JPH03157103A - Ultrasonic defoaming method - Google Patents

Ultrasonic defoaming method

Info

Publication number
JPH03157103A
JPH03157103A JP26852289A JP26852289A JPH03157103A JP H03157103 A JPH03157103 A JP H03157103A JP 26852289 A JP26852289 A JP 26852289A JP 26852289 A JP26852289 A JP 26852289A JP H03157103 A JPH03157103 A JP H03157103A
Authority
JP
Japan
Prior art keywords
ultrasonic
defoaming
tank
bubbles
irradiated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26852289A
Other languages
Japanese (ja)
Other versions
JP2902683B2 (en
Inventor
Makoto Abe
誠 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP26852289A priority Critical patent/JP2902683B2/en
Publication of JPH03157103A publication Critical patent/JPH03157103A/en
Application granted granted Critical
Publication of JP2902683B2 publication Critical patent/JP2902683B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Degasification And Air Bubble Elimination (AREA)

Abstract

PURPOSE:To prevent the erosion of a part to be irradiated with an ultrasonic wave by detecting the amt. of bubbles contained in a liq. flowing through a duct on the upstream side of an ultrasonic defoamer and changing the output of the ultrasonic wave emitted from the defoamer in accordance with the detected amt. CONSTITUTION:The bubbles contained in a liq. flowing through a duct are irradiated with the ultrasonic wave from the defoamer 4 and thereby eliminated. The amt. of bubbles contained in the liq. flowing through the duct is detected by a sensor 5 on the upstream side of the defoamer 4. The detection result is inputted to a vibrator driving circuit 13, and the driving power for an ultrasonic vibrator 12 is adjusted by the circuit 13 in accordance with the flow rate set by a preset input part 14 and the viscosity of an aq. soln. as well as the bubble amt. Consequently, the defoaming action is not adversely affected, and the erosion of the part to be irradiated with the ultrasonic wave is minimized.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、液体中の気泡を連続的に消泡させる方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for continuously defoaming bubbles in a liquid.

〔従来の技術〕[Conventional technology]

写真用乳剤のように各種分散質添加剤を含む液体は、攪
拌、分散、送液等の操作を行うことにより気泡が生じや
すい。このような気泡を含んだまま該乳剤を塗布、乾燥
させると乳剤膜にピンホールが発生してしまうため、塗
布工程前に充分な脱泡処理を施しておく必要がある。こ
のような目的で使用される脱泡装置として、例えば特公
昭4211875号公報に記載されたような超音波を利
用した脱泡装置が公知である。
Liquids containing various dispersoid additives, such as photographic emulsions, tend to generate bubbles when operations such as stirring, dispersion, and liquid feeding are performed. If the emulsion is coated and dried while containing such air bubbles, pinholes will occur in the emulsion film, so it is necessary to carry out sufficient defoaming treatment before the coating process. As a defoaming device used for this purpose, for example, a defoaming device using ultrasonic waves as described in Japanese Patent Publication No. 4211875 is known.

超音波脱泡装置は、脱泡対象となる液体を脱泡槽に収容
してこれに超音波を照射する。液体に超音波を照射する
と、液体中に負圧の微小な気泡が瞬間的に発生、消滅を
繰り返すいわゆるキャビテーションが生じ、これにより
液体中の気泡が除去される。したがって、脱泡効果を高
めようとするときには、キャビテーションの発生を盛ん
にさせるために、超音波振動の出力を大きくすればよい
The ultrasonic defoaming device stores a liquid to be defoamed in a defoaming tank and irradiates the liquid with ultrasonic waves. When a liquid is irradiated with ultrasonic waves, so-called cavitation occurs, in which minute bubbles under negative pressure are repeatedly generated and extinguished instantaneously in the liquid, thereby removing the bubbles from the liquid. Therefore, when trying to enhance the defoaming effect, the output of ultrasonic vibrations may be increased in order to increase the occurrence of cavitation.

ところで、写真用乳剤の場合、添加物の種類。By the way, in the case of photographic emulsions, the types of additives.

量、撹拌2分散時間及び速度、さらに送液流量等の違い
によって気泡状態は多様である。このため従来では、最
も気泡が発生している状態でも充分な脱泡処理ができる
ように、安全率を考慮して充分な強度の超音波を照射す
るようにしていた。
The state of the bubbles varies depending on the amount, stirring and dispersion time and speed, liquid feeding flow rate, etc. For this reason, in the past, ultrasonic waves of sufficient intensity were applied in consideration of the safety factor so that sufficient defoaming treatment could be performed even in the state where the most bubbles were generated.

〔発明が解決しようとする課題] ところが、上記キャビテーションは、他方ではエロージ
ョンを惹き起こすことが知られている。
[Problems to be Solved by the Invention] However, it is known that the cavitation described above also causes erosion.

すなわち上記脱泡槽のように、超音波振動が照射される
部位の表面が、キャビテーションによる気泡の加圧、負
圧の影響を受けて浸食される現象が生じる。そして、こ
のエロージョンによる腐食は超音波振動子から与えられ
る振動エネルギーに比例して大きくなってゆく。
That is, as in the above-mentioned defoaming tank, a phenomenon occurs in which the surface of a portion irradiated with ultrasonic vibration is eroded under the influence of pressurization of bubbles due to cavitation and negative pressure. The corrosion caused by this erosion increases in proportion to the vibration energy given by the ultrasonic vibrator.

したがって従来のように、脱泡効果を上げるために充分
な強度の超音波を照射していると、エロージョンによっ
て脱泡槽表面が浸食されやすく、耐久性の面で大きな問
題となっていた。なお、特開昭59−92003号公報
、特開昭61−50608号公報には、超音波の被照射
部の形状を改良して脱泡効率の向上を図ってはいるが、
エロージョンによる浸食に対しては有効な解決手段とは
なっていない。
Therefore, when ultrasonic waves of sufficient intensity are irradiated to improve the defoaming effect as in the past, the surface of the defoaming tank is likely to be eroded by erosion, which poses a major problem in terms of durability. In addition, in JP-A-59-92003 and JP-A-61-50608, although the shape of the ultrasonic irradiated area is improved to improve defoaming efficiency,
It is not an effective solution to erosion caused by erosion.

(発明の目的) 本発明は、以上のような従来技術の問題を解決するため
になされたもので、脱泡効果を損なうことなく、しかも
エロージョンによって超音波被照射部が浸食されること
を最小銀に食い止めることができるようにした超音波脱
泡方法を提供することを目的とする。
(Objective of the Invention) The present invention has been made in order to solve the problems of the prior art as described above. The purpose of the present invention is to provide an ultrasonic defoaming method that can contain silver.

〔課題を解決するための手段] 本発明は前記目的を達成するために、超音波脱泡装置の
上流で液体中に含まれる気泡の量を測定し、この測定結
果に対応して超音波脱泡装置から液体に照射される超音
波出力を変化させるように構成したものである。
[Means for Solving the Problems] In order to achieve the above object, the present invention measures the amount of bubbles contained in a liquid upstream of an ultrasonic defoaming device, and performs ultrasonic degassing in accordance with this measurement result. The device is configured to change the ultrasonic output applied to the liquid from the foam device.

(作用〕 液体中の気泡を検出する気泡検出装置を用いることによ
って、送液中の気泡の量を定量的に測定することができ
る。こうして検出された気泡の量に応じて気泡の除去に
必要な出力を設定し、これに基づいて超音波の照射を行
えば、過度の超音波照射を避けることができる。
(Function) By using a bubble detection device that detects bubbles in a liquid, it is possible to quantitatively measure the amount of bubbles in the liquid. By setting a suitable output and performing ultrasound irradiation based on this, excessive ultrasound irradiation can be avoided.

なお気泡検出器としては、例えば実公昭6313487
号公報に開示されたように、導管内の液体に測定用の超
音波を照射し、超音波振動子の電気的インピーダンスの
変化を測定する装置が公知で、これによれば液体中の気
泡量を的確に把握することができる。
In addition, as a bubble detector, for example, Utility Model Publication No. 6313487
As disclosed in the above publication, there is a known device that irradiates a liquid in a conduit with ultrasonic waves for measurement and measures changes in the electrical impedance of an ultrasonic transducer, and according to this device, the amount of bubbles in the liquid is measured. can be accurately grasped.

以下、ゼラチン水溶液の脱泡装置に本発明を適用した実
施例について、図面を参照しながら詳細に説明する。
EMBODIMENT OF THE INVENTION Hereinafter, an embodiment in which the present invention is applied to a defoaming device for an aqueous gelatin solution will be described in detail with reference to the drawings.

[実施例] 本発明の一実施例を示す第1図において、溶解タンク1
からゼラチン水溶液を導く導管は送液ポンプ2を通り、
不純物の除去のためのフィルター3を通ったのちに脱泡
装置4へ通じている。フィルター3と脱泡装置4を結ぶ
導管には、気泡検知センサー5が設けられている。
[Example] In FIG. 1 showing an example of the present invention, a dissolution tank 1
The conduit leading the aqueous gelatin solution from the liquid feed pump 2 passes through the
After passing through a filter 3 for removing impurities, it leads to a defoaming device 4. A bubble detection sensor 5 is provided in a conduit connecting the filter 3 and the defoaming device 4.

気泡検知センサー5は、導管内に流れるゼラチン水溶液
に超音波を照射する。これにより、導管内のゼラチン水
溶液には音場が発生するが、この音場内の音響インピー
ダンスは液体とともに通過する気泡の量に対応して変化
する。この音響インピーダンスの変化は、気泡検知セン
サー5の超音波振動子の電気的インピーダンスに変換さ
れ、この変化が気泡検知センサー5から電気信号として
出力される。
The bubble detection sensor 5 irradiates the gelatin aqueous solution flowing in the conduit with ultrasonic waves. This generates a sound field in the gelatin aqueous solution within the conduit, and the acoustic impedance within this sound field changes in response to the amount of bubbles passing through with the liquid. This change in acoustic impedance is converted into the electrical impedance of the ultrasonic transducer of the bubble detection sensor 5, and this change is output from the bubble detection sensor 5 as an electrical signal.

導管は、脱泡装置4の中心部に設けられた円筒状の脱泡
槽7に通じ、脱泡槽7に形成された流出口8は、再び外
部の導管を介して塗布機構部に連絡されている。脱泡装
置4内には、脱泡槽7の側面に接して円環状に保温槽9
が形成されている。
The conduit leads to a cylindrical defoaming tank 7 provided in the center of the defoaming device 4, and the outlet 8 formed in the defoaming tank 7 is connected to the application mechanism section again via an external conduit. ing. Inside the defoaming device 4, there is a heat retaining tank 9 in an annular shape in contact with the side surface of the defoaming tank 7.
is formed.

保温槽9は、媒体として温水が充填され、脱泡槽のゼラ
チン水溶液をほぼ一定の温度に保つ。保温槽9には、温
水流入口10と温水流出口11とが設けられ、所定温度
の温水を循環させる構造になっている。
The heat retaining tank 9 is filled with warm water as a medium, and maintains the aqueous gelatin solution in the defoaming tank at a substantially constant temperature. The heat retaining tank 9 is provided with a hot water inlet 10 and a hot water outlet 11, and is configured to circulate hot water at a predetermined temperature.

保温槽9の外壁を取り囲むように、超音波振動子12が
取り付けられている。この超音波振動子12は振動子駆
動回路13によって駆動される。
An ultrasonic vibrator 12 is attached so as to surround the outer wall of the heat-retaining tank 9. This ultrasonic transducer 12 is driven by a transducer drive circuit 13.

振動子駆動回路13は、超音波振動子12が振動すると
きに駆動電流を変化させて振幅を制御する機能を有し、
その制御は気泡検知センサー5及びプリセント人力部1
4から入力されるデータに基づいて行われる。このブ°
ノセット入力部14には、送液されるゼラチン水溶液の
流量、粘度等のデータがマニュアル入力される。なお、
導管に流量計を取り付けたときには、流量データに関し
ては、流量計から自動的にプリセット入力部14に入力
することもできる。
The vibrator drive circuit 13 has a function of controlling the amplitude by changing the drive current when the ultrasonic vibrator 12 vibrates,
Its control is carried out by the air bubble detection sensor 5 and the precent human power section 1.
This is done based on the data input from step 4. This block
Data such as the flow rate and viscosity of the aqueous gelatin solution to be fed are manually input to the noset input section 14 . In addition,
When a flow meter is attached to the conduit, flow rate data can also be automatically input from the flow meter to the preset input section 14.

上記構成の作用は以下のとおりである。The operation of the above configuration is as follows.

脱泡処理を必要とするゼラチン水溶液は、送液ポンプ2
の駆動により溶解タンク1から脱泡槽7に送液される。
Gelatin aqueous solutions that require defoaming treatment are handled by liquid feed pump 2.
The liquid is sent from the dissolution tank 1 to the degassing tank 7 by driving.

この送液の途中で、ゼラチン水溶液中の不純物はフィル
ター3によって除去され、その後ゼラチン水溶液中に含
まれる気泡の量が気泡検知センサー5によって測定され
る。この測定データは振動子駆動回路13に入力される
。振動子駆動回路13は気泡データの他、プリセット人
力部14で設定された流量データやゼラチン水溶液の粘
度データに応じて超音波振動子12の駆動電力を調節す
る。
During this liquid feeding, impurities in the gelatin aqueous solution are removed by the filter 3, and then the amount of bubbles contained in the gelatin aqueous solution is measured by the bubble detection sensor 5. This measurement data is input to the vibrator drive circuit 13. The vibrator drive circuit 13 adjusts the driving power of the ultrasonic vibrator 12 according to the bubble data, flow rate data set by the preset human power section 14, and viscosity data of the aqueous gelatin solution.

上記超音波振動子12としてフェライト磁歪振動子を用
いて40KHzで駆動するとき、振動子駆動回路13か
ら超音波振動子12に供給される駆動電力を50W、1
00W、200W、300Wと変化させたとき、脱泡槽
7の中心部における音圧を測定すると、第2図に示した
ように比例関係があり、脱泡槽7に照射される超音波の
強度を調節するときには、振動子駆動回路13の駆動電
力を調節すればよいことが分る。
When a ferrite magnetostrictive vibrator is used as the ultrasonic vibrator 12 and driven at 40 KHz, the driving power supplied from the vibrator drive circuit 13 to the ultrasonic vibrator 12 is 50 W, 1
When changing the sound pressure to 00W, 200W, and 300W and measuring the sound pressure at the center of the degassing tank 7, there is a proportional relationship as shown in Figure 2, and the intensity of the ultrasonic waves irradiated to the defoaming tank 7 is It can be seen that the drive power of the vibrator drive circuit 13 can be adjusted in order to adjust the drive power of the vibrator drive circuit 13.

気泡検知センサー5からのデータ、プリセット人力部1
4からのデータに対応した駆動電力で超音波振動子12
が駆動されると、保温槽9内の温水を媒体として脱泡槽
7に超音波が照射される。
Data from bubble detection sensor 5, preset human power section 1
Ultrasonic transducer 12 with driving power corresponding to data from 4.
When the degassing tank 7 is driven, ultrasonic waves are applied to the defoaming tank 7 using the hot water in the heat-retaining tank 9 as a medium.

この結果、脱泡槽7内にはキャビテーションが発生し、
ゼラチン水溶液中に含まれていた気泡は除去されるよう
になる。このとき、超音波振動子12の超音波出力は、
ゼラチン水溶液中に含まれている気泡の量に応じて調節
されているため、気泡が少ないのにもかかわらず脱泡槽
7に過度の超音波エネルギーを照射することがない。し
たがって、脱泡槽7や保温槽9の表面のエロージョンに
よる浸食を最小限に抑えることができる。
As a result, cavitation occurs in the defoaming tank 7,
Air bubbles contained in the gelatin aqueous solution are now removed. At this time, the ultrasonic output of the ultrasonic transducer 12 is
Since it is adjusted according to the amount of bubbles contained in the gelatin aqueous solution, excessive ultrasonic energy is not irradiated to the defoaming tank 7 even though there are few bubbles. Therefore, erosion of the surfaces of the defoaming tank 7 and the heat-retaining tank 9 due to erosion can be minimized.

第3図は、上記フェライト磁歪振動子を用い、満足し得
る脱泡効果が得られる超音波駆動電力と、ゼラチン水溶
液の流量、あるいは粘度との相関を表したものである。
FIG. 3 shows the correlation between the ultrasonic driving power at which a satisfactory defoaming effect can be obtained using the ferrite magnetostrictive vibrator and the flow rate or viscosity of the aqueous gelatin solution.

なお、条件は以下のとおりである。The conditions are as follows.

超音波振動子 フェライト磁歪振動子 駆動周波数:40に七 ゼラチン水溶液 濃度:5%  液温:40°C 粘度二粘度調整剤付与により、30 c P。ultrasonic transducer Ferrite magnetostrictive vibrator Driving frequency: 40 to 7 gelatin aqueous solution Concentration: 5% Liquid temperature: 40°C Viscosity: 30 cP by adding viscosity modifier.

60cP、90cPに可変 表面張カニ界面活性剤付与により、30d y n e
 / c m 脱泡槽 内径:85mm  長さ:550mm 肉圧:1mm 脱泡槽に流入する気泡の程度 大きさ:100〜500μm 流入量: 2〜10cc/min。
By adding a variable surface tension crab surfactant to 60 cP and 90 cP, 30 d y n e
/ cm Defoaming tank inner diameter: 85mm Length: 550mm Wall pressure: 1mm Size of air bubbles flowing into the defoaming tank: 100-500μm Inflow rate: 2-10cc/min.

第3図のグラフから分るように、ゼラチン水溶液の流量
並びに粘度を考慮した上で脱泡槽7に流入してくる気泡
の量に対応して超音波振動子12の駆動電力を調節すれ
ば、充分な脱泡効果が得られ、常に強力な超音波を脱泡
槽7に照射しておく必要はない。
As can be seen from the graph in FIG. 3, if the driving power of the ultrasonic vibrator 12 is adjusted in accordance with the amount of bubbles flowing into the defoaming tank 7, taking into account the flow rate and viscosity of the aqueous gelatin solution. , a sufficient defoaming effect can be obtained, and it is not necessary to constantly irradiate the defoaming tank 7 with strong ultrasonic waves.

第4図は、濃度5%、粘度40cPのゼラチン水溶液を
脱泡対象とし、48時間連続送液した場合の脱泡処理を
シミュレートしたときの気泡検出センサー5の出力信号
と超音波振動子12の駆動電力との関係を示している。
FIG. 4 shows the output signal of the bubble detection sensor 5 and the ultrasonic transducer 12 when simulating the defoaming process when a gelatin aqueous solution with a concentration of 5% and a viscosity of 40 cP is subjected to defoaming and is continuously fed for 48 hours. shows the relationship between driving power and driving power.

例えば同図中に破線で示したように、200W一定の駆
動電力で超音波振動子12を駆動する従来方式では、約
960QW−hrに対応した超音波エネルギーが脱泡槽
7に照射されるのに対し、本発明方式のように気泡の量
に応じて駆動電力を調節すれば、同様の脱泡効果を得る
のに約2500 W−h rの?ft 力T: 済み、
脱泡槽7に対するエロージョンの影響を大幅に減らすこ
とができる。なお、気泡検出センサー5から明確な検知
出力が得られない場合にも、図示のようにエロージョン
の悪影響が生じない程度の駆動電力で超音波振動子12
を駆動しておくことが望ましい。
For example, as shown by the broken line in the figure, in the conventional method of driving the ultrasonic transducer 12 with a constant driving power of 200 W, the degassing tank 7 is irradiated with ultrasonic energy corresponding to approximately 960 QW-hr. On the other hand, if the driving power is adjusted according to the amount of bubbles as in the method of the present invention, it would take about 2500 W-hr to obtain the same defoaming effect. ft force T: done,
The influence of erosion on the defoaming tank 7 can be significantly reduced. Note that even if a clear detection output is not obtained from the bubble detection sensor 5, the ultrasonic transducer 12 is operated with a driving power that does not cause the adverse effects of erosion, as shown in the figure.
It is desirable to drive the

以上のように、気泡検出センサー5により脱泡槽7に流
入する気泡の量を推定し、その気泡の量に対応して超音
波振動子12の駆動電力を制御すれば、不必要に強力な
超音波を脱泡槽7に照射せずに済み、脱泡槽7.保温槽
9等の表面がエロージョンで浸食されることを抑えるこ
とができるようになる。また、高出力の超音波照射を気
泡の量に応じて短時間に抑えることができるため、超音
波出力をより高めに設定して脱泡槽7を小容量のものに
することも可能となる。
As described above, if the amount of bubbles flowing into the degassing tank 7 is estimated by the bubble detection sensor 5 and the driving power of the ultrasonic transducer 12 is controlled according to the amount of bubbles, the There is no need to irradiate the defoaming tank 7 with ultrasonic waves, and the defoaming tank 7. It becomes possible to suppress the surface of the heat-retaining tank 9 and the like from being eroded by erosion. In addition, since high-power ultrasonic irradiation can be suppressed for a short time depending on the amount of bubbles, it is also possible to set the ultrasonic output higher and reduce the capacity of the degassing tank 7. .

なお、写真用乳剤を脱泡対象とする場合には、極めて微
小な気泡が残っていたとしても塗布工程でピンホールに
なり、塗膜欠陥になってしまうから、上記気泡検出セン
サー5を複数個設けて気泡の検出精度を高めるのがよい
。また、本発明方法は、ゼラチン水溶液、写真用乳剤だ
けでなく、その他の液体から脱泡をする際にも同様に適
用し得るのはもちろんである。
In addition, when degassing a photographic emulsion, even if extremely small bubbles remain, they will become pinholes during the coating process and cause defects in the coating film, so multiple bubble detection sensors 5 are used. It is preferable to provide a filter to improve bubble detection accuracy. Furthermore, it goes without saying that the method of the present invention can be similarly applied to defoaming not only gelatin aqueous solutions and photographic emulsions but also other liquids.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように、本発明の超音波脱泡方法に
よれば、脱泡処理を行う前に液体中に含まれている気泡
の量を検出し、これに対応して超音波出力を調節するよ
うにしたから、不必要に強力な超音波を脱泡対象部位に
照射せずに済むようになり、エロージョンによる被照射
部の破損を防ぐことができる。
As explained in detail above, according to the ultrasonic defoaming method of the present invention, the amount of air bubbles contained in the liquid is detected before performing the defoaming process, and the ultrasonic output is adjusted accordingly. Since the adjustment is made, there is no need to irradiate the part to be degassed with unnecessarily powerful ultrasonic waves, and damage to the irradiated part due to erosion can be prevented.

また、従来の方法でエロージョンの影響を少なくするた
めに超音波出力を低く抑えようとする場合は、超音波照
射部の容積を大きくして液体の平均滞留時間を長くしな
くてはならなかったが、本発明によれば、必要なときだ
け高出力の超音波照射を行うことができるため、超音波
出力を従来よりも大きく設定して被照射部の小容量化を
図ることも可能となり、脱泡槽内における液体の置換も
効率的に行うことができる。
In addition, when trying to keep the ultrasonic output low in order to reduce the effects of erosion using conventional methods, it was necessary to increase the volume of the ultrasonic irradiation part and increase the average residence time of the liquid. However, according to the present invention, high-power ultrasonic irradiation can be performed only when necessary, so it is also possible to set the ultrasonic output higher than before to reduce the volume of the irradiated area. It is also possible to efficiently replace the liquid in the defoaming tank.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、−船釣な写真乳剤塗布機構送液系を示す説明
図である。 第2図は、脱泡装置の中心部音圧と超音波出力との関係
の一例を示すグラフである。 第3図は、ゼラチン水溶液の粘度と通過量とを変化させ
て評価した、脱泡装置の脱泡能力の一例を示すグラフで
ある。 第4図は、気泡検知センサーからの信号と超音波出力と
の一例を示すグラフである。 4・・・・・・脱泡装置 5・・・・・・気泡検知センサー 7・・・・・・脱泡槽 9・・・・・・保温槽 I2・・・・・・超音波振動子 第2図 B合液t77 (W) 第3図 j缶液を力(W)
FIG. 1 is an explanatory diagram showing a photographic emulsion coating mechanism liquid feeding system. FIG. 2 is a graph showing an example of the relationship between the sound pressure at the center of the defoaming device and the ultrasonic output. FIG. 3 is a graph showing an example of the defoaming ability of the defoaming device, which was evaluated by changing the viscosity and the amount of gelatin solution passed through the gelatin aqueous solution. FIG. 4 is a graph showing an example of the signal from the bubble detection sensor and the ultrasonic output. 4... Defoaming device 5... Air bubble detection sensor 7... Defoaming tank 9... Heat retention tank I2... Ultrasonic vibrator Figure 2 B Combined liquid t77 (W) Figure 3 J Force the can liquid (W)

Claims (1)

【特許請求の範囲】[Claims] (1)導管内を流れる液体に含まれる気泡を超音波脱泡
装置から照射される超音波により消失させる超音波脱泡
方法において、 前記超音波脱泡装置の上流で導管内を流れる液体に含ま
れる気泡の量を検出し、検出された気泡の量に応じて超
音波脱泡装置から照射される超音波の出力を変化させる
ことを特徴とする超音波脱泡方法。
(1) In an ultrasonic defoaming method in which air bubbles contained in a liquid flowing in a conduit are eliminated by ultrasonic waves irradiated from an ultrasonic defoaming device, air bubbles contained in a liquid flowing in a conduit upstream of the ultrasonic defoaming device are 1. An ultrasonic defoaming method characterized by detecting the amount of bubbles that are detected and changing the output of ultrasonic waves emitted from an ultrasonic defoaming device according to the detected amount of bubbles.
JP26852289A 1989-10-16 1989-10-16 Ultrasonic defoaming device erosion reduction method Expired - Fee Related JP2902683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26852289A JP2902683B2 (en) 1989-10-16 1989-10-16 Ultrasonic defoaming device erosion reduction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26852289A JP2902683B2 (en) 1989-10-16 1989-10-16 Ultrasonic defoaming device erosion reduction method

Publications (2)

Publication Number Publication Date
JPH03157103A true JPH03157103A (en) 1991-07-05
JP2902683B2 JP2902683B2 (en) 1999-06-07

Family

ID=17459692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26852289A Expired - Fee Related JP2902683B2 (en) 1989-10-16 1989-10-16 Ultrasonic defoaming device erosion reduction method

Country Status (1)

Country Link
JP (1) JP2902683B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6106590A (en) * 1997-06-17 2000-08-22 Konica Corporation Method of ultrasonic waves degassing and device using the same
FR2819424A1 (en) * 2001-01-17 2002-07-19 Francois Quiviger Continuous degassing system, for liquids under pressure, uses ultrasound resonator to form gas bubbles
RU2624700C1 (en) * 2016-02-20 2017-07-05 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тихоокеанский государственный университет" Method of hydrodynamic oil foam suppression
CN116631918A (en) * 2023-07-25 2023-08-22 深圳市鲁光电子科技有限公司 Packaging equipment of gallium nitride power device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU170201U1 (en) * 2016-02-20 2017-04-18 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тихоокеанский государственный университет" Hydrodynamic oil defoaming device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6106590A (en) * 1997-06-17 2000-08-22 Konica Corporation Method of ultrasonic waves degassing and device using the same
FR2819424A1 (en) * 2001-01-17 2002-07-19 Francois Quiviger Continuous degassing system, for liquids under pressure, uses ultrasound resonator to form gas bubbles
RU2624700C1 (en) * 2016-02-20 2017-07-05 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тихоокеанский государственный университет" Method of hydrodynamic oil foam suppression
CN116631918A (en) * 2023-07-25 2023-08-22 深圳市鲁光电子科技有限公司 Packaging equipment of gallium nitride power device
CN116631918B (en) * 2023-07-25 2024-01-26 深圳市鲁光电子科技有限公司 Packaging equipment of gallium nitride power device

Also Published As

Publication number Publication date
JP2902683B2 (en) 1999-06-07

Similar Documents

Publication Publication Date Title
CA1037388A (en) Method of and apparatus for debubbling liquids
EP0885641B1 (en) Method and device for debubbling a liquid using ultrasonic waves
US4070167A (en) Sonic apparatus for removing gas from photographic emulsion
Hatanaka et al. Effect of process parameters on ultrasonic separation of dispersed particles in liquid
JPH11505175A (en) Defoaming device
JPH03157103A (en) Ultrasonic defoaming method
JPH1085509A (en) Apparatus and method for reducing bubbles in sample
JPH1190110A (en) Ultrasonic deforming method, manufacture of photosensitive material and ultrasonic deforming device
JPH04216442A (en) Method and apparatus for detecting foreign matter in liquid flow containing bubble
JP2001113219A (en) Supply apparatus for coating liquid for photographic photosensitive material
US3461651A (en) Filter arrangement
JPH1066802A (en) Ultrasonic deforming apparatus
JPH0236334A (en) Device for sampling suspended liquid for measuring particle size distribution
JP3516175B2 (en) Degassing method
JPH081118A (en) Ultrasonic cleaning device
CA1189458A (en) Apparatus and method for removing gas from a liquid
KR20120068663A (en) Apparatus and method of improving forward osmosis membrane process performance using ultrasonic waves
JPH0592103A (en) Ultrasonic defoaming apparatus
JP3002685B2 (en) Ultrasonic defoaming method
JPS6315857B2 (en)
JPS62228139A (en) Sedimentation type particle size distribution measuring device
JPS61225648A (en) Ultrasonic flaw detection
JPH0494704A (en) Method for removing gas and bubble in high viscosity liquid
JPH06110151A (en) Defoaming method and defoaming device for photographic coating liquid
JP2004138473A (en) Liquid component concentration measuring instrument

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370