaining a finished surface of micron size or less. The biggest impediment to obtaining a finished surface of 15 microns or less is thought to be the adsorption of air bubbles to the electrode surface.

この気泡を除去するために、加工液量を増加してみたが
、5Å以上の荒加工および中仕上加工領域においてのみ
効果があり、5A以下の、15ミクロン以下の仕上加工
領域では放電間隙も狭く、充分な液量の供給が雌かい、
又加工液穴の孔けられないリフ等の薄物電極の放電加工
においては全く加工液が供給できないことから、要求す
る面粗度の粗細に関係なく、常に不安定な放電状況によ
り放電加工が困雌となることが判った。
In order to remove these bubbles, we tried increasing the amount of machining fluid, but it was only effective in rough machining and semi-finish machining regions of 5 Å or more, and the discharge gap was narrow in the finishing machining regions of 5 A or less and 15 microns or less. , a sufficient amount of liquid is supplied to the female paddle,
In addition, when machining fluid is not available for electrical discharge machining of thin electrodes such as rifts where holes cannot be drilled, electrical discharge machining is always difficult due to unstable electrical discharge conditions, regardless of the required surface roughness. It turned out to be a female.

本発明者等は放電加工状態の不安定さを解決するためK
、影−の最も大きいと考えられる、気泡の逸散を良好に
するととKjl目し、幾多の研究を重ねた結果、電極の
持っている空隙の平均細孔径の大きさKよって、気泡の
逸散程度が異なり、その結果、安定した放電加工状態が
持続され%15ミクロン以下の仕上面が得られることを
見い出した。
In order to solve the instability of the electrical discharge machining state, the inventors
The aim was to improve the dissipation of air bubbles, which is considered to have the greatest impact, and as a result of numerous studies, we found that the dissipation of air bubbles can be improved by the average pore diameter Kjl of the voids in the electrode. It has been found that the degree of dispersion is different, and as a result, a stable electric discharge machining state can be maintained and a finished surface of %15 microns or less can be obtained.

電極の細孔径と5A以下の低ピーク電流による放電状況
の安定性との密接な関係については以下の通り説明する
ことができる。
The close relationship between the pore diameter of the electrode and the stability of the discharge state due to a low peak current of 5 A or less can be explained as follows.

与えられた放電エネルギーによって熱分解された加工液
は一時に気泡となるが、電極の持っている平均細孔径が
大きくなるに従がって電極表面に気泡が吸着され易く、
次々と繰返えされている放電は極間抵抗の低い所、すな
わち炭化水素および水素ガスの充満した気泡の吸着して
いる所に起こり易く、必らずしも、安定放電のil!l
念であるところの極間距離の最も近い所から起こるとは
限らない。
The machining fluid that is thermally decomposed by the applied discharge energy becomes bubbles at once, but as the average pore diameter of the electrode increases, the bubbles are more likely to be adsorbed on the electrode surface.
Discharges that are repeated one after another tend to occur in areas where the interelectrode resistance is low, that is, in areas where bubbles filled with hydrocarbon and hydrogen gas are adsorbed, and stable discharge does not always occur. l
It does not necessarily occur from the closest distance between the poles.

この繰返し放電が同一場所に連続して起こると被加工物
表向に凹部が発生し、これが仕上面を粗くすることから
、電極を使用した放電加工において15ミクロン以下の
仕上面が得られないことが判った。
If this repeated discharge occurs continuously at the same location, a concave portion will be generated on the surface of the workpiece, and this will make the finished surface rough, so it is not possible to obtain a finished surface of 15 microns or less in electric discharge machining using electrodes. It turns out.

本発明者等は、放電加工液を放電エネルギーにより分解
されて生成した気泡が電極表面に@宥することを減少さ
せるために1電極又は電極成形前の黒鉛基材中へ樹脂、
金属あるいはピッチ等のベンゼン環を有する膨化収率の
高い化合物を真空含浸あるいは加圧含浸し、更に必要に
応じて、−化又は灰化するととKより、黒鉛材料が元来
持っている気孔を減少あるいは埋め込むことにより、黒
鉛材の平均気孔径を4000A以下にした。
In order to reduce the occurrence of bubbles generated by decomposing the electrical discharge machining fluid by electrical discharge energy on the electrode surface, the present inventors added resin to one electrode or to the graphite base material before electrode molding.
Vacuum impregnation or pressure impregnation with a compound having a benzene ring such as metal or pitch that has a high swelling yield, and further oxidation or ashing as necessary, removes the pores that the graphite material originally has. By reducing or embedding the graphite material, the average pore diameter of the graphite material was reduced to 4000A or less.

電極に直接合没できるのは樹脂の含浸であり、金属ある
いはベンゼン環を有する化合物の場合においては、含浸
、后の電極表面は平滑でなく、高精度を保っ九含浸電極
が得られないことから、機械加工した電極への含浸はで
きない、このため1機被加工前の黒鉛基材に含浸したの
ちに機械加工する必要がある。同時に、床付金型に要求
されるW極の厚さは50〜200111が標準である。
Impregnating with resin is the only way to directly infiltrate the electrode, and in the case of metals or compounds with benzene rings, the electrode surface is not smooth after impregnation, making it impossible to maintain high precision and obtain an impregnated electrode. However, it is not possible to impregnate a machined electrode, so it is necessary to impregnate the graphite base material before being machined and then machine it. At the same time, the standard thickness of the W pole required for a mold with a floor is 50 to 200111 mm.

金属の含浸は融点の低い金属が適している1例えば、鋼
等の高融点金属を、100幻/d、1300℃の苛酷な
加圧含浸条件で含浸した場合においても厚さ50111
以上含浸することはで舞なかった。このことから、本発
明でKう含浸金属は工業的に亜鉛、アルミニウム、錫、
鉛などの金属あるいはそれらの金属を含む合金に限られ
る。
Metals with low melting points are suitable for impregnating metals1.For example, even when high melting point metals such as steel are impregnated under severe pressure impregnation conditions of 100 phantom/d and 1300°C, the thickness is 50111.
No further impregnation was possible. For this reason, the impregnated metals used in the present invention are industrially zinc, aluminum, tin,
Limited to metals such as lead or alloys containing those metals.

〜 次に本発明に従がって得られた、4000A以下の平均
細孔径を持つ電極あるいは細孔を有しない電極により、
15ミクロン以下の面粗度が得られ、且つ電極の消耗し
ない放電加工条件、すなわちピーク電流3A、パルス0
8時間150μ露、被加工材8に−5にで放電を行なっ
た結果を実施例に従って説明する。
~ Next, with an electrode having an average pore diameter of 4000 A or less or an electrode having no pores, obtained according to the present invention,
Electrical discharge machining conditions that provide a surface roughness of 15 microns or less and do not wear out the electrodes, i.e., peak current 3A, pulse 0
The results of performing electric discharge on the workpiece 8 at -5 for 8 hours at 150μ exposure will be explained according to examples.

遺m− 平均細孔117000 Aを持った黒鉛基材を機械加ゴ
ーした電極へフルフリルアルコール樹脂を真空含浸の常
法に従がって含浸した後、蒸気釜の中で150℃に加熱
硬化して得られた含浸型aio平均細孔径はl100A
であった。
An electrode made of a graphite base material with an average pore size of 117,000 A was impregnated with furfuryl alcohol resin according to the conventional method of vacuum impregnation, and then heated and cured at 150°C in a steam pot. The average pore diameter of the impregnated AIO obtained is 1100A.
Met.

惠JiJ!!−2−−−−− 実施例−1によって得られた電極を600℃で熱処理し
た含浸電極の平均細孔径は2800Aであった。
Mei JiJ! ! -2------- The average pore diameter of the impregnated electrode obtained by heat-treating the electrode obtained in Example-1 at 600°C was 2800A.

一’11!&l!目し 実施例−2によって得られた電極を更に3000”Cで
熱処理された含浸電極の平均細孔径aasooXであっ
た。
1'11! &l! The average pore diameter of the impregnated electrode obtained by further heat-treating the electrode obtained in Example 2 at 3000''C was aasooX.

、J−施」[( 平均細孔径7000Aを持った黒鉛基材へ軟化点85゛
Cのコールピッチを220℃で真空含浸の常法に従がっ
て含浸后650℃で熱処理をした。
After impregnating a graphite base material with an average pore diameter of 7000 A with coal pitch having a softening point of 85° C. at 220° C. according to a conventional method of vacuum impregnation, a heat treatment was performed at 650° C.

得られ九含浸黒鉛晟材の平均細孔径は3200Xであっ
た0機械加工して電極を得た。
The average pore diameter of the nine-impregnated graphite material obtained was 3200×.0 was machined to obtain an electrode.

実施例5 実施例4によって得られた含浸黒鉛基材へ実施例−4と
同じ操作にてコールピッチを再含浸、熱処理して得られ
た再含浸黒鉛基材の平均細孔径け2100Aであった0
機械加工して電極をmた。
Example 5 The average pore diameter of the re-impregnated graphite base material obtained by re-impregnating and heat-treating the impregnated graphite base material obtained in Example 4 with coal pitch in the same manner as in Example-4 was 2100A. 0
The electrodes were machined.

実施例6 平均細孔径7000Aを持った黒鉛基材に弗船t一温度
650℃、圧力15#/d の条件下で加圧含浸の常法
に従がって含浸した。p4られた含浸黒鉛基材の気孔は
なかった0機械加工して電tMt−iた。
Example 6 A graphite base material having an average pore diameter of 7000 A was impregnated with a fluorophore under the conditions of a temperature of 650° C. and a pressure of 15 #/d according to a conventional pressure impregnation method. There were no pores in the impregnated graphite substrate that was machined to an electric current.

実施例7 実施例6と同様にアルミニウムを温度850℃、圧力2
0&4F/dの条件下で加圧含浸した。得られた含浸黒
鉛基材の気孔はなかった1機械加工して電極を得た。
Example 7 Similar to Example 6, aluminum was heated at a temperature of 850°C and a pressure of 2
Pressure impregnation was carried out under conditions of 0 & 4 F/d. The obtained impregnated graphite substrate was machined to obtain an electrode without any pores.

実施例8 実施例6と同様に錫を温度500 ′C1圧力5 kl
/c4で加圧加浸した。得られた含浸黒鉛基材には気孔
はなかった0機械加工して電極を′44た。
Example 8 Similar to Example 6, tin was heated at a temperature of 500'C1 and a pressure of 5 kl.
/c4 pressure immersion. The resulting impregnated graphite substrate had no porosity and was machined to form an electrode.

3−!!Ls遣− 実施例6と同様に黄銅を温度1050°C1圧力80k
v’c−で加圧含浸した。v4られた含浸黒鉛には気孔
はなかった。*被加工してVK極を得喪。
3-! ! Ls - Same as Example 6, the brass was heated to 1050°C and 80k pressure.
Pressure impregnation was carried out with v'c-. There were no pores in the v4 impregnated graphite. *I lost the VK pole after being processed.

〔比較例1〕 平均細孔径7000A  を持った黒鉛基材から機械加
工して得られた電極。
[Comparative Example 1] An electrode obtained by machining a graphite base material with an average pore diameter of 7000A.

〔比較例2〕 平均細孔径4300A を持ったjiI′lE1基材か
ら機械加工して得られ九電柱。
[Comparative Example 2] Nine telephone poles obtained by machining from a jiI'lE1 base material having an average pore diameter of 4300A.

使用電極の寸法はKさtooaw、暢100a、高さ3
0■であり、上記放電条件により深さ3gll加工した
。放電加工液は電極の中心から3#の穴を通して0.0
5 #/dの圧力で供給した結果を第1表に示す。
The dimensions of the electrode used are K tooaw, length 100 mm, and height 3.
0■, and was machined to a depth of 3 gll under the above discharge conditions. The electrical discharge machining fluid passes through the 3# hole from the center of the electrode.
Table 1 shows the results of feeding at a pressure of 5 #/d.

第1表 以上の結果から本発明により平均細孔径を小さくしたw
極を使用して15ミクロン以下の仕上げ面粗度を容易K
mることかできると同時安定な放電状況が持続されるこ
とにより、放電加工速度も大巾に向上できることが明ら
かとなった。これらのことから従来15ミクロン以下の
仕上げ面を得るためKは鋼、鋼タングステン等の高価な
電極材料が使用されていたが、電極製作の容易でしかも
安1dhな黒鉛電極を使用することができるので経済的
効果は極めて大きい。
From the results shown in Table 1, the average pore diameter was reduced by the present invention.
Finished surface roughness of 15 microns or less can be easily achieved using poles.
It has become clear that the speed of electrical discharge machining can be greatly improved by simultaneously maintaining a stable electrical discharge condition. For these reasons, in order to obtain a finished surface of 15 microns or less, expensive electrode materials such as steel and steel tungsten were used for K, but graphite electrodes, which are easy to manufacture and are cheap, can be used. Therefore, the economic effect is extremely large.

特許出願人の氏名 揖斐川電気工檗株式会社 代表者 多賀瀾一部 手続補正書(方式) %式% 2、発明の名称 型彫り放電加工用黒鉛電極 3、補正をする者 事件との関係    出願人本人 居 所 〒503蚊阜県大垣市神田町2丁@1番地4、
補正命令の日付 昭和57年5月7日 (発送日 同67年5825日付
)5、補正の対象 明細書の「発明の名称」の― 6、補正の内容 「11彰放電加工用電極」とあるを、
Name of patent applicant Representative of Ibigawa Electric Engineering Co., Ltd. Tagaran Partial procedural amendment (method) % formula % 2. Name of the invention Graphite electrode for die-sinking electric discharge machining 3. Person making the amendment Relationship to the case Applicant Personal residence Address: 2-4 Kanda-cho, Ogaki-shi, Kafu-ken, 503 @1-4,
Date of amendment order: May 7, 1982 (Delivery date: 5825, 1982) 5. Title of the invention in the specification to be amended - 6. Contents of amendment: ``Electrode for electrical discharge machining in the 11th century'' of,

Claims (1)

【特許請求の範囲】 1、黒鉛素材又は機械加工された黒鉛電極に樹脂溶液、
ベンゼン環を有する有機化合物又は鉛、錫、亜鉛、アル
ミニウムの溶−金属から選ばれたlsI又は2纏以上の
液状物質を含浸し、必要に応じて加熱処理して黒鉛表面
め平均式孔径を400OA\ 以下の微細孔にして成る型彫放電加工用黒鉛電極。 2、黒鉛素材に鉛、錫、亜鉛又はアルミニウムの低融点
溶融金属を含浸したのち機械加工して成る実用新案登録
請求や範囲第1貞記載の型彫放電加工用黒鉛。 3、黒鉛素材にペンぜン環を有する化合物を含浸し、必
1!に応じて加熱処理をして黒鉛表面の平均式孔径を4
000A以下にし後圧機械加工して成る爽用新案登録請
求の範囲第1負記載の型彫放電加工用黒鉛電極。
[Claims] 1. A resin solution on a graphite material or a machined graphite electrode,
The graphite surface is impregnated with lsI or two or more liquid substances selected from organic compounds having benzene rings or molten metals such as lead, tin, zinc, and aluminum, and heat treated as necessary to make the graphite surface have an average pore diameter of 400OA. \ Graphite electrode for die-sinking electrical discharge machining consisting of the following micro holes. 2. Graphite for die-sinking electric discharge machining as described in the utility model registration claim and scope No. 1, which is obtained by impregnating a graphite material with a low melting point molten metal such as lead, tin, zinc or aluminum and then machining it. 3. Impregnating the graphite material with a compound that has a Penzen ring, a must! The average formula pore size of the graphite surface is reduced to 4 by heat treatment according to the
A graphite electrode for die-sinking electrical discharge machining as set forth in the first negative aspect of the patented patent claim, which is processed by after-pressure machining to a diameter of 000A or less.
JP57019430A 1982-02-09 1982-02-09 Graphite electrode for electric discharge shaping work Granted JPS58140379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57019430A JPS58140379A (en) 1982-02-09 1982-02-09 Graphite electrode for electric discharge shaping work

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57019430A JPS58140379A (en) 1982-02-09 1982-02-09 Graphite electrode for electric discharge shaping work

Publications (2)

Publication Number Publication Date
JPS58140379A true JPS58140379A (en) 1983-08-20
JPH0151470B2 JPH0151470B2 (en) 1989-11-02

Family

ID=11999061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57019430A Granted JPS58140379A (en) 1982-02-09 1982-02-09 Graphite electrode for electric discharge shaping work

Country Status (1)

Country Link
JP (1) JPS58140379A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6254623A (en) * 1985-08-30 1987-03-10 Inst Tech Precision Eng Electric discharge machine
JPS6263016A (en) * 1985-09-12 1987-03-19 Inst Tech Precision Eng Electrode for electric discharge machining and manufacture thereof
JPH03184724A (en) * 1989-12-12 1991-08-12 Tokai Carbon Co Ltd Electrode material for electric discharge machining and manufacture thereof
WO2016039268A1 (en) * 2014-09-09 2016-03-17 株式会社東北テクノアーチ Method for producing porous graphite, and porous graphite

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5239684A (en) * 1975-09-25 1977-03-28 Squibb & Sons Inc Compounds having antiiinflammation and preparation method thereof
JPS54131591A (en) * 1978-04-03 1979-10-12 Ibiden Co Ltd Manufacture of carbonaceous material for impregnation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5239684A (en) * 1975-09-25 1977-03-28 Squibb & Sons Inc Compounds having antiiinflammation and preparation method thereof
JPS54131591A (en) * 1978-04-03 1979-10-12 Ibiden Co Ltd Manufacture of carbonaceous material for impregnation

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6254623A (en) * 1985-08-30 1987-03-10 Inst Tech Precision Eng Electric discharge machine
JPS6263016A (en) * 1985-09-12 1987-03-19 Inst Tech Precision Eng Electrode for electric discharge machining and manufacture thereof
JPH03184724A (en) * 1989-12-12 1991-08-12 Tokai Carbon Co Ltd Electrode material for electric discharge machining and manufacture thereof
WO2016039268A1 (en) * 2014-09-09 2016-03-17 株式会社東北テクノアーチ Method for producing porous graphite, and porous graphite
JPWO2016039268A1 (en) * 2014-09-09 2017-06-22 株式会社 東北テクノアーチ Method for producing porous graphite and porous graphite
US10403900B2 (en) 2014-09-09 2019-09-03 Tohoku Techno Arch Co., Ltd. Method for producing porous graphite, and porous graphite
US10763511B2 (en) 2014-09-09 2020-09-01 Tohoku Techno Arch Co., Ltd. Method for producing porous graphite, and porous graphite

Also Published As

Publication number Publication date
JPH0151470B2 (en) 1989-11-02

Similar Documents

Publication Publication Date Title
Tsai et al. EDM performance of Cr/Cu-based composite electrodes
US5064463A (en) Feedstock and process for metal injection molding
Fuller Electrical discharge machining
Yan et al. Surface modification of SKD 61 during EDM with metal powder in the dielectric
JP2005533929A (en) Improved ceramics / metal materials and methods for their production
Czelusniak et al. Development and application of new composite materials as EDM electrodes manufactured via selective laser sintering
Zhang et al. Small-hole machining of ceramic material with electrolytic interval-dressing (ELID-II) grinding
Singh et al. Effect of powder mixed electric discharge machining (PMEDM) on various materials with different powders: a review
JPS58140379A (en) Graphite electrode for electric discharge shaping work
US9478325B2 (en) Discharge surface treatment method and coating block for discharge surface treatments
Jin et al. Electroforming of copper/ZrB2 composites coatings and its performance as electro-discharge machining electrodes
KR100528850B1 (en) Multi purpose multilayer coated electrode wire for electric discharge machining and production method thereof
CN102549184A (en) Graphite body impregnated with a light metal alloy
CN209759606U (en) Additive manufacturing structure applied to continuous casting crystallizer and additive manufacturing device
Yanagida et al. Electrical discharge machining using copper electrode made by additive manufacturing
JP2018103349A (en) Low-consumable electrode for electrical discharge machining
US2863766A (en) Edm electrode material
US1005629A (en) Forming compound bodies of different metals.
CN102398193B (en) Grinding auxiliary electrochemical discharge machining tool and method
US3322185A (en) Method of making electrical discharge machining electrodes
US2971078A (en) Process of electrical discharge machining with chromium electrode
Czelusniak et al. Influence of metallic matrix on the densification behavior of zirconium diboride copper nickel composite processed by laser sintering
JP2005313258A (en) Method for machining small hole in ceramic material
JPS58206320A (en) Discharge machining method
Tiago et al. Development and application of new composite materials as EDM electrodes manufactured via selective laser sintering