JPH03181181A - Photoelectromotive element - Google Patents

Photoelectromotive element

Info

Publication number
JPH03181181A
JPH03181181A JP1319005A JP31900589A JPH03181181A JP H03181181 A JPH03181181 A JP H03181181A JP 1319005 A JP1319005 A JP 1319005A JP 31900589 A JP31900589 A JP 31900589A JP H03181181 A JPH03181181 A JP H03181181A
Authority
JP
Japan
Prior art keywords
polysilane
group
alkyl group
semiconductor layer
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1319005A
Other languages
Japanese (ja)
Inventor
Masahiro Kanai
正博 金井
Hisami Tanaka
久巳 田中
Shunkai Sako
酒匂 春海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1319005A priority Critical patent/JPH03181181A/en
Priority to DE4039519A priority patent/DE4039519A1/en
Publication of JPH03181181A publication Critical patent/JPH03181181A/en
Priority to US07/825,281 priority patent/US5220181A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Abstract

PURPOSE:To acquire a photoelectromotive element of uniform and high efficiency over a large area at a low cost by using polysilane compound which is expressed by a specified formula having weight average molecular weight of 6000 to 200000 as an organic semiconductor layer. CONSTITUTION:An SIS junction type photoelectromotive element uses a straight chain polysilane compound which is expressed by a formula I and has a weight average molecular weight of 6000 to 200000 as an organic semiconductor layer. In the formula, R1 expresses an alkyl group of carbon number of 1 or 2; R2 expresses an alkyl group of carbon number of 3 to 8, a cycloalkyl group, and an aryl group; R3 expresses an alkyl group of carbon number of 1 to 4; and R4 expresses an alkyl group of carbon number of 1 to 4. A, A' are an alkyl group, a cycloalkyl group, an aryl group having carbon number of 4 to 12 and may be the same or different. Furthermore, (n), (m) are a mole ratio expressing a rate of the number of each monomer to gross monomer in polymer; and n+m=1, where 0<n<=1, 0<=m<1.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、新規なポリシラン化合物を有機半導体層とし
て用いたSIS接合型光起電力素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to a SIS junction type photovoltaic device using a novel polysilane compound as an organic semiconductor layer.

〔従来技術の説明〕[Description of prior art]

従来、有機半導体を用いた光起電力素子は収集効率が非
常に低く、光電変換効率が低いため結晶シリコンやアモ
ルファスシリコンを用いたpn接合型、pin接合型光
起電力素子の研究に比較して実用化のための研究がたち
遅れているのが現状である。
Conventionally, photovoltaic devices using organic semiconductors have very low collection efficiency and low photoelectric conversion efficiency, so compared to research on pn junction type and pin junction type photovoltaic devices using crystalline silicon or amorphous silicon. Currently, research for practical application is lagging behind.

しかし、容易に薄膜形成ができることから生産コストの
低減が期待され、光電変換効率の向上を目的とした有機
半導体に関する研究が種々威されている。
However, since thin films can be easily formed, it is expected that production costs will be reduced, and various studies are being conducted on organic semiconductors with the aim of improving photoelectric conversion efficiency.

光起電力素子用に適した有機半導体材料としては、アン
トラセン、テトラセン、メロシアニン、フタロシアニン
、ヒドロキシン・スクウアリリウム、クロロフィル、ビ
ロール等があるが中でもメロシアニン、フタロシアニン
、ヒドロキシン・スクウアリリウム等は光起電力素子用
材料として設計開発された染料で、ショットキー障壁セ
ルの光電変換効率は、概ねAMOスペクトル光下で0.
2〜1%程度である。CJpn J、 Appl、Ph
ys、。
Organic semiconductor materials suitable for photovoltaic devices include anthracene, tetracene, merocyanine, phthalocyanine, hydroxyne squarylium, chlorophyll, and virol, among which merocyanine, phthalocyanine, hydroxyne squaryllium, etc. are suitable for photovoltaic devices. Using a dye designed and developed as a material, the photoelectric conversion efficiency of the Schottky barrier cell is approximately 0.000% under AMO spectrum light.
It is about 2 to 1%. CJpn J, Appl, Ph
ys,.

20、 5uppL 20−2.135(1980) 
、Appl、 Phys。
20, 5uppL 20-2.135 (1980)
, Appl, Phys.

L eta、 、 32.495 (2978)、J、
Chem、  Phys、。
L eta, , 32.495 (2978), J.
Chem, Phys.

71、1211 (1979) ) 光電変換効率がこのように低い原因としては、主に有機
半導体におけるキャリアトラップ密度が大きいことが挙
げられ、キャリアの寿命、移動度共に小さく、拡散長も
短いものとなっているためであると考えられている。
71, 1211 (1979)) The reason for this low photoelectric conversion efficiency is mainly due to the high carrier trap density in organic semiconductors, which results in small carrier lifetimes, small carrier mobility, and short diffusion length. It is thought that this is because

また、一般に有機半導体は抵抗率が大きいので、オーム
接触を作りに<<、更に、入射光強度の増大にともなっ
て光電変換効率が低下するなどの問題点が指摘されてい
る。
Furthermore, since organic semiconductors generally have a high resistivity, problems have been pointed out, such as difficulty in making ohmic contacts, and furthermore, a decrease in photoelectric conversion efficiency as the intensity of incident light increases.

一方、上述した従来の炭素を主骨格とする有機半導体材
料に変わる材料として、ケイ素を主骨格とするポリシラ
ン化合物が注目されつつある。
On the other hand, polysilane compounds having silicon as a main skeleton are attracting attention as materials to replace the above-mentioned conventional organic semiconductor materials having carbon as main skeleton.

古くは、ポリシランは溶剤に不溶のものと報告されてい
たが〔ザ・ジャーナル・オフ・アメリカン・ケミカル・
ソサエティー;125,2291pp  (1924)
)、近年、ポリシランが溶剤可溶性であり、フィルム形
成が容易であることがflfflされ〔ザ・ジャーナル
・オフ・アメリカン・セラミンク・ソサエティー;61
,504pp(]97B))注目を集めるようになった
。さらにポリシランは紫外線照射で光分解を起こすため
レジストに応用する研究が報告されている〔特開昭60
−98431号公報、特開昭60−119550号公報
〕。
In the past, polysilane was reported to be insoluble in solvents [The Journal of American Chemical].
Society; 125,2291pp (1924)
), it has recently been demonstrated that polysilanes are solvent soluble and easy to form into films [The Journal of the American Ceramic Society; 61
, 504pp (]97B)) began to attract attention. Furthermore, since polysilane photodecomposes when irradiated with ultraviolet rays, research has been reported to apply it to resists [JP-A-60
-98431, JP-A-60-119550].

また、ポリシランは主鎖のσ−結合によって電荷の移動
が可能な光半導体の特性を持ち、〔フィジカル・レビュ
ー;B  35,2818pp(1987))電子写真
感光体への応用も期待されるようになった。しかし、こ
のような電子材料への適用のためには、ポリシラン化合
物は溶剤可溶性でフィルム形成能があるだけではなく、
微細な欠陥のないフィルム形成、均質性の高いフィルム
形成のできることが必要となる。電子材料においては微
細な欠陥も許されないため、置換基についても構造が明
確でフィルム形成に異常を発生させない高品位のポリシ
ラン化合物が要求されている。
In addition, polysilane has the property of a photosemiconductor in which charge can be transferred through the σ-bonds in its main chain, and its application to electrophotographic photoreceptors is also expected (Physical Review; B 35, 2818pp (1987)). became. However, for applications in such electronic materials, polysilane compounds must not only be solvent-soluble and film-forming;
It is necessary to be able to form a film without minute defects and with high homogeneity. Since even minute defects are unacceptable in electronic materials, there is a demand for high-quality polysilane compounds that have clear substituent structures and do not cause abnormalities in film formation.

従来からポリシラン化合物に関する合成研究例は種々報
告があるが、電子材料として用いるにはまだ問題点を残
している。低分子量のポリシラン化合物では全てのSi
基に有機基が置換した+l造のものが報告されている〔
ザ・ジャーナル・オフ・アメリカン・ケミカル・ソサエ
ティー(Journal  of  American
  ChetmicaI  5ociaty;旦(11
)3806pp (1972))、特公昭63−380
33号公報)。
Although various synthetic research examples regarding polysilane compounds have been reported, there are still problems in using them as electronic materials. In low molecular weight polysilane compounds, all Si
A +l structure in which the base is substituted with an organic group has been reported [
The Journal of American Chemical Society
ChetmicaI 5ociety;dan (11
)3806pp (1972)), Special Publication Showa 63-380
Publication No. 33).

前者の刊行物に記載のものはジメチルシランの末@基に
メチル基を置換した構造であり、後者の刊行物に記載の
ものはジメチルシランの末端基にアルコキシ基を置換し
た構造であるが、いずれも重合度が2〜6であり、高分
子の特徴を示さない。つまり、低分子蓋のためにそのま
まではフィルム形成能がなく、産業上の利用は難しい。
The structure described in the former publication has a structure in which the terminal @ group of dimethylsilane is substituted with a methyl group, and the structure described in the latter publication has a structure in which the terminal group of dimethylsilane is substituted with an alkoxy group. All have a degree of polymerization of 2 to 6 and do not exhibit the characteristics of polymers. In other words, the low-molecular lid does not have film-forming ability as it is, making it difficult to use industrially.

高分子量のポリシラン化合物で全てのSi基に有機基を
置換した構造のものが最近報告されている〔日経ニュー
マテリアル8月15日号46ページ(1988))が、
特殊な反応中間体を経由するため、合成収率の低下が予
想され工業的な大量生産は困難である。
A high molecular weight polysilane compound with a structure in which all Si groups are substituted with organic groups has recently been reported [Nikkei New Material, August 15 issue, page 46 (1988)].
Because it involves a special reaction intermediate, it is expected that the synthesis yield will decrease, making industrial mass production difficult.

また、ポリシラン化合物の合成方法が〔ザ・ジャーナル
・オフ・オルガノメタリック・ケミストリー;198p
p、C27(1980)又はザ・ジャーナル・オフ′・
ポリマー・サイエンス、ボリマー・ケミストリー・エデ
イジョン; Vol、 22159−170pp (1
984))により報告されている。しかし、報告されて
いるいずれの合成方法もポリシラン主鎖の縮合反応のみ
で、末端基については全く言及はない。そしていずれの
合成方法の場合も未反応のクロル基や副反応による副生
物の生成があり、所望のポリシラン化合物を定常的に得
るのは困難である。
In addition, the method for synthesizing polysilane compounds is described in [The Journal Off Organometallic Chemistry; 198p.
p, C27 (1980) or The Journal Off'.
Polymer Science, Polymer Chemistry Edition; Vol, 22159-170pp (1
984)). However, all of the reported synthesis methods involve only a condensation reaction of the polysilane main chain, and there is no mention of terminal groups. In any of the synthesis methods, unreacted chloro groups and byproducts are produced due to side reactions, making it difficult to consistently obtain the desired polysilane compound.

前記のポリシラン化合物を光導電体として使用する例も
、報告されているが(U、  S、  P、 N146
]855ISU、S、P、階4772525、特開昭6
2−269964号公報)、未反応のクロル基や副反応
による副生物の影響が推測される。
Examples of using the above polysilane compounds as photoconductors have also been reported (U, S, P, N146
]855ISU, S, P, floor 4772525, JP-A-6
2-269964), the influence of unreacted chloro groups and by-products due to side reactions is presumed.

U、S、P、m4618551では、前記のポリシラン
化合物を電子写真感光体として用いているが、一般の複
写機では印加電位が500〜800Vで良いのに、異常
に高い印加電位1000Vを用いている。これは通常の
電位ではポリシランの構造欠陥により電子写真感光体に
欠陥を生じ、画像上の斑点状の異常現象を消失させるた
めと考えられる。また、特開昭62−269964号公
報では前記のポリシラン化合物を用いて電子写真感光体
を作製し、光感度を測定しているが、光感度が遅く、従
来知られているセレン感光体や有機感光体に比べ何の利
点も持たない。
In U, S, P, m4618551, the above-mentioned polysilane compound is used as an electrophotographic photoreceptor, but an abnormally high applied potential of 1000 V is used, although in a general copying machine, the applied potential is only 500 to 800 V. . This is thought to be because, at a normal potential, structural defects in polysilane cause defects in the electrophotographic photoreceptor, and the abnormal spot-like phenomenon on the image disappears. In addition, in JP-A-62-269964, an electrophotographic photoreceptor was prepared using the above polysilane compound and its photosensitivity was measured, but the photosensitivity was slow, and conventionally known selenium photoreceptors and organic It has no advantages over photoreceptors.

このような電子材料に利用するためには、まだ数多くの
問題点を残し、産業上に利用できるポリシラン化合物は
未だ提供されていないのが実状であり、特に、良好な半
導体特性が要求される光起電力素子への応用に関しては
全く検討がなされていない。
In order to be used in such electronic materials, there are still many problems, and the reality is that polysilane compounds that can be used industrially have not yet been provided. No study has been made regarding its application to electromotive force elements.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、前述の従来技術の問題点を解決し、安
価で、大面積に亘り均一で高効率の、有機半導体を用い
た光起電力素子を提供することにある。
An object of the present invention is to solve the problems of the prior art described above, and to provide a photovoltaic device using an organic semiconductor that is inexpensive, uniform over a large area, and highly efficient.

本発明の他の目的は、従来の有機半導体より大幅に特性
改善のなされた新規なポリシラン化合物を半導体層とし
て用いた光起電力素子を提供することにある。
Another object of the present invention is to provide a photovoltaic device using, as a semiconductor layer, a novel polysilane compound whose properties are significantly improved over conventional organic semiconductors.

更に、本発明の他の目的は、入射光強度の変化及び経時
変化に対して安定な光起電力素子を提供することにある
Furthermore, another object of the present invention is to provide a photovoltaic element that is stable against changes in incident light intensity and changes over time.

〔発明の構成・効果〕[Structure and effects of the invention]

本発明は、前記目的を達成すべく本発明者らが鋭意研究
を重ねたところ、下記一般式(1)で表される直鎖状ポ
リシラン化合物が従来の有機半導体に比較して飛躍的に
特性改善がなされることを発見し、更にこれを光起電力
素子として十分に動作、[能させるべく研究を重ね完成
するに至ったものであり、その骨子とするところは、一
般式(1)で表され重量平均分子量が6000乃至20
0000であるポリシラン化合物を有機半導体層として
用いたことを特徴とするSIS接合型光起電力素子にあ
る。
In order to achieve the above-mentioned object, the present inventors have conducted intensive research and found that a linear polysilane compound represented by the following general formula (1) has dramatically improved characteristics compared to conventional organic semiconductors. After discovering that this could be improved, and further completing the research to make it fully operational as a photovoltaic device, the gist of this is that the general formula (1) The weight average molecular weight is 6000 to 20
The present invention provides an SIS junction type photovoltaic device characterized in that a polysilane compound of 0.0000 is used as an organic semiconductor layer.

R,Rコ A−+5 ←トT−−斗3i+−t−A’−(r)Rz
         Ra (但し、式中、R5は炭素数1又は2のアルキル基、R
,は炭素数3乃至8のアルキル基、シクロアルキル基、
アリール基又はアラルキル基、R3は炭素数1乃至4の
アルキル基、R1は炭素数1乃至4のアルキル基をそれ
ぞれ示す、A、A’ は、それぞれ炭素数4乃至12の
アルキル基、シクロアルキル基、了り−ル基又はアラル
キル基であり、両者は同しであっても或いは異なっても
よい。
R, RkoA-+5 ←T--Dou3i+-t-A'-(r)Rz
Ra (wherein, R5 is an alkyl group having 1 or 2 carbon atoms, R
, is an alkyl group having 3 to 8 carbon atoms, a cycloalkyl group,
Aryl group or aralkyl group, R3 is an alkyl group having 1 to 4 carbon atoms, R1 is an alkyl group having 1 to 4 carbon atoms, A and A' are an alkyl group having 4 to 12 carbon atoms, and a cycloalkyl group, respectively. , an aralkyl group, or an aralkyl group, and both may be the same or different.

n、mは、ポリマー中の総モノマーに対するそれぞれの
モノマー数の割合を示すモル比であり、n+m= 1と
なり、0〈n≦1.0≦m<lである。) 本発明により提供される、一般式CI>で表される重量
平均分子量が6000乃至200000である新規なポ
リシラン化合物は、クロル基や副反応生成基を全く持た
ず全てのSi基が酸素を含有しない特定の有機基で置換
されたものであって、毒性がなく、トルエン、ベンゼン
、キシレン等の芳香族系溶剤、ジクロロメタン、ジクロ
ロエタン、クロロホルム、四塩化炭素等のハロゲン系溶
剤、その他テトラヒト′ロフラン(T)(F)、ジオキ
サン等の溶剤に易溶であり、優れたフィルム形成能を有
するものである。そして本発明の該ポリシラン化合物を
もって形成したフィルムは均質にして均一膜厚のもので
、優れた耐熱性を有し、硬度に冨み且つ靭性(toug
hness)に冨むものである。
n and m are molar ratios indicating the ratio of the number of each monomer to the total monomers in the polymer, n+m=1, and 0<n≦1.0≦m<l. ) The novel polysilane compound represented by the general formula CI> and having a weight average molecular weight of 6,000 to 200,000, provided by the present invention, has no chlorine groups or side reaction-forming groups, and all Si groups contain oxygen. It is substituted with a specific organic group, is non-toxic, and is compatible with aromatic solvents such as toluene, benzene, xylene, halogenated solvents such as dichloromethane, dichloroethane, chloroform, carbon tetrachloride, and other tetrahydrofuran ( T)(F) is easily soluble in solvents such as dioxane and has excellent film-forming ability. The film formed using the polysilane compound of the present invention is homogeneous and has a uniform thickness, has excellent heat resistance, high hardness, and toughness.
hness).

こうしたことから本発明により提供される前記ポリシラ
ン化合物は、電子デバイス、中でも光起電力素子の作製
に利用でき、産業上の利用価値の高い高分子物質である
For these reasons, the polysilane compound provided by the present invention is a polymeric substance that can be used in the production of electronic devices, especially photovoltaic elements, and has high industrial utility value.

本発明により提供される一般式(+)で表される新規な
ポリシラン化合物は、上述したように、その重量平均分
子量が6000乃至200000のものであるが、溶剤
への溶解性およびフィルム形成能の観点からするより好
ましいものは、重量平均分子量が8000乃至1200
00のものであり、Ju1通なものは重量平均分子量が
10000乃至5ooooのものである。
As mentioned above, the novel polysilane compound represented by the general formula (+) provided by the present invention has a weight average molecular weight of 6,000 to 200,000, but has poor solubility in solvents and film-forming ability. More preferable from this point of view are those having a weight average molecular weight of 8000 to 1200.
00, and Ju1 has a weight average molecular weight of 10,000 to 5oooo.

なお、重量平均分子量について、それが6000以下で
あるものは高分子の特徴を示さず、フィルム形成能がな
い。また、200000以上であるものは溶剤に対して
の溶解性が悪く、所望のフィルム形成が困難である。
In addition, those having a weight average molecular weight of 6,000 or less do not exhibit the characteristics of a polymer and have no film-forming ability. Moreover, those having a molecular weight of 200,000 or more have poor solubility in solvents, making it difficult to form a desired film.

また、本発明の一般式(1)で表される上述のポリシラ
ン化合物は、形成するフィルムについて特に強靭性を望
む場合、その末端基A及びA′が、炭素数5乃至12の
アルキル基、炭素数5乃至12のシクロアルキル基、ア
リール基及びアラルキル基からなる群から選択される基
であることが望ましい。この場合の最も好ましい本発明
のポリシラン化合物は、末端基A及びA′が炭素数5乃
至】2のアルキル基及び炭素数5乃至12のシクロアル
キル基の中から選択される基である場合である。
In addition, in the above-mentioned polysilane compound represented by the general formula (1) of the present invention, when particularly toughness is desired for the film to be formed, the terminal groups A and A' may be an alkyl group having 5 to 12 carbon atoms, a carbon The group is preferably selected from the group consisting of 5 to 12 cycloalkyl groups, aryl groups, and aralkyl groups. In this case, the most preferred polysilane compound of the present invention is one in which the terminal groups A and A' are groups selected from an alkyl group having 5 to 2 carbon atoms and a cycloalkyl group having 5 to 12 carbon atoms. .

本発明により提供される上述の新規ポリシラン化合物は
つぎのようにして合成することができる。
The above-mentioned novel polysilane compound provided by the present invention can be synthesized as follows.

即ち、酸素及び水分を無くした高純度不活性雰囲気下で
、ジクロロシランモノマーをアルカリ金属からなる縮合
触媒に接触させてハロゲン脱離と縮重合を行い中間体ポ
リマーを合威し、得られた該ポリマーを未反応のモノマ
ーと分離し、該ポリマーに所定のハロゲン化有機試薬を
アルカリ金属からなる縮合触媒の存在下で反応せしめて
該ポリマーの末端に有機基を縮合せしめることにより合
成される。
That is, in a high-purity inert atmosphere free of oxygen and moisture, dichlorosilane monomer is brought into contact with a condensation catalyst made of an alkali metal to undergo halogen elimination and condensation polymerization, and an intermediate polymer is synthesized. It is synthesized by separating the polymer from unreacted monomers and reacting the polymer with a predetermined halogenated organic reagent in the presence of a condensation catalyst made of an alkali metal to condense an organic group at the end of the polymer.

上記合成操作にあっては、出発物質たるジクロロシラン
、前記中間体ポリマー、ハロゲン化有機試薬及びアルカ
リ金属縮合触媒は、いずれも酸素や水分との反応性が高
いので、これら酸素や水分が存在する雰囲気の下では本
発明の目的とする上述のポリシラン化合物は得られない
In the above synthesis operation, the starting material dichlorosilane, the intermediate polymer, the halogenated organic reagent, and the alkali metal condensation catalyst are all highly reactive with oxygen and moisture, so it is necessary to avoid the presence of oxygen and moisture. Under such an atmosphere, the above-mentioned polysilane compound which is the object of the present invention cannot be obtained.

したがって本発明のポリシラン化合物を得る上述の操作
は、酸素及び水分のいずれもが存在しない雰囲気下で実
施することが必要である。このため、反応系に酸素及び
水分のいずれもが存在するところとならないように反応
容器及び使用する試薬の全てについて留意が必要である
。例えば反応容器については、グローブボックス中で真
空吸引とアルゴンガス置換を行って水分や酸素の系内へ
の吸着がないようにする。使用するアルゴンガスは、い
ずれの場合にあっても予めシリカゲルカラムに通し脱水
して、ついで銅粉末を100℃に加熱したカラムに通し
て脱酸素処理して使用する。
Therefore, the above-mentioned operation for obtaining the polysilane compound of the present invention needs to be carried out in an atmosphere in which neither oxygen nor moisture is present. Therefore, care must be taken regarding the reaction container and all reagents used so that neither oxygen nor moisture is present in the reaction system. For example, regarding the reaction vessel, vacuum suction and argon gas replacement are performed in a glove box to prevent adsorption of moisture and oxygen into the system. In any case, the argon gas used is previously passed through a silica gel column to dehydrate it, and then the copper powder is passed through a column heated to 100° C. for deoxidation treatment.

出発原料たるジクロロシランモノマーについては、反応
系内への導入直前で脱#素処理した上述のアルゴンガス
を使用して減圧蒸留を行った後に反応系内に導入する。
The dichlorosilane monomer serving as a starting material is introduced into the reaction system after being distilled under reduced pressure using the above-mentioned argon gas, which has been subjected to deoxidation treatment immediately before introduction into the reaction system.

特定の有機基を導入するための上記ハロゲン化有機試薬
及び使用する上記溶剤についても、ジクロロシランモノ
マーと同様に脱酸素処理した後に反応系内に導入する。
The halogenated organic reagent and the solvent used for introducing a specific organic group are also deoxidized in the same manner as the dichlorosilane monomer before being introduced into the reaction system.

なお、溶剤の脱水処理は、上述の脱酸素処理したアルゴ
ンガスを使用して減圧蒸留した後、金属ナトリウムで更
に脱水処理する。
Note that the solvent is dehydrated by distilling under reduced pressure using the deoxidized argon gas described above, and then further dehydrating with metallic sodium.

上記縮合触媒については、ワイヤー化或いはチップ化し
て使用するが、該操作は無水のパラフィン系溶剤中又は
Ar、N!等の不活性ガス雰囲気中で行い、酸化が起こ
らないようにして使用する。
The above condensation catalyst is used in the form of wires or chips, and this operation is carried out in an anhydrous paraffinic solvent or in Ar, N! Use in an inert gas atmosphere to prevent oxidation.

本発明の一般式(J)で表される新規ボソシラン化合物
を製造するに際して使用する出発原料のジクロロシラン
モノマーは、後述する一形式:R,RzSiC1,で表
されるシラン化合物か又はこれと−形式:R1Ra5i
Ci!、で表されるシラン化合物が選択的に使用される
The dichlorosilane monomer used as a starting material for producing the novel bososilane compound represented by the general formula (J) of the present invention is a silane compound represented by one form: R, RzSiC1, which will be described later, or a silane compound represented by this form. :R1Ra5i
Ci! A silane compound represented by , is selectively used.

上述の縮を触媒は、ハロゲン脱離して縮合反応をもたら
しめるアルカリ金属が望ましく使用され、該アルカリ金
属の具体例としてリチウム、ナトリウム、カリウムが挙
げられ、中でもリチウム及びナトリウムが好適である。
As the above-mentioned condensation catalyst, an alkali metal capable of causing a condensation reaction by eliminating halogen is preferably used, and specific examples of the alkali metal include lithium, sodium, and potassium, with lithium and sodium being preferred.

上述のハロゲン化有81試薬は、A及びA′で表される
置換基を導入するためのものであって、ハロゲン化アル
キル化合物、ハロゲン化シクロアルキル化合物、ハロゲ
ン化アリール化合物及びハロゲン化アラルキル化合物か
らなる群から選択される適当な化合物、即ち、−形式:
 A−X及び/又は−形式:A’−X(但し、XはCI
又はBr)で表され、後述する具体例の中の適当な化合
物が選択的に使用される。
The above-mentioned halogenated 81 reagent is for introducing substituents represented by A and A', and is a halogenated alkyl compound, a halogenated cycloalkyl compound, a halogenated aryl compound, and a halogenated aralkyl compound. A suitable compound selected from the group consisting of:
A-X and/or - format: A'-X (where X is CI
or Br), and appropriate compounds from the specific examples described below are selectively used.

上述の中間体ポリマーを合成するに際して使用する一般
式: R+ Rx S i Ce z又はこれと−形式
:R3Ra S iCj! zで表されるジクロロシラ
ンモノマは、所定の溶剤に熔解して反応系に導入される
General formula used in synthesizing the intermediate polymers described above: R+ Rx Si Cez or with this - Format: R3Ra SiCj! The dichlorosilane monomer represented by z is dissolved in a predetermined solvent and introduced into the reaction system.

該溶剤としては、パラフィン系の無極性炭化水素系溶剤
が望ましく使用される。該溶剤の好ましい例としては、
n−ヘキサン、n−オクタン、nノナン、n−ドデカン
、シクロヘキサン及びシクロオクタンが挙げられる。
As the solvent, a paraffinic non-polar hydrocarbon solvent is preferably used. Preferred examples of the solvent include:
Mention may be made of n-hexane, n-octane, n-nonane, n-dodecane, cyclohexane and cyclooctane.

モして生成する中間体ポリマーはこれらの溶剤に不溶で
あることから、該中間体ポリマーを未反応のジクロロシ
ランモノマーから分離するについて好都合である。分離
した中間体ポリマーは、ついで上述のハロゲン化有機試
薬と反応せしめるわけであるが、その際両者は同し溶剤
に溶解せしめて反応に供される。この場合の溶剤として
はヘンゼン、トルエン、キシレン等の芳香族系溶剤が好
適に使用される。
Since the intermediate polymer thus produced is insoluble in these solvents, it is convenient to separate the intermediate polymer from unreacted dichlorosilane monomer. The separated intermediate polymer is then reacted with the above-mentioned halogenated organic reagent, and both are dissolved in the same solvent and subjected to the reaction. As the solvent in this case, aromatic solvents such as Hensen, toluene, and xylene are preferably used.

上述のジクロロシランモノマーを上述のアルカリ金属触
媒を使用して縮合せしめて所望の中間体を得るについて
は、反応温度と反応時間を調節することにより得られる
中間体ポリマーの重合度を適宜制御できる。しかしなが
らその際の反応温度は60℃〜130℃の間に設定する
のが望ましい。
When the desired intermediate is obtained by condensing the above-mentioned dichlorosilane monomer using the above-mentioned alkali metal catalyst, the degree of polymerization of the resulting intermediate polymer can be appropriately controlled by adjusting the reaction temperature and reaction time. However, the reaction temperature at that time is preferably set between 60°C and 130°C.

以上説明の本発明の一般式(1)で表される上述の新規
ポリシラン化合物の製造方法の望ましい、b様例を以下
に述べる。
A preferable embodiment b of the above-described method for producing the novel polysilane compound represented by the general formula (1) of the present invention will be described below.

即ち、本発明による上述の新規ポリシラン化合物の製造
方法は、(1)中間体ポリマーを製造する工程と(ii
)該中間体ポリマーの末端に置換基A及びA′を導入す
る工程とからなる。
That is, the method for producing the above-mentioned novel polysilane compound according to the present invention comprises (1) producing an intermediate polymer; and (ii)
) introducing substituents A and A' to the terminals of the intermediate polymer.

上記(1)の工程はつぎのようにして行われる。The step (1) above is performed as follows.

即ち、反応容器の反応系内を酸素及び水分を完全に除い
てアルゴンで支配され所定の内圧に維持した状態にし、
無水のパラフィン系溶剤と無水の縮合触媒を入れ、つい
で無水のジクロロシランモノマーを入れ、全体を撹拌し
ながら所定温度に加熱して該モノマーの縮合を行う。こ
の際前記ジクロロシランモノマーの縮合度合は、反応温
度と反応時間を調節し、所望の重合度の中間体ポリマー
が生成されるようにする。
That is, the reaction system in the reaction vessel is completely free of oxygen and moisture and is dominated by argon and maintained at a predetermined internal pressure.
An anhydrous paraffinic solvent and an anhydrous condensation catalyst are added, followed by an anhydrous dichlorosilane monomer, and the whole is heated to a predetermined temperature while stirring to condense the monomers. At this time, the degree of condensation of the dichlorosilane monomer is controlled by adjusting the reaction temperature and reaction time so that an intermediate polymer having a desired degree of polymerization is produced.

この際の反応は、下記の反応式(i)で表されるように
ジクロロシランモノマーのクロル基と触媒が脱塩反応を
起こしてSi基同志が縮合を繰り返してポリマー化して
中間体ポリマーを生成する。
In this reaction, as shown in the reaction formula (i) below, the chloro group of the dichlorosilane monomer and the catalyst cause a desalting reaction, and the Si groups repeat condensation to form a polymer, producing an intermediate polymer. do.

触媒 nR,R,5iCj!、+mR,R,SiC/l、−+
R+         Rs C1−帖i÷l−−−千61−トコ−C2・・・ (1
〉Rz         R4 なお、具体的反応操作手順は、パラフィン系溶剤中に縮
合触媒(アルカリ金属)を仕込んでおき、加熱下で撹拌
しながらジクロロシランモノマーを滴下して添加する。
Catalyst nR, R, 5iCj! , +mR,R,SiC/l,-+
R+ Rs C1-Chapter i÷l---1,61-Toko-C2... (1
〉Rz R4 In the specific reaction procedure, a condensation catalyst (alkali metal) is placed in a paraffinic solvent, and a dichlorosilane monomer is added dropwise while stirring under heating.

ポリマー化の度合は、反応液をサンプリングして確認す
る。
The degree of polymerization is confirmed by sampling the reaction solution.

ポリマー化の簡単な確認はサンプリング液を揮発させフ
ィルムが形成できるかで判断できる。縮合が進み、ポリ
マーが形成されると白色固体となって反応系から析出し
てくる。ここで冷却し、反応系からモノマーを含む溶媒
をデカンテーションで分離し、中間体ポリマーを得る。
Polymerization can be easily confirmed by evaporating the sampling liquid and determining whether a film can be formed. As the condensation progresses and a polymer is formed, it becomes a white solid that precipitates out of the reaction system. Here, it is cooled, and the solvent containing the monomer is separated from the reaction system by decantation to obtain an intermediate polymer.

ついで、前記11の工程を行う。即ち、得られた中間体
ポリマーの末端基のクロル基をハロゲン化有機剤と縮合
触媒(アルカリ金属)を用いて脱塩縮合を行いポリマー
末端基を所定の有4I11基で置換する。この際の反応
は下記の反応式(ii)で表される。
Then, the above-mentioned step 11 is performed. That is, the chloro group at the terminal group of the obtained intermediate polymer is subjected to desalting condensation using a halogenated organic agent and a condensation catalyst (alkali metal), and the polymer terminal group is substituted with a predetermined 4I11 group. The reaction at this time is represented by the following reaction formula (ii).

R,R。R,R.

C1−じi統トi−一一一千−5i−)−7−Cj!R
Z      R4触媒 (2A X+A’ X) R。
C1-Ji-Toi-11100-5i-)-7-Cj! R
Z R4 catalyst (2A X+A' X) R.

Rコ 一03+si+−7A’ (11) 2 4 このところ具体的には、ジクロロシランモノマーの縮合
で得られた中間体ポリマーに芳香族系溶剤を加え熔解す
る。次に縮合触媒(アルカリ金属)を加え、室温でハロ
ゲン化有機剤を滴下する。この時ポリマー末端基同士の
縮合反応と競合するためハロゲン化有機剤を出発モノマ
ーに対して0.01〜0.1倍の過剰!添加する。徐々
に加熱し、80℃〜100℃で1時間加熱撹拌し、目的
の反応を行う。
Rco103+si+-7A' (11) 2 4 More specifically, an aromatic solvent is added to an intermediate polymer obtained by condensation of dichlorosilane monomer and dissolved. Next, a condensation catalyst (alkali metal) is added, and a halogenated organic agent is added dropwise at room temperature. At this time, in order to compete with the condensation reaction between polymer end groups, the halogenated organic agent is used in excess of 0.01 to 0.1 times the starting monomer! Added. Gradually heat and stir at 80°C to 100°C for 1 hour to carry out the desired reaction.

反応後冷却し、触媒のアルカリ金属を除去するため、メ
タノールを加える。次にポリシランをトルエンで抽出し
、シリカゲルカラムで精製する。
After the reaction is cooled, methanol is added to remove the alkali metal of the catalyst. Next, polysilane is extracted with toluene and purified using a silica gel column.

かくして所望の本発明の新規ポリシラン化合物が得られ
る。
Thus, the desired new polysilane compound of the present invention is obtained.

(以下余白) RIR2SiC12びR3R4SiC1g (7)体性
);下記の化合物の中、a −2〜16,18,20,
21゜23.24がRIR2SiCj! zに用いられ
、a−1゜2、+1.17,19.22,23.25が
R5Ra 5iCj! tニ用いられる。
(Left space below) RIR2SiC12 and R3R4SiC1g (7) Physical properties); Among the following compounds, a -2 to 16, 18, 20,
21°23.24 is RIR2SiCj! Used for z, a-1°2, +1.17, 19.22, 23.25 is R5Ra 5iCj! t is used.

(C71:1)zsic l z −1 CI+1(c)12)t′ (((Jh)zODzsicj!z a−汐 ((CTo)sc)zsic7!z a−る 2矢二3(及びA’−Xの旦体例 (CTo) 2CHC11□CX CHI (C112) 4c I CI(3(CH2)sC(I C1h(CHz)+。C1 G1+ (CHり 5Br CHx (CI(z) + o8r −14 45 木 において用いられる新規なポリシラン化合物の例 Hff CHl Ctb (CII2) s−4:Si +−r−(CH
2) 5cIl:+−18 CII(Cll:+)z (Jl(O13)z Cll。
(C71:1)zsic l z -1 CI+1(c)12)t' (((Jh)zODzsicj!z a-shio((CTo)sc)zsic7!z a-ru2yaji3(andA'- Body example of Examples of new polysilane compounds used Hff CHl Ctb (CII2) s-4:Si +-r-(CH
2) 5cIl:+-18 CII(Cll:+)z (Jl(O13)z Cll.

CII。CII.

C1l。C1l.

113 0ら ll3 a(3 CI(。113 0 et al. ll3 a(3 CI(.

CI(3 CI′I3 CH。CI(3 CI'I3 CH.

C1l。C1l.

(C11□)3 し■3 113 113 (C11□)3 注):上記構造式中のXとYはいずれも単量体重合単位
を示す。モしてnは、X/ (X+y) 、またmは、
Y/ (X十Y)の計算式によりそれぞれ求められる。
(C11□)3 し■3 113 113 (C11□)3 Note): In the above structural formula, both X and Y represent a monomer polymerization unit. Then, n is X/ (X+y), and m is
Each is calculated using the calculation formula Y/ (X + Y).

〔合戒例〕[Combined precepts]

以下に合戒例を挙げて本発明において用いられるポリシ
ラン化合物の合成法をより詳述に説明するが、本発明に
おいて用いられるポリシラン化合物の合成法はこれらの
方法に限定されることはない。
The method for synthesizing the polysilane compound used in the present invention will be explained in more detail below by giving general examples, but the method for synthesizing the polysilane compound used in the present invention is not limited to these methods.

造迩d生と 真空吸引とアルゴン置換を行ったグローブボックスの中
に三ツロフラスコを用意し、これにリフランクスコンデ
ンサーと塩度計と滴下ロートを取り付けて、滴下ロート
のバイパス管からアルゴンガスを通した。
Prepare a three-way flask in a glove box with vacuum suction and argon replacement, attach a reflux condenser, salinity meter, and dropping funnel to it, and pass argon gas through the bypass pipe of the dropping funnel. did.

この三ツロフラスコ中に脱水ドデカン100グラムとワ
イヤー状金属ナトリウム0.3モルを仕込み、撹拌しな
がら100℃に加熱した。次にシクロロンランモノマー
(チンソ■製)(a −7) 0.1モルを脱水ドデカ
ン30グラムに溶解させて、用意した溶液を反応系にゆ
っくり滴下した。
100 grams of dehydrated dodecane and 0.3 mole of wire-shaped sodium metal were placed in this Mitsuroh flask and heated to 100° C. with stirring. Next, 0.1 mole of cyclolonlan monomer (manufactured by Chinso ■) (a-7) was dissolved in 30 grams of dehydrated dodecane, and the prepared solution was slowly added dropwise to the reaction system.

滴下後、100℃で1時間縮重合させることにより、白
色固体を析出させた。この後冷却し、ドデカンをデカン
テーションして、さらに脱水トルエン100グラムを加
えることにより、白色固体を溶解させ、金属ナトリウム
0,01モルを加えた。
After the dropwise addition, a white solid was precipitated by condensation polymerization at 100° C. for 1 hour. After this time it was cooled, the dodecane was decanted and a further 100 grams of dehydrated toluene were added to dissolve the white solid and 0.01 mol of sodium metal was added.

次に、n−へキシルクロライド(東京化成製)(b3)
0.01モルをトルエンI OmAに?容解させて用意
した溶液を反応系に撹拌しながらゆっくり滴下して添加
し、100℃で1時間加熱した。この後冷却し、過剰の
金属ナトリウムを処理するため、メタノール50mj!
をゆっくり滴下した。これにより懸濁層とトルエン層と
が生成した。
Next, n-hexyl chloride (manufactured by Tokyo Kasei) (b3)
0.01 mol toluene I OmA? The prepared solution was slowly added dropwise to the reaction system while stirring, and heated at 100° C. for 1 hour. After this, 50mj of methanol was added to cool it and treat the excess metal sodium!
was slowly dripped. This produced a suspended layer and a toluene layer.

次に、トルエン層を分離し、減圧濃縮した後シリカゲル
カラム、クロマトグラフィーで展開して精製し、ポリシ
ラン化合物1kl  (C−1)を得た。
Next, the toluene layer was separated, concentrated under reduced pressure, and purified by development using a silica gel column and chromatography to obtain 1 kl of polysilane compound (C-1).

収率は65%であった。The yield was 65%.

このポリシラン化合物の重量平均分子量はGPC法によ
りTHF展開し測定した結果75,000であった(ポ
リスチレンを標準とした)。
The weight average molecular weight of this polysilane compound was 75,000 as measured by THF development using the GPC method (using polystyrene as a standard).

同定は、IRはKBrペレントを作製し、N1cole
t FT −I R750にコレ−・ジャパン製)によ
り測定した。また、NMRはサンプルをCDCl、に溶
解し、FT−NMRFX−90Q(日本電子製)により
測定した。結果を第5表に示す。
Identification: IR creates KBr perent and N1cole
t Measured using FT-I R750 (manufactured by Collet Japan). Further, for NMR, the sample was dissolved in CDCl and measured using FT-NMRFX-90Q (manufactured by JEOL Ltd.). The results are shown in Table 5.

なお、本発明で得られたポリシラン化合物においては、
未反応の5i−C1、副生酸物の5iO−3i、5i−
0−Rに帰属されるIR吸収は全く存在しなかった。
In addition, in the polysilane compound obtained by the present invention,
Unreacted 5i-C1, by-product acids 5iO-3i, 5i-
There was no IR absorption assigned to 0-R.

査處史主 真空吸引とアルゴン11を行ったグローブボックスの中
に三ツロフラスコを用意し、これにリフラックスコンデ
ンサーと温度計と滴下ロートを取り付けて、滴下ロート
のバイパス管からアルゴンガスを通した。
A three-way flask was prepared in a glove box with vacuum suction and argon 11, a reflux condenser, a thermometer, and a dropping funnel were attached to it, and argon gas was passed through the bypass pipe of the dropping funnel.

この三ツロフラスコ中に脱水ドデカン100グラムと1
fi角の金属リチウム0.3モルを仕込ミ、撹拌しなが
ら100℃に加熱した。次にジクロロシランモノマー(
チッソ■製)(a −7) 0.1モルを脱水ドデカン
30グラムに溶解させて用意した溶液を反応系にゆっく
り滴下した。滴下後、100℃で2時間縮重合させるこ
とにより、白色固体を析出させた。この後冷却し、F′
デカンをデカンテーションして、さらに脱水トルエン1
00グラムを加えることにより、白色固体を溶解させ、
金属リチウム0.02モルを加えた。
In this Mitsuro flask, 100 grams of dehydrated dodecane and 1
0.3 mol of metallic lithium of square fi was charged and heated to 100° C. with stirring. Next, dichlorosilane monomer (
A solution prepared by dissolving 0.1 mol of Chisso (manufactured by Chisso ■) (a-7) in 30 grams of dehydrated dodecane was slowly added dropwise to the reaction system. After the dropwise addition, a white solid was precipitated by condensation polymerization at 100° C. for 2 hours. After that, it is cooled and F'
Decant the decane and add 1 liter of dehydrated toluene.
Dissolve the white solid by adding 00 grams,
0.02 mol of metallic lithium was added.

次に、クロルベンゼン(東京化成製)(b−7)0.0
2モルをトルエン10mlに溶解させて用意した溶液を
反応系に撹拌しながらゆっくり滴下して添加し、100
℃で1時間加熱した。この後冷却し、過剰の金属リチウ
ムを処理するため、メタノール50m#をゆっくり滴下
した。これによりQEJ層とトルエン層とが生成した。
Next, chlorobenzene (manufactured by Tokyo Kasei) (b-7) 0.0
A solution prepared by dissolving 2 moles in 10 ml of toluene was slowly added dropwise to the reaction system with stirring, and 100
Heated at ℃ for 1 hour. Thereafter, the mixture was cooled, and 50 m# of methanol was slowly added dropwise to remove excess metal lithium. This produced a QEJ layer and a toluene layer.

次に、トルエン層を分離し、減圧濃縮した後、シリカゲ
ルカラム、クロマトグラフィーで展開して精製し、ポリ
シラン化合物11k12  (C−3)を得た。収率は
72%であり、重量平均分子量は92.000であった
。同定の結果を第5表に示した。
Next, the toluene layer was separated, concentrated under reduced pressure, and purified by development using a silica gel column and chromatography to obtain polysilane compound 11k12 (C-3). The yield was 72% and the weight average molecular weight was 92,000. The identification results are shown in Table 5.

冷展Iボ工 真空吸引とアルゴン置換を行ったグローブボックスの中
に三ツロフラスコを用意し、これにリフラックスコンデ
ンサーと温度計と滴下ロートを取り付けて、滴下ロート
のバイパス管からアルゴンガスを通した。
A Mitsuro flask was prepared in a glove box that had been vacuum suctioned and replaced with argon, and a reflux condenser, thermometer, and dropping funnel were attached to it, and argon gas was passed through the dropping funnel's bypass pipe. .

この三ツロフラスコ中に脱水n−へキサン100グラム
と111角の金属ナトリウム0.3モルを仕込み、撹拌
しながら80℃に加熱した。次にジクロロシランモノマ
ー(チッソ■’I)(a−7)0.1モルを脱水n−ヘ
キサンに溶解させて用意した溶液を反応系にゆっくりと
滴下した。滴下後80℃で3時間縮重合させることによ
り、白色固体を析出させた。この後冷却し、n−ヘキサ
ンをデカンテーションして、さらに脱水トルエン100
グラムを加えることにより白色固体を溶解させ、金属ナ
トリウム0.01モルを加えた。次に、ベンジルクロラ
イド(東京化成製)(b−12)0.01モルをトルエ
ン10mlに溶解させて用意した溶液を反応系に撹拌し
ながらゆっくり滴下して添加し、80℃で1時間加熱し
た。この後冷却し、過剰の金属ナトリウムを処理するた
め、メタノール50mlをゆっくり滴下した。これによ
り悲濁層とトルエン層とが生成した。
100 grams of dehydrated n-hexane and 0.3 mol of 111 square metal sodium were charged into this Mitsuro flask and heated to 80° C. with stirring. Next, a solution prepared by dissolving 0.1 mol of dichlorosilane monomer (Tisso ■'I) (a-7) in dehydrated n-hexane was slowly added dropwise to the reaction system. After the dropwise addition, a white solid was precipitated by condensation polymerization at 80° C. for 3 hours. Thereafter, it was cooled, n-hexane was decanted, and 100% of dehydrated toluene was added.
The white solid was dissolved by adding gram and 0.01 mole of sodium metal was added. Next, a solution prepared by dissolving 0.01 mol of benzyl chloride (manufactured by Tokyo Kasei) (b-12) in 10 ml of toluene was slowly added dropwise to the reaction system with stirring, and heated at 80°C for 1 hour. . Thereafter, the mixture was cooled, and 50 ml of methanol was slowly added dropwise to remove excess metal sodium. This produced a turbid layer and a toluene layer.

次に、トルエン層を分離し、減圧濃縮した後、シリカゲ
ルカラム、クロマトグラフィーで展開して精製し、ポリ
シラン化合物1&3 (C−4)を得た。収率は61%
であり、重量平均分子量は47.000であった。同定
の結果を第5表に示した。
Next, the toluene layer was separated, concentrated under reduced pressure, and purified by development using a silica gel column and chromatography to obtain polysilane compounds 1&3 (C-4). Yield is 61%
The weight average molecular weight was 47.000. The identification results are shown in Table 5.

なお、このポリシラン化合物においては未反応(7)S
i−Cj!、副生成物ノS i −0−3i、  S 
i○−Rに帰属されるIR吸収は全く存在しなかった。
In addition, in this polysilane compound, unreacted (7)S
i-Cj! , by-product S i -0-3i, S
There was no IR absorption attributed to i○-R.

丘虞班土星主互上 第1表に示すシクロロンランモノマーと末端基処理剤を
用いて実施例3と同様に合成を行った。
Synthesis was carried out in the same manner as in Example 3 using the cyclolon run monomer and end group treatment agent shown in Table 1.

合成したポリシランの収率、重量平均分子量、IRおよ
びNMRデータを第5表に示す。
Table 5 shows the yield, weight average molecular weight, IR and NMR data of the synthesized polysilane.

なお、このポリシラン化合物においては未反応の5i−
C1、副生酸物(7)S i −0−3i、  S i
〇−Rに帰属されるIR吸収は全く存在しなかった。
In addition, in this polysilane compound, unreacted 5i-
C1, by-product acid (7) S i -0-3i, S i
There was no IR absorption assigned to ○-R.

止tじI口4上 合成例3と同様にしてジクロロシランモノマー(チッソ
■製)(a−7)を縮合させポリマーの末端基を処理し
ない以外は実施例3と同様に合成しボリンラン化合物1
1hD−1を得た。収率は60%で重量平均分子量は4
6,000であった。同定結果を第5表に示した。
Stop I port 4 Upper Dichlorosilane monomer (manufactured by Chisso ■) (a-7) was condensed in the same manner as in Synthesis Example 3. Borinlane compound 1 was synthesized in the same manner as in Example 3 except that the end groups of the polymer were not treated.
1hD-1 was obtained. The yield is 60% and the weight average molecular weight is 4.
It was 6,000. The identification results are shown in Table 5.

なお、このボリンラン化合物においては末端基には未反
応の5i−C1、副生成物の5i−ORに帰属されるI
R吸収が認められた。
In addition, in this borinlan compound, the terminal group contains unreacted 5i-C1 and I assigned to the by-product 5i-OR.
R absorption was observed.

金革例6〜10 第2表に示すシクロロンランモノマーを用いて反応時間
を第2表のように変化させて合成例3と同様に縮重合を
行い、さらに末端基処理は第2表の化合物を用いて合成
例3と同様にポリシランを合成し、精製してボリンラン
化合物NQ6〜10を得た。
Gold Leather Examples 6 to 10 Condensation polymerization was carried out in the same manner as in Synthesis Example 3 using the cyclolonlane monomer shown in Table 2 and changing the reaction time as shown in Table 2. Polysilanes were synthesized using the compounds in the same manner as in Synthesis Example 3, and purified to obtain borinlane compounds NQ6-10.

合成したポリシラン化合物の収率、重量平均分子量、I
RおよびNMRを第5表に示す。
Yield, weight average molecular weight, I of the synthesized polysilane compound
R and NMR are shown in Table 5.

なお、このポリシラン化合物においては未反応の5i−
C11副生成物の5i−0−5i、5iO−Rに帰属さ
れるIR吸収は全くなかった。
In addition, in this polysilane compound, unreacted 5i-
There was no IR absorption attributable to C11 by-products 5i-0-5i and 5iO-R.

止鮫姿底拠呈 合成例6においてジクロロシランモノマーの反応時間を
10分とする以外は合成例6と全く同様に合成しポリシ
ラン化合物NnD−2を得た。
A polysilane compound NnD-2 was synthesized in exactly the same manner as in Synthesis Example 6 except that the reaction time of the dichlorosilane monomer in Synthesis Example 6 was changed to 10 minutes.

合成したポリシランの収率、重量平均分子量、IRおよ
びNMRを第5表に示す。
Table 5 shows the yield, weight average molecular weight, IR and NMR of the synthesized polysilane.

なお、このポリシラン化合物においては、未反応のS 
1−C1、副生成物の5i−0−3iSi−○−Rに帰
属されるIR吸収は全く存在しなかった。
In addition, in this polysilane compound, unreacted S
There was no IR absorption attributed to 1-C1 or the by-product 5i-0-3iSi-○-R.

合成例11〜14 第3表に示すジクロロシランモノマーと末端基処理剤を
用いて合成例1と同様に合成を行った。
Synthesis Examples 11 to 14 Synthesis was carried out in the same manner as in Synthesis Example 1 using the dichlorosilane monomer and end group treatment agent shown in Table 3.

合成したポリシランの収率、重量平均分子量、IRおよ
びNMRデータを第5表に示す。
Table 5 shows the yield, weight average molecular weight, IR and NMR data of the synthesized polysilane.

なお、シランモノマーの共重合比はNMRのプロトン数
より求めた。
The copolymerization ratio of the silane monomers was determined from the number of protons in NMR.

止校査衣班主 真空吸引とアルゴン置換を行ったグローブボックスの中
に三ツロフラスコを用意し、これにリフラックスコンデ
ンサーと温度計と滴下ロートを取り付けて、滴下ロート
のバイパス管からアルゴンガスを通した。
School suspension inspection team prepared a three-way flask in a glove box that had been vacuum-suctioned and replaced with argon, and a reflux condenser, thermometer, and dropping funnel were attached to it, and argon gas was passed through the bypass pipe of the dropping funnel. .

この三ツロフラスコ中に脱水ドデカ7100グラムとワ
イヤー状金属ナトリウム0.3モルを仕込み、撹拌しな
がら100℃に加熱した。次にジクロロシランモノマー
(チッソ■製)ヲ0.1モルを脱水ドデカン30グラム
に溶解させて用意した溶液を反応系にゆっくり滴下した
。滴下後、100℃で1時間縮重合させることにより、
白色固体を析出させた。この後冷却し、過剰の金属ナト
リウムを処理するため、メタノール50mlをゆっくり
滴下した。
7,100 g of dehydrated dodeca and 0.3 mol of wire-shaped sodium metal were placed in this Mitsuroh flask, and heated to 100° C. with stirring. Next, a solution prepared by dissolving 0.1 mole of dichlorosilane monomer (manufactured by Chisso ■) in 30 grams of dehydrated dodecane was slowly added dropwise to the reaction system. After dropping, by condensation polymerization at 100 ° C. for 1 hour,
A white solid precipitated out. Thereafter, the mixture was cooled, and 50 ml of methanol was slowly added dropwise to remove excess metal sodium.

次に、白色固体を濾葉し、n−へキサンとメタノールで
洗浄を繰り返し、ポリシラン化合物Il&lD3を得た
Next, the white solid was filtered and washed repeatedly with n-hexane and methanol to obtain polysilane compounds Il&lD3.

このポリシラン化合物はトルエン、クロロホルム、TH
F等の有機溶剤に不溶のため、同定はIRで行った。結
果を第5表に示す。
This polysilane compound contains toluene, chloroform, TH
Since it is insoluble in organic solvents such as F, identification was performed by IR. The results are shown in Table 5.

比較合成例4 真空吸引とアルゴン置換を行ったグローブボックスの中
にニツロフラスコを用意し、これにリフラックスコンデ
ンサーと温度計と滴下ロートを取り付けて、滴下ロート
のバイパス管からアルゴンガスを通した。
Comparative Synthesis Example 4 A nitro flask was prepared in a glove box that had been vacuum-suctioned and replaced with argon, a reflux condenser, a thermometer, and a dropping funnel were attached to it, and argon gas was passed through the bypass pipe of the dropping funnel.

この三ツロフラスコ中に脱水ドデカン100グラムとワ
イヤー状金属ナトリウム0.3モルを仕込み、撹拌しな
がら100℃に加熱した。
100 grams of dehydrated dodecane and 0.3 mole of wire-shaped sodium metal were placed in this Mitsuroh flask and heated to 100° C. with stirring.

次にジフェニルジクロロシランモノマー(チッソa荀製
)を0.1モルを脱水ドデカン30グラムに溶解させて
用意した溶液を反応系にゆっくり滴下した。滴下後、1
00℃で1時間縮重合させることにより、白色固体を析
出させた。
Next, a solution prepared by dissolving 0.1 mol of diphenyldichlorosilane monomer (manufactured by Chisso A) in 30 grams of dehydrated dodecane was slowly dropped into the reaction system. After dripping, 1
A white solid was precipitated by condensation polymerization at 00°C for 1 hour.

この後冷却し、過剰の金属ナトリウムを処理するため、
メタノール50mj!をゆっくり滴下した。
After this, it is cooled and the excess metal sodium is disposed of.
Methanol 50mj! was slowly dripped.

次に、白色固体を濾葉し、n−へキサンとメタノールで
洗浄を繰り返し、ポリシラン化合物mD−4を得た。
Next, the white solid was filtered and washed repeatedly with n-hexane and methanol to obtain polysilane compound mD-4.

このポリシラン化合物はトルエン、クロロホルム、TI
−IF等の有Ja溶剤に不溶のため、同定はIRで行っ
た。結果を第5表に示す。
This polysilane compound contains toluene, chloroform, TI
-Identification was performed by IR because it is insoluble in Ja-containing solvents such as IF. The results are shown in Table 5.

企虞班土立二上1 第4表に示すジクロロシランモノマーと末端基処理剤を
用いて合成例1と同様に合成を行った。
Synthesis was carried out in the same manner as in Synthesis Example 1 using the dichlorosilane monomer and end group treatment agent shown in Table 4.

合成したポリシランの収率、重量平均分子量、IRおよ
びNMRデークーを第5表に示す。
Table 5 shows the yield, weight average molecular weight, IR and NMR data of the synthesized polysilane.

なお、シランモノマーの共重合比はNMRのプロトン数
より求めた。
The copolymerization ratio of the silane monomers was determined from the number of protons in NMR.

次に、本発明の光起電力素子の構成について説明する。Next, the configuration of the photovoltaic device of the present invention will be explained.

本発明の光起電力素子において、SIS(Semico
nductor−Insulator−Semicon
ductor)接合を形成することによりポリシラン半
導体層中で1戒した少数キャリアを有効に利用して高い
開放電圧を得ることができる。
In the photovoltaic device of the present invention, SIS (Semico
Inductor-Insulator-Semicon
By forming a junction (ductor), a high open circuit voltage can be obtained by effectively utilizing the minority carriers in the polysilane semiconductor layer.

更に、本発明の光起電力素子において用いられるポリシ
ラン化合物は比較的短波長光に対して感度が高いので、
従来の有機半導体を用いた光起電力素子に比較して高い
開放電圧を得ることができ光電変換効率の大幅な向上が
可能である。
Furthermore, since the polysilane compound used in the photovoltaic device of the present invention is sensitive to relatively short wavelength light,
Compared to conventional photovoltaic devices using organic semiconductors, it is possible to obtain a higher open circuit voltage and significantly improve photoelectric conversion efficiency.

本発明の光起電力素子において用いられるポリシラン化
合物は、多くの種類の溶剤に溶は易く、(8またフィル
ム形底能を有するので大面積に互り均一に膜形成ができ
、支持体との密着性にも優れ、特性の均一性にも優れて
いる。
The polysilane compound used in the photovoltaic device of the present invention is easily soluble in many types of solvents (8) and has a film-shaped bottom ability, so it can form a film uniformly over a large area, and is compatible with the support. It has excellent adhesion and uniformity of properties.

従って、電力用に大面積を必要とする太陽電池の光起電
力素子として好適に用いることができる。
Therefore, it can be suitably used as a photovoltaic element for a solar cell that requires a large area for electric power.

本発明において用いられるポリシラン化合物は、安定し
た分子構造を有するので、特性安定性に優れ、光電変換
効率の経時変化が従来の有機半導体を用いた光起電力素
子に比較して飛躍的に小さく、また、光電変換効率も従
来の有機半導体を用いた光起電力素子に比較して大幅に
向上している。
The polysilane compound used in the present invention has a stable molecular structure, so it has excellent property stability, and the change in photoelectric conversion efficiency over time is dramatically smaller than that of conventional photovoltaic devices using organic semiconductors. Furthermore, the photoelectric conversion efficiency is significantly improved compared to conventional photovoltaic devices using organic semiconductors.

また、入射光量の増大にともなう光電変換効率の低下と
いった現象も大幅に改善されている。更に、耐訃性にも
優れ、温度変化の厳しい条件下においても安定した出力
特性が得られる。
Furthermore, the phenomenon of a decrease in photoelectric conversion efficiency due to an increase in the amount of incident light has been significantly improved. Furthermore, it has excellent mortality resistance, and stable output characteristics can be obtained even under conditions of severe temperature changes.

本発明において用いられるポリシラン化合物は、分子量
分布やその側鎖の置換基を変えることで任意に光吸収特
性を変化させることができ使用環境に合わせた光起電力
素子の設計が可能となる。
The light absorption properties of the polysilane compound used in the present invention can be arbitrarily changed by changing the molecular weight distribution or the substituents on its side chains, making it possible to design a photovoltaic device tailored to the usage environment.

本発明の光起電力素子において、光入射は金属層側より
行われるので、金属層および絶縁層における光の吸収を
できるだけ抑えることが必要である。更に、金属層にお
いては、金属の仕事関数に起因する障壁の高さ、絶縁層
においては、障壁の高さ及び少数キャリアのトンネル確
率の大きさが収集効率を大きく支配するので、前記各層
の構成材料及び膜厚を適宜選択することが必要である。
In the photovoltaic device of the present invention, since light is incident from the metal layer side, it is necessary to suppress absorption of light in the metal layer and the insulating layer as much as possible. Furthermore, in the case of a metal layer, the height of the barrier caused by the work function of the metal, and in the case of an insulating layer, the height of the barrier and the magnitude of the tunneling probability of minority carriers greatly control the collection efficiency. It is necessary to select the material and film thickness appropriately.

以下に本発明の光起電力素子の層構成の例を示すが、本
発明の光起電力素子はこれにより何ら限定されるもので
はない。
Examples of the layer structure of the photovoltaic device of the present invention are shown below, but the photovoltaic device of the present invention is not limited thereby.

第1図(A)および(B)は、本発明の光起電力素子と
して本発明に係わるポリシラン半導体膜を用いた場合の
層構成の典型的な例を模式的に示す図である。
FIGS. 1(A) and 1(B) are diagrams schematically showing a typical example of a layer structure when a polysilane semiconductor film according to the present invention is used as a photovoltaic element according to the present invention.

第1図(A)に示す例は、支持体101上に下部室8i
102、ポリシラン半導体層103、絶縁層104、半
導体層105、反射防止膜106、集電電極107をこ
の順に堆積形成した光起電力素子100である。なお、
本光起電力素子では半導体層105の側より光の入射が
行われる。
In the example shown in FIG. 1(A), the lower chamber 8i is placed on the support 101.
102, a photovoltaic element 100 in which a polysilane semiconductor layer 103, an insulating layer 104, a semiconductor layer 105, an antireflection film 106, and a current collecting electrode 107 are deposited in this order. In addition,
In this photovoltaic element, light is incident from the semiconductor layer 105 side.

第1図(B)に示す例は、透光性支持体+01上に集1
1i電極lO7、反射防止膜106、半導体層105、
絶縁層104、ポリシラン半導体層103、下部電極1
02をこの順に堆積形成した光起電力素子100である
。なお、本光起電力素子では透光性支持体101の側よ
り光の入射が行われる。
In the example shown in FIG. 1(B), 1
1i electrode lO7, antireflection film 106, semiconductor layer 105,
Insulating layer 104, polysilane semiconductor layer 103, lower electrode 1
This is a photovoltaic device 100 in which 02 is deposited in this order. Note that in this photovoltaic element, light is incident from the transparent support 101 side.

以下、これらの光起電力素子の構成について詳しく説明
する。
The configurations of these photovoltaic elements will be explained in detail below.

ポリシラン半一体層 本発明の光起電力素子におけるボリンラン半導体層用に
好通番ご用いられるポリシラン化合物としては、前述し
たc−1乃至c−43の新規なボリンラン化合物が挙げ
られる。
Polysilane Semi-Integral Layer Examples of polysilane compounds that are preferably used for the borinlane semiconductor layer in the photovoltaic device of the present invention include the novel borinlane compounds c-1 to c-43 described above.

これらのポリシラン化合物は、良好な半導体特性を有す
るだけでなく、成形性にも優れている。
These polysilane compounds not only have good semiconductor properties but also excellent moldability.

支持体上へのフィルム形成法としては、塗布法、スピン
コーティング法、デイプ法、電着法、昇華薄着法等が挙
げられ、用いる支持体の形状等により適宜選択される。
Examples of the method for forming a film on the support include a coating method, a spin coating method, a dipping method, an electrodeposition method, a thin sublimation method, and the like, which are appropriately selected depending on the shape of the support used and the like.

SIS接合を形成し、十分な光電変換効率を得るために
は、ポリシラン半導体層の膜厚としては好ましくはln
m乃至lX10’nm、より好ましくは5nm乃至lX
10’nm、最適にはlQnm乃至5XIO’nmとさ
れるのが望ましい。
In order to form a SIS junction and obtain sufficient photoelectric conversion efficiency, the thickness of the polysilane semiconductor layer is preferably ln.
m to 10'nm, more preferably 5nm to 10'nm
It is desirable that the thickness be 10'nm, most preferably 1Qnm to 5XIO'nm.

工3pr−登 本発明において、S I S (Semiconduc
torInsulator−Semiconducto
r)接合を形成するにあたり好適に用いられる半導体層
の材料としては、いわゆる半導体特性を示すものであれ
ば用いることができるが、具体的には、C,Si、Ge
、Sn等の周期律表第■族元素からなる、いわゆる■族
半導体、Zn、Cd及びO,Se、S、Te等の周期律
表第■族、第■族元素からなる、いわゆるn−vt族半
導体、3.An、Ga、Tn及びNP、As、Sb等の
周期律表第■族、第V族からなる、いわゆる■−■族半
導体、およびSnO。
In the present invention, SIS (Semiconductor)
torInsulator-Semiconductor
r) Materials for the semiconductor layer that can be suitably used to form a junction can be any material that exhibits so-called semiconductor properties, specifically C, Si, Ge, etc.
, so-called group Ⅰ semiconductors consisting of elements of group Ⅰ of the periodic table such as Sn, so-called n-vt consisting of elements of group Ⅰ and ② of the periodic table such as Zn, Cd, O, Se, S, Te, etc. group semiconductor, 3. So-called ■-■ group semiconductors consisting of Groups ■ and V of the periodic table such as An, Ga, Tn, NP, As, and Sb, and SnO.

I nzo、 、  Z n○、CaO,ITO(In
zOi +Snow)等の金属酸化物にドーピング処理
を行ったいわゆる酸化物半導体を挙げることができる。
I nzo, , Z n○, CaO, ITO (In
Examples include so-called oxide semiconductors in which metal oxides such as zOi+Snow) are subjected to doping treatment.

更に、該半導体層の膜厚は下部のポリシラン半導体層へ
の光の透過が十分に確保されることが必要であり、好ま
しくは5μm以下、より好ましくは2μm以下、最適に
は0.8μm以下であることが望ましい。
Furthermore, the thickness of the semiconductor layer needs to sufficiently ensure the transmission of light to the polysilane semiconductor layer below, and is preferably 5 μm or less, more preferably 2 μm or less, and optimally 0.8 μm or less. It is desirable that there be.

一方、該半導体層105を適切な膜厚に設定することで
反射防止膜106として兼用することもできる。
On the other hand, by setting the semiconductor layer 105 to an appropriate thickness, it can also be used as an antireflection film 106.

上述の半導体薄膜は、プラズマCV D法、HR−CV
D法、真空蒸着法、電子ビーム蒸着法、スパッタリング
法等で形威することができ所望に応して適宜選択される
The above-mentioned semiconductor thin film can be produced by plasma CVD method, HR-CV method.
It can be formed by the D method, vacuum evaporation method, electron beam evaporation method, sputtering method, etc., and can be appropriately selected depending on the needs.

旦硅履 本発明において、S T S (Semiconduc
torInsulator−Semiconducto
r)接合を形成するにあたり好適に用いられる絶縁層材
料として、具体的にはSiOx 、 5isNn 、 
A 1 zO+ 、 T i O□T a z Os等
の金属酸化物、金属窒化物、PSG等の各種シリケート
ガラス、及び水の吸着した複合酸化物等が挙げられる。
In the present invention, STS (Semiconductor)
torInsulator-Semiconductor
r) Insulating layer materials suitably used for forming the junction include SiOx, 5isNn,
Examples include metal oxides such as A 1 zO+ and T i O□T a z Os, metal nitrides, various silicate glasses such as PSG, and composite oxides in which water is adsorbed.

更に、絶縁層の膜厚は少数キャリアのトンネル確率の低
下及び障壁高さの増大による開放電圧の低下を最小限に
抑えるため好ましくは5乃至30人、より好ましくは5
乃至20人とされるのが望ましい。
Further, the thickness of the insulating layer is preferably 5 to 30, more preferably 5 to 30, in order to minimize the decrease in minority carrier tunneling probability and the decrease in open circuit voltage due to increase in barrier height.
It is desirable that the number of participants be between 20 and 20 people.

これらの絶縁層材料の形成方法としては、スパッタリン
グ法、蒸着法等の物理的形成法の他、プラズマCVD法
等の気相化学反応法を用いることができ所望に応して適
宜選択される。
As methods for forming these insulating layer materials, in addition to physical formation methods such as sputtering and vapor deposition, gas phase chemical reaction methods such as plasma CVD can be used, and are appropriately selected as desired.

支鏡企 本発明において用いられる支持体101は、導電性のも
のであっても、また絶縁性のものであってもよい、更に
は、透光性のものであっても、又、非遇光性のものであ
っても良いが、支持体101の側より光入射が行われる
場合には、もちろん透光性であることが必要である。そ
れらの具体例として、Fe、Ni、Cr、Mg、Af、
Mo。
The support 101 used in the present invention may be electrically conductive, insulative, or transparent. Although it may be a photosensitive material, if light is to be incident from the side of the support 101, it is of course necessary to be translucent. Specific examples thereof include Fe, Ni, Cr, Mg, Af,
Mo.

Ta、V、Ti、Nb、Pb、Au、Ag、PL等の金
属またはこれらの合金、例えばステンレス、ジュラルミ
ン、ニクロム、真鍮等が挙げられる。
Examples include metals such as Ta, V, Ti, Nb, Pb, Au, Ag, and PL, and alloys thereof, such as stainless steel, duralumin, nichrome, and brass.

これらの他、ポリエステル、ポリエチレン、ポリカーボ
ネート、セルロース、アセテート、ポリプロピレン、ポ
リ塩化ビニル、ポリ塩化ビニリデン、ポリスチレン、ボ
リア稟ド、ポリイミド、ポリエチレンテレフタレート等
の合成樹脂のフィルムまたはシート、及び、ガラス、セ
ラミツクス等が挙げられる。
In addition to these, films or sheets of synthetic resins such as polyester, polyethylene, polycarbonate, cellulose, acetate, polypropylene, polyvinyl chloride, polyvinylidene chloride, polystyrene, boria chloride, polyimide, polyethylene terephthalate, glass, ceramics, etc. Can be mentioned.

また、S i、Ge、Na C1,Ca F2 +I−
i FB a F z等の単結晶体または多結晶体より
スライスしてウェハー状等に加工したもの、及びこれら
の上に格子定数の近い物質をエピタキシャル成長させた
ものが挙げられる。
Also, Si, Ge, Na C1, Ca F2 +I-
Examples include those obtained by slicing a single crystal or polycrystal such as i FB a F z and processing it into a wafer shape, and those obtained by epitaxially growing a substance with a similar lattice constant on these.

支持体の形状は目的、用途に応じて平滑表面あるいは凹
凸表面の板状、長尺ベルト状、円筒状等で、その厚さは
、所望の光起電力素子を形威し得るように適宜決定され
るが、可撓性が要求される場合、または支持体の側から
光入射がなされる場合には、支持体としての機能が十分
発揮される範囲内で可能な限り薄くすることができる。
The shape of the support may be a plate with a smooth or uneven surface, a long belt, a cylinder, etc. depending on the purpose and use, and its thickness is determined as appropriate to form the desired photovoltaic element. However, when flexibility is required or when light is incident from the side of the support, it can be made as thin as possible within a range that allows the support to function adequately.

しかしながら、支持体の製造上及び取り扱い上、機械強
度等の点から、通常は■0μml上とされる。
However, from the viewpoint of manufacturing and handling of the support, mechanical strength, etc., the amount is usually 0 μml or more.

里揚 本発明の光起電力素子においては、当該素子の構成形態
により適宜の電極が選択使用される。具体的には、下部
電極、集電電極を挙げることができる。
In the photovoltaic device of the present invention, appropriate electrodes are selected and used depending on the configuration of the device. Specifically, a lower electrode and a current collecting electrode can be mentioned.

(1)下部電極 本発明において用いられる下部電極は、ポリシラン半導
体層からの電流取り出しの目的で設けられることから、
ポリシラン半導体層と良好なオーム接触がなされること
が必要である。
(1) Lower electrode Since the lower electrode used in the present invention is provided for the purpose of extracting current from the polysilane semiconductor layer,
It is necessary that good ohmic contact be made with the polysilane semiconductor layer.

本発明において用いられる下部電極102としでは、上
述した支持体101の材質または光入射方向によって設
置される位置が異なる。
The position of the lower electrode 102 used in the present invention differs depending on the material of the support 101 described above or the direction of light incidence.

例えば、第1図(A)の層構成の場合には支持体101
とポリシラン半導体層103との間に設けられるが、支
持体101が十分な導電性を有する材料を用いた場合に
は下部電極102は設けず、支持体101が下部電極を
兼ねることができる。
For example, in the case of the layer structure shown in FIG. 1(A), the support 101
However, if the support 101 is made of a material with sufficient conductivity, the lower electrode 102 is not provided and the support 101 can also serve as the lower electrode.

一方、支持体101が絶縁性の場合、または、支持体1
01が導電性であってもシート抵抗が高い場合には、電
流取り出し用に下部電極102は必ず設けられる必要が
ある。
On the other hand, when the support 101 is insulating, or when the support 101 is
Even if 01 is conductive, if the sheet resistance is high, the lower electrode 102 must be provided for current extraction.

第1図(B)の場合には透光性の支持体101が用いら
れており、支持体101の側がら光入射がなされるので
、電流取り出し用および当該電極での光反射の目的で、
支持体101と対向してポリシラン半導体N103を挟
んで設けられている。
In the case of FIG. 1(B), a transparent support 101 is used, and since light is incident from the side of the support 101, for the purpose of current extraction and light reflection at the electrode,
It is provided facing the support 101 with the polysilane semiconductor N103 sandwiched therebetween.

電極材料としては、Al、Mg、Cr、Cu。Electrode materials include Al, Mg, Cr, and Cu.

Ag、Au、Pt、Ti、Mo、W等の金属、またはこ
れらの合金が挙げられ、ポリシラン半導体層の特性に合
わせ適宜選択使用される。又、これらの金属のFj!膜
は、真空蒸着法、電子ビーム蒸着法、スパンタリング法
等で形成する。更に、形成された金属薄膜はシート抵抗
値としては好ましくは50Ω以下、より好ましくは10
Ω以下であることが望ましい。
Examples include metals such as Ag, Au, Pt, Ti, Mo, and W, and alloys thereof, and are appropriately selected and used depending on the characteristics of the polysilane semiconductor layer. Also, the Fj! of these metals! The film is formed by a vacuum evaporation method, an electron beam evaporation method, a sputtering method, or the like. Further, the formed metal thin film preferably has a sheet resistance value of 50Ω or less, more preferably 10Ω or less.
It is desirable that it is Ω or less.

ユニと象玉互挽 本発明において用いられる集電電極−107は、半導体
層105および反射防止膜106の表面抵抗値をg滅さ
せる目的で反射防止IJ!106上に設けられる。
The collector electrode 107 used in the present invention is an anti-reflection IJ film for the purpose of reducing the surface resistance of the semiconductor layer 105 and the anti-reflection film 106. 106.

電極材料としてはAg、Cr、Ni、Aj!、AuPt
、Ti、W、Mo、Cu等の金属、またはこれらの合金
が挙げられる。これらの金属薄膜は積層させて用いるこ
とができる。又、半導体層への光入射が十分に確保され
るよう、その形状及び面積が適宜設計される。
As electrode materials, Ag, Cr, Ni, Aj! , AuPt
, Ti, W, Mo, Cu, or alloys thereof. These metal thin films can be used in a stacked manner. Further, the shape and area of the semiconductor layer are appropriately designed to ensure sufficient light incidence on the semiconductor layer.

例えば、その形状は光起電力素子の受光面に対して一様
に広がり、且つ受光面積に対してその面積は好ましくは
15%以下、より好ましくは10%以下であることが望
ましい。
For example, it is desirable that the shape spreads uniformly over the light-receiving surface of the photovoltaic element, and that its area is preferably 15% or less, more preferably 10% or less of the light-receiving area.

又、シート抵抗値としては、好ましくは50Ω以下、よ
り好ましくは10Ω以下であることが望ましい。
Further, the sheet resistance value is preferably 50Ω or less, more preferably 10Ω or less.

反14カL狡 本発明の光起電力素子においては、収集効率を高めるた
めに半導体N105上に反射防止膜106を設けること
が効果的であり、更には半導体Ji105を反射防止膜
106として兼用することもできる。
In the photovoltaic device of the present invention, it is effective to provide an antireflection film 106 on the semiconductor N105 in order to increase collection efficiency, and furthermore, the semiconductor Ji105 can also be used as the antireflection film 106. You can also do that.

当該膜は光学的な反射防止作用を要求されるとともに半
導体層からの電流取り出し用の電極の機能を有するもの
である。
The film is required to have an optical antireflection effect and also has the function of an electrode for extracting current from the semiconductor layer.

従って、可視光域の透過率は85%以上であることが望
ましく、膜厚は0.8μm程度で反射防止条件を満たす
適切な膜厚に設定される。もちろん、屈折率の異なる材
質のFill!i!を積層して用いることもできる。
Therefore, it is desirable that the transmittance in the visible light range is 85% or more, and the film thickness is set to be approximately 0.8 μm, which is an appropriate film thickness that satisfies the antireflection condition. Of course, Fill is made of materials with different refractive indexes! i! It can also be used by laminating them.

また、電気導電性については光起電力素子の出力に対し
て抵抗成分とならぬようにシート抵抗値は100Ω以下
であることが望ましい。
Regarding electrical conductivity, it is desirable that the sheet resistance value be 100Ω or less so as not to become a resistance component with respect to the output of the photovoltaic element.

このような特性を備えた材料としては、具体的には、3
nO1,Inz○s 、zno、CdO。
Specifically, materials with such characteristics include 3
nO1, Inz○s, zno, CdO.

IT○(1n20.+5nOz)等の金属酸化物薄膜が
挙げられる。
Examples include metal oxide thin films such as IT○ (1n20.+5nOz).

これらの金属酸化物薄膜の形成方法としては、反応性抵
抗加熱蒸着法、電子ビーム蒸着法、反応性スパッタリン
グ法、スプレー法等を用いることができ所望に応して適
宜選択される。
Methods for forming these metal oxide thin films include reactive resistance heating evaporation, electron beam evaporation, reactive sputtering, spraying, and the like, and are appropriately selected depending on needs.

本発明において良好なSTS接合を形成させる手段とし
ては、ポリシラン半導体層と絶縁層との界面、及び絶縁
層と半導体層との界面の形成は真空中または不活性ガス
雰囲気中で連続して行われるのが望ましい。
In the present invention, as a means for forming a good STS junction, the interface between the polysilane semiconductor layer and the insulating layer and the interface between the insulating layer and the semiconductor layer are continuously formed in a vacuum or an inert gas atmosphere. is desirable.

特に、ポリシラン半導体層を溶剤を用いた方法にて作製
した場合には、溶剤の乾燥を十分に行うことが必要であ
る。また、溶剤の乾燥にあたってはポリシラン化合物の
ガラス転移点を越えない温度で実施するのが好ましい。
In particular, when the polysilane semiconductor layer is produced by a method using a solvent, it is necessary to thoroughly dry the solvent. Furthermore, it is preferable to dry the solvent at a temperature that does not exceed the glass transition point of the polysilane compound.

〔実施例〕〔Example〕

以下に実施例を挙げて本発明の光起電力素子について更
に詳しく説明するが、本発明はこれらの実施例により何
ら限定されるものではない。
The photovoltaic device of the present invention will be described in more detail below with reference to Examples, but the present invention is not limited to these Examples in any way.

大急史上 第1図(A)に示すSIS接合型光起電力素子100を
以下の操作にて作製した。なお、本実施例では半導体層
105は反射防止N106を兼ねる。
The SIS junction type photovoltaic device 100 shown in FIG. 1(A) was manufactured by the following operations. Note that in this embodiment, the semiconductor layer 105 also serves as an antireflection layer N106.

まず、精密洗浄を行った10(1wX100嘗−×0.
2關の大きさのステンレス製基板101をスパックリン
グ装置内にいれ10−5Torr以下に真空排気した後
、Ag(純度99.9999%)をターゲット金属、A
rガスをスパッタリング用ガスとして用い、内圧5 m
Torr 、 RF放電電力200Wにて、前記基板1
01上に下部電極102となるAg薄膜を室温で約15
00人堆積した。
First, 10 (1 w x 100 嘗 - x 0.
After putting a stainless steel substrate 101 with a size of 2 mm into a spuckling device and evacuating it to 10-5 Torr or less, Ag (purity 99.9999%) is used as a target metal, A
r gas was used as the sputtering gas, and the internal pressure was 5 m.
Torr, RF discharge power of 200W, the substrate 1
A thin Ag film, which will become the lower electrode 102, is deposited on 01 at room temperature for about 15 min.
00 people deposited.

次に、予め十分に脱水されたトルエンll中に前述の合
成例1で合成したポリシラン化合物量1(c−1)を2
00重量部溶解させた塗布液を、Ar雰囲気のグローブ
ボックス中に設置されたスピンコーターに入れた。
Next, the amount of polysilane compound 1 (c-1) synthesized in Synthesis Example 1 was added to 2 liters of toluene which had been sufficiently dehydrated in advance.
The coating solution in which 0.00 parts by weight was dissolved was placed in a spin coater installed in a glove box in an Ar atmosphere.

ひき続き、前記下部電極102まで形成された基板10
1をスパックリング装置内より不活性ガスであるAr雰
囲気下で取り出し、前記グローブボックス中に設置され
たスピンコーターに直ちにセ、トシた。基板の移送にあ
たっては、Ar充填のキャリアーボックスを用いた。
Subsequently, the substrate 10 is formed up to the lower electrode 102.
No. 1 was taken out from the spackling apparatus under an inert gas Ar atmosphere and immediately placed in a spin coater installed in the glove box. An Ar-filled carrier box was used to transfer the substrate.

Ar気流中でスピンコーターにより、前記下部1!極1
02上に3000人の膜厚のポリシラン半導体層103
を室温で形成し、更に、Ar気流中で基板101を70
℃に加熱しながら溶剤の乾燥を行った。
The lower part 1! was coated with a spin coater in an Ar air flow. pole 1
Polysilane semiconductor layer 103 with a thickness of 3000 on
is formed at room temperature, and further, the substrate 101 is heated at 70°C in an Ar air flow.
The solvent was dried while heating at ℃.

次に、上記操作にてポリシラン半導体層103まで形成
された基板101を、Ar充填のキャリアーボックス中
に取り出し、直ちにRFプラズマCVD装置内にセット
して、基板温度を70℃に加熱しつつ、10−’Tor
r以下まで真空排気し十分脱ガスを行ったのち、S i
 Haガス2.55ccra。
Next, the substrate 101 on which the polysilane semiconductor layer 103 has been formed by the above operation is taken out into an Ar-filled carrier box, immediately set in an RF plasma CVD apparatus, and heated to 70° C. for 10 minutes. -'Tor
After sufficiently degassing by evacuation to below r, Si
Ha gas 2.55 ccra.

○、ガス0.6 secmを導入し、内圧を0.4To
rrに保ちつつ30Wの放電パワーにて、ポリシラン半
導体層103上に絶縁層104としてのS i Oを膜
を15人堆積した。
○, 0.6 sec of gas is introduced, and the internal pressure is 0.4To.
Fifteen SiO films were deposited as an insulating layer 104 on the polysilane semiconductor layer 103 with a discharge power of 30 W while maintaining the temperature at rr.

次に、上記操作にて絶縁層104まで形成された基板1
01を、Ar充填のキャリアーボックス中に取り出し、
直ちにDCマグネトロンスパ、タリング装置内にセット
して、基板温度を70℃とし、Inz○、−5nO2焼
結体をターゲットとして用い、Ar10x /Hz(1
00/40/1)の混合ガスをスパッタリングガス用ガ
ス、PH,ガスをドーピングガスとして用い、内圧3.
5 m Torr、スバ・2夕電圧420Vにて、前記
絶縁層104上に反射防止層を兼ねた半導体1!t10
5としてのn型ITO膜を720人堆積した。
Next, the substrate 1 formed up to the insulating layer 104 by the above operation
01 was taken out into an Ar-filled carrier box,
Immediately set it in a DC magnetron spa and taring device, set the substrate temperature to 70°C, use Inz○, -5nO2 sintered body as a target, and Ar10x /Hz (1
00/40/1) was used as the sputtering gas, PH gas was used as the doping gas, and the internal pressure was set to 3.
At a voltage of 420 V at a voltage of 5 m Torr and 420 V, a semiconductor layer 1 which also serves as an anti-reflection layer is formed on the insulating layer 104! t10
720 people deposited an n-type ITO film as No. 5.

冷却後、反射防止層を兼ねた半導体層105まで形成さ
れた基板101を取り出し、前記半導体N105の上面
に集電電極パターン形成用の櫛歯状のパーマロイ製マス
クを密着させて真空薫着装置にセットし、10−5To
rr以下に真空排気した後、抵抗加熱法により前記半導
体層105上に櫛歯状の集電電極107としてのAg’
iR膜を1μm蒸着した。
After cooling, the substrate 101, which has been formed up to the semiconductor layer 105 which also serves as an antireflection layer, is taken out, and a comb-shaped permalloy mask for forming a current collecting electrode pattern is closely attached to the upper surface of the semiconductor layer 105, and then placed in a vacuum smoke deposition device. Set, 10-5To
After evacuation to below rr, Ag' is formed as a comb-shaped current collecting electrode 107 on the semiconductor layer 105 by a resistance heating method.
An iR film was deposited to a thickness of 1 μm.

上述の操作にて形成された光起電力素子を素子迎1とし
、その特性を以下のようにして評価した。
The photovoltaic element formed by the above-described operation was designated as element 1, and its characteristics were evaluated as follows.

まず、素子11kLtの反射防止層106側より波長5
00nm、光強度0.1mW/−の光を照射したときの
光電変換効率を測定した。さらに、波長は変えず光強度
を0.2 m W / cll!、0.3 m W /
 cdと変えた時の光電変換効率を測定した。
First, from the antireflection layer 106 side of the element 11kLt,
The photoelectric conversion efficiency was measured when light was irradiated with a wavelength of 0.00 nm and a light intensity of 0.1 mW/-. Furthermore, the light intensity is reduced to 0.2 mW/cll without changing the wavelength! ,0.3 mW/
The photoelectric conversion efficiency was measured when changing to CD.

さらに、この素子Nl11にAM!光(100mW/ 
cnl )を10時間連続照射後、前記測定法による光
7fi変換効率(波長500nm、光強度0.1mW/
 cnl )を測定し、初期光電変換効率に対する変化
率を求めた。
Furthermore, this element Nl11 has AM! Light (100mW/
cnl ) for 10 hours, the light 7fi conversion efficiency (wavelength 500 nm, light intensity 0.1 mW/
cnl ) was measured, and the rate of change with respect to the initial photoelectric conversion efficiency was determined.

又、曲げ試験機に該素子Nnlをセフ)し103回の繰
り返し曲げ試験を行い、膜の密着性、及び光電変換効率
の変化について評価した。
Further, the device Nnl was placed in a bending tester and subjected to a repeated bending test 103 times to evaluate changes in film adhesion and photoelectric conversion efficiency.

以上の評価結果を第6表中に示す。The above evaluation results are shown in Table 6.

この結果より、本実施例にて作製された光起電力素子は
光強度の変化によらず高い光電変換効率を示し、光劣化
が少なく、また、機械的強度が強く、密着性に優れ安定
した特性を示した。
From these results, the photovoltaic device fabricated in this example showed high photoelectric conversion efficiency regardless of changes in light intensity, had little photodeterioration, had strong mechanical strength, had excellent adhesion, and was stable. The characteristics were shown.

失施輿主二支 実施例1において、ポリシラン半導体層103形戒時に
用いたポリシラン化合動磁1  (C−1)の代わりに
、前述の合成例2〜5において合成したポリシラン化合
動磁2〜5を用いた以外は同様の操作にて光起電力素子
を作製し、素子ぬ2〜5とした。
In Example 1, instead of the polysilane compound magneto-kinetic 1 (C-1) used in the polysilane semiconductor layer 103, polysilane compound magneto-kinetic 2 to 2 synthesized in the synthesis examples 2 to 5 described above were used. Photovoltaic devices were prepared in the same manner except that No. 5 was used, and Nos. 2 to 5 were used.

これらの素子について実施例1と同様の測定評価を行っ
た。評価結果を第6表中に示す。
The same measurements and evaluations as in Example 1 were performed on these elements. The evaluation results are shown in Table 6.

これらの結果より、本実施例にて作製された光起電力素
子はいずれも光強度の変化によらず高い光電変換効率を
示し、光劣化が少なく、また、機を4的強度が強く、密
着性に優れ安定した特性を示した。
From these results, all of the photovoltaic devices fabricated in this example showed high photoelectric conversion efficiency regardless of changes in light intensity, had little photodeterioration, and had strong mechanical strength and good adhesion. It exhibited excellent properties and stable properties.

犬甚例6〜10 実施例1において、ボリンラン半導体層103形戒時に
用いたポリンラン化合物fIk11  (c−1)の代
わりに、前述の合成例6〜10において合成したポリシ
ラン化合物思6〜10を用いてポリシラン半導体層10
3を形威し、また、下部電極102としてはAg薄膜の
かわりにCr薄膜を1800人、草色1!層104とし
てはSiO2膜のかわりに5isNa膜を10人、半導
体層105としてはn型ITO薄膜の代わりに、p型S
iC薄膜を710人堆積した以外は同様の操作にて光起
電力素子を作製し、素子階6〜10とした。
Inujin Examples 6 to 10 In Example 1, the polysilane compounds fIk11 (c-1) used in the borinlane semiconductor layer 103 were replaced with polysilane compounds 6 to 10 synthesized in the aforementioned Synthesis Examples 6 to 10. Polysilane semiconductor layer 10
3, and as the lower electrode 102, a Cr thin film was used instead of the Ag thin film, and the grass color 1! As the layer 104, a 5isNa film is used instead of the SiO2 film, and as the semiconductor layer 105, a p-type S film is used instead of the n-type ITO thin film.
Photovoltaic devices were fabricated using the same procedure except that 710 iC thin films were deposited, and the device levels were 6 to 10.

これらの素子について実施例1と同様の測定評価を行っ
た。評価結果を第6表中に示す。
The same measurements and evaluations as in Example 1 were performed on these elements. The evaluation results are shown in Table 6.

これらの結果より、本実施例にて作製された光起電力素
子はいずれも光強度の変化によらず高い光電変換効率を
示し、光劣化が少なく、また、機械的強度が強く、密着
性に優れ安定した特性を示した。
From these results, all of the photovoltaic devices produced in this example showed high photoelectric conversion efficiency regardless of changes in light intensity, little photodeterioration, strong mechanical strength, and good adhesion. It showed excellent and stable characteristics.

犬並進目」二二り土 実施例1において、ポリシラン半導体層103形成時に
用いたポリシラン化合物NIL  (C−1)の代わり
に、前述の合成例II〜14において合成したポリシラ
ン化合動磁11〜14を用いてポリシラン半導体層10
3を形威し、また、絶縁層104としてはSiO2膜の
かわりにPSG膜を10人堆積した以外は同様の操作に
て光起電力素子を作製し、素子Nn11〜14とした。
In Example 1, instead of the polysilane compound NIL (C-1) used in forming the polysilane semiconductor layer 103, polysilane compounds 11 to 14 synthesized in Synthesis Examples II to 14 described above were used. Polysilane semiconductor layer 10 using
Photovoltaic devices were fabricated using the same procedure as shown in Example 3, except that a PSG film was deposited instead of the SiO2 film as the insulating layer 104, and devices Nn11 to Nn14 were prepared.

これらの素子について実施例1と同様の測定評価を行っ
た。評価結果を第6表中に示す。
The same measurements and evaluations as in Example 1 were performed on these elements. The evaluation results are shown in Table 6.

これらの結果より、本実施例にて作製された光起電力素
子はいずれも光強度の変化によらず高い光電変換効率を
示し、光劣化が少なく、また、機械的強度が強く、密着
性に優れ安定した特性を示した。
From these results, all of the photovoltaic devices produced in this example showed high photoelectric conversion efficiency regardless of changes in light intensity, little photodeterioration, strong mechanical strength, and good adhesion. It showed excellent and stable characteristics.

実施例15〜17 実施例1において、ポリシラン半導体層103形成時に
用いたポリシラン化合物11m1(c−1)の代わりに
、前述の合成例15〜17において合成したポリシラン
化合動磁15〜17を用いてポリシラン半導体層103
を形成し、また、半導体層105としてのn型ITO膜
の膜厚を700人から350人に変え、さらにPH,を
いれない以外は護膜の成膜条件と同様の成膜条件にて反
射防止層106としてのITO膜を340人堆積した以
外は同様の操作にて光起電力素子を作製し、素子ぬ15
〜17とした。
Examples 15 to 17 In place of the polysilane compound 11m1 (c-1) used in forming the polysilane semiconductor layer 103 in Example 1, the polysilane compounds 15 to 17 synthesized in the aforementioned Synthesis Examples 15 to 17 were used. Polysilane semiconductor layer 103
In addition, the thickness of the n-type ITO film as the semiconductor layer 105 was changed from 700 to 350, and the reflective film was formed under the same film forming conditions as the protective film, except that PH was not added. A photovoltaic device was fabricated using the same procedure except that 340 ITO films were deposited as the prevention layer 106.
~17.

これらの素子について実施例1と同様の測定評価を行っ
た。評価結果を第7表中に示す。
The same measurements and evaluations as in Example 1 were performed on these elements. The evaluation results are shown in Table 7.

これらの結果より、本実施例にて作製された光起電力素
子はいずれも光強度の変化によらず高い光電変換効率を
示し、光劣化が少なく、また、機械的強度が強く、密着
性に優れ安定した特性を示した。
From these results, all of the photovoltaic devices produced in this example showed high photoelectric conversion efficiency regardless of changes in light intensity, little photodeterioration, strong mechanical strength, and good adhesion. It showed excellent and stable characteristics.

太遣10」し二り上 実施例1、実施例6、実施例LL実施例15において用
いたステンレス製基板101の代わりに、PET(厚さ
100μm)型基板101を用いた以外は同様の操作に
て光起電力素子を作製し、素子磁18〜21とした。
Same operation except that a PET (thickness: 100 μm) type substrate 101 was used instead of the stainless steel substrate 101 used in Example 1, Example 6, Example LL Example 15. Photovoltaic devices were produced in the same manner as device magnets 18 to 21.

これらの素子について実施例Iと同様の測定評価を行っ
た。評価結果を第7表中に示す。
The same measurements and evaluations as in Example I were performed on these elements. The evaluation results are shown in Table 7.

これらの結果より、本実施例にて作製された光起電力素
子はいずれも光強度の変化によらず高い光電変換効率を
示し、光劣化が少なく、また、機械的強度が強く、密着
性に優れ安定した特性を示した。
From these results, all of the photovoltaic devices produced in this example showed high photoelectric conversion efficiency regardless of changes in light intensity, little photodeterioration, strong mechanical strength, and good adhesion. It showed excellent and stable characteristics.

去1」(Lえ 実施例1において、ステンレス製基板101の代わりに
、5インチn″Si単結晶ウェハーを用いた以外は同様
の操作にて光起電力素子を作製し、素子11kL22と
した。
A photovoltaic device was fabricated in the same manner as in Example 1, except that a 5-inch n'' Si single crystal wafer was used instead of the stainless steel substrate 101, and a device 11kL22 was prepared.

この素子の反射防止層106側よりモノクロメクにて分
光された光を照射し収集効率を測定したところ、最大の
吸収を示す可視光域で62%であった。
When this element was irradiated with light separated by a monochromator from the antireflection layer 106 side and the collection efficiency was measured, it was 62% in the visible light region where maximum absorption occurs.

又、80mW/c+Jの大陽光を照射したときのFFは
0.52であった。
Further, the FF was 0.52 when irradiated with large sunlight of 80 mW/c+J.

(以下余白) 第 表 第 表 第 表 第 表 第 6 表 第 表 〔発明の効果の411要〕 以上詳しく述べたように、本発明の光起電力素子は短波
長光に対して感度が高く、従来の有機半導体を用いた光
起電力素子に比較して光電変換効率の大幅な向上が可能
である。
(Leaving space below) Table 6 Table 6 [411 points of effects of the invention] As described in detail above, the photovoltaic element of the present invention has high sensitivity to short wavelength light, It is possible to significantly improve photoelectric conversion efficiency compared to conventional photovoltaic devices using organic semiconductors.

本発明の光起電力素子において用いられるポリシラン化
合物は、多くの種類の溶剤に溶は易く、(2れたフィル
ム形成能を有するので大面積に亙り均一に膜形成ができ
、支持体との密着性にも優れ、特性の均一性にも優れて
いる。
The polysilane compound used in the photovoltaic device of the present invention is easily soluble in many types of solvents and has excellent film-forming ability (2), so it can form a film uniformly over a large area and has good adhesion to the support. It has excellent properties and uniformity of properties.

本発明において用いられるポリシラン化合物は、特性安
定性に優れ、光電変換効率の経時変化が従来の有機半導
体を用いた光起電力素子に比較して飛躍的に小さい。
The polysilane compound used in the present invention has excellent property stability, and changes in photoelectric conversion efficiency over time are significantly smaller than those of conventional photovoltaic elements using organic semiconductors.

また、入射光量の増大にともなう光電変換効率の低下と
いった現象も大幅に改善される。更に、耐熱性にも優れ
、温度変化の厳しい条件下においても安定した出力特性
が得られる。
Furthermore, the phenomenon of a decrease in photoelectric conversion efficiency due to an increase in the amount of incident light is also significantly improved. Furthermore, it has excellent heat resistance, and stable output characteristics can be obtained even under conditions of severe temperature changes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)および(B)は、本発明の光起電力素子の
層構成の典型的な例の模式的断面図である。 第1図について、 100・・・光起電力素子、101・・・支持体、10
2・・・下部電極、 103・・・ポリシラン半導体層、 104・・・絶縁層、105・・・半導体層、106・
・・反射防止層、107・・・集電電極。
FIGS. 1(A) and 1(B) are schematic cross-sectional views of typical examples of the layer structure of the photovoltaic device of the present invention. Regarding FIG. 1, 100... Photovoltaic element, 101... Support, 10
2... Lower electrode, 103... Polysilane semiconductor layer, 104... Insulating layer, 105... Semiconductor layer, 106...
...Antireflection layer, 107... Current collecting electrode.

Claims (2)

【特許請求の範囲】[Claims] (1)一般式( I )で表され重量平均分子量が600
0乃至200000であるポリシラン化合物を有機半導
体層として用いたことを特徴とするSIS接合型光起電
力素子。 ▲数式、化学式、表等があります▼・・・( I ) (但し、式中、R_1は炭素数1又は2のアルキル基、
R_2は炭素数3乃至8のアルキル基、シクロアルキル
基、アリール基又はアラルキル基、R_3は炭素数1乃
至4のアルキル基、R_4は炭素数1乃至4のアルキル
基をそれぞれ示す。A、A′は、それぞれ炭素数4乃至
12のアルキル基、シクロアルキル基、アリール基又は
アラルキル基であり、両者は同じであっても或いは異な
ってもよい。n、mは、ポリマー中の総モノマーに対す
るそれぞれのモノマー数の割合を示すモル比であり、n
+m=1となり、0<n≦1、0≦m<1である。)
(1) Represented by general formula (I) and has a weight average molecular weight of 600
An SIS junction type photovoltaic device characterized in that a polysilane compound having a molecular weight of 0 to 200,000 is used as an organic semiconductor layer. ▲There are mathematical formulas, chemical formulas, tables, etc.▼...(I) (However, in the formula, R_1 is an alkyl group with 1 or 2 carbon atoms,
R_2 represents an alkyl group having 3 to 8 carbon atoms, a cycloalkyl group, an aryl group, or an aralkyl group, R_3 represents an alkyl group having 1 to 4 carbon atoms, and R_4 represents an alkyl group having 1 to 4 carbon atoms. A and A' each represent an alkyl group, a cycloalkyl group, an aryl group, or an aralkyl group having 4 to 12 carbon atoms, and they may be the same or different. n and m are molar ratios indicating the ratio of the number of each monomer to the total monomers in the polymer, and n
+m=1, 0<n≦1, 0≦m<1. )
(2)一般式( I )で示されるポリシラン化合物にお
いて、A及びA′が炭素数5乃至12のアルキル基、又
はシクロアルキル基である請求項1に記載の光起電力素
子。
(2) The photovoltaic device according to claim 1, wherein in the polysilane compound represented by the general formula (I), A and A' are an alkyl group having 5 to 12 carbon atoms or a cycloalkyl group.
JP1319005A 1989-12-11 1989-12-11 Photoelectromotive element Pending JPH03181181A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP1319005A JPH03181181A (en) 1989-12-11 1989-12-11 Photoelectromotive element
DE4039519A DE4039519A1 (en) 1989-12-11 1990-12-11 Barrier layer organic photo-element - has poly:silane organic semiconductor layer used e.g. metal- or semiconductor-insulator-semiconductor Schottky transition
US07/825,281 US5220181A (en) 1989-12-11 1992-01-15 Photovoltaic element of junction type with an organic semiconductor layer formed of a polysilane compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1319005A JPH03181181A (en) 1989-12-11 1989-12-11 Photoelectromotive element

Publications (1)

Publication Number Publication Date
JPH03181181A true JPH03181181A (en) 1991-08-07

Family

ID=18105438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1319005A Pending JPH03181181A (en) 1989-12-11 1989-12-11 Photoelectromotive element

Country Status (1)

Country Link
JP (1) JPH03181181A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006508538A (en) * 2002-11-29 2006-03-09 コナルカ テクノロジーズ インコーポレイテッド Photovoltaic component and method of manufacturing the same
WO2008001577A1 (en) * 2006-06-30 2008-01-03 Pioneer Corporation Organic solar cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006508538A (en) * 2002-11-29 2006-03-09 コナルカ テクノロジーズ インコーポレイテッド Photovoltaic component and method of manufacturing the same
WO2008001577A1 (en) * 2006-06-30 2008-01-03 Pioneer Corporation Organic solar cell
JPWO2008001577A1 (en) * 2006-06-30 2009-11-26 パイオニア株式会社 Organic solar cell
JP4970443B2 (en) * 2006-06-30 2012-07-04 パイオニア株式会社 Organic solar cells

Similar Documents

Publication Publication Date Title
US5220181A (en) Photovoltaic element of junction type with an organic semiconductor layer formed of a polysilane compound
CN112225882B (en) N-type polymer containing non-condensed ring acceptor unit and preparation method and application thereof
CN110128633B (en) Preparation method and application of low-HOMO energy level polymer donor material
JPH11339868A (en) Charge transporting material, photoelectric conversion element and light regenerative photo-electro-chemical battery
CN106410042A (en) Organic solar cell donor material, organic solar cell and preparation method thereof
JPH03181181A (en) Photoelectromotive element
JPH04199687A (en) Photovoltaic element
JPH067589B2 (en) MSM or MIS type element using phthalocyanine derivative thin film as semiconductor layer and method for manufacturing the same
JPH03181183A (en) Photoelectromotive element
JP3870424B2 (en) Organic photoconductor and device
JPH03181182A (en) Photoelectromotive element
JP2829657B2 (en) Substrates for solar cells
JPH04199685A (en) Photovoltaic element
CN107141453A (en) Benzo disulfoxide fen based polyalcohol, its preparation method and application
JPH04199686A (en) Photovoltaic element
JPH03181184A (en) Photoelectromotive element
CN112062777A (en) Organic small-molecule photovoltaic material based on dithienylbenzodithiophene donor nucleus and preparation method and application thereof
CN110218298B (en) Soluble thiophene copolymer and preparation method and application thereof
JPH07106613A (en) Organic n-type semiconductor and organic solar cell
JP2750559B2 (en) Conductive polymer composition
JPH0995537A (en) Polysilane compound, its production and raw material therefor
JPH0521824A (en) Photoelectric conversion element
JPH04181783A (en) Solar cell having photo-conduction layer containing polysilane and organic semiconductor compound
JPS62296152A (en) Electrophotographic sensitive body
DE4039519C2 (en)