JPH03141555A - Manufacture of fuel electrode for molten carbonate fuel cell - Google Patents

Manufacture of fuel electrode for molten carbonate fuel cell

Info

Publication number
JPH03141555A
JPH03141555A JP1278936A JP27893689A JPH03141555A JP H03141555 A JPH03141555 A JP H03141555A JP 1278936 A JP1278936 A JP 1278936A JP 27893689 A JP27893689 A JP 27893689A JP H03141555 A JPH03141555 A JP H03141555A
Authority
JP
Japan
Prior art keywords
fuel electrode
sheet
heat treatment
nickel
cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1278936A
Other languages
Japanese (ja)
Inventor
Yasuhiko Ito
靖彦 伊藤
Yoshiaki Sotoike
嘉朗 外池
Yukinori Akiyama
幸徳 秋山
Toshihiko Saito
俊彦 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP1278936A priority Critical patent/JPH03141555A/en
Publication of JPH03141555A publication Critical patent/JPH03141555A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8875Methods for shaping the electrode into free-standing bodies, like sheets, films or grids, e.g. moulding, hot-pressing, casting without support, extrusion without support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8842Coating using a catalyst salt precursor in solution followed by evaporation and reduction of the precursor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • H01M4/8885Sintering or firing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8684Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To precipitate salts of dissimilar metals as metal oxides on the surface of nickel particles so as to prevent sintering and creeping of a fuel electrode as a result of the long-range use of the fuel electrode by mixing nickel powder and salts of disimilar metals together, and molding them into a sheet, and then subjecting the sheet to heat treatment prior to sintering. CONSTITUTION:Carbonile nickel power, cobalt nitrate powder, polyvinyl butyral powder and polyethylene grycol dioctyl phtalate are dispersed and mixed in ehtanol and water both serving as a solvent, to form a slurry. The slurry is molded into a green sheet using a doctor blade etc., and after drying the sheet is subjected to heat treatment in air at about 400 deg.C. By the heat treatment binding agent and plasticizer are decomposed and removed from the sheet and the cobalt nitrate is thermally decomposed and precipitated as cobalt oxide on the surface of Ni particles. Next, the sheet is sintered in reducing atmosphere at 800 deg.C to obtain a fuel electrode 2; then the cobalt oxide is reduced to metallic cobalt.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は溶融炭酸塩燃料電池における燃料極の製法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a method for manufacturing a fuel electrode in a molten carbonate fuel cell.

(ロ)従来の技術 溶融炭酸塩燃料電池の基本溝成は、第1図の単セル模式
図に示すように、溶融炭酸塩を含有する電解質板(1)
の両面に、ニッケルを主体とする燃料極(2)とニッケ
ル酸化物よりなる酸化剤極(3)を夫々配置し、これら
各種(2)(3)の背面に夫々!電板(4)及び波状板
(5)を介在させてガス通路板(6)で締付けられる。
(b) Conventional technology The basic structure of a molten carbonate fuel cell is as shown in the schematic diagram of a single cell in Figure 1, an electrolyte plate (1) containing molten carbonate.
A fuel electrode (2) mainly made of nickel and an oxidizer electrode (3) made of nickel oxide are placed on both sides of the ! It is tightened with a gas passage plate (6) with an electric plate (4) and a corrugated plate (5) interposed therebetween.

この場合各ガス通路板(6)が電解質板(1)の周辺部
に圧接してウェットシール部(7)を形成している。
In this case, each gas passage plate (6) is pressed against the peripheral portion of the electrolyte plate (1) to form a wet seal portion (7).

電池発電時には天然ガス等の炭化水素燃料をスチーム改
質した水素含有ガスを燃料ガスとして燃料極(2)に、
又空気と炭酸ガスの混合ガスを酸化剤極(3)に夫々供
給し電気化学反応を行はせる。
During battery power generation, hydrogen-containing gas obtained by steam reforming hydrocarbon fuel such as natural gas is used as fuel gas at the fuel electrode (2).
Further, a mixed gas of air and carbon dioxide gas is supplied to each of the oxidizer electrodes (3) to cause an electrochemical reaction.

燃料極(2)及び酸化剤極(3)はいずれもニッケル粉
末を板状に成型後焼結した多孔体である。このうち燃料
極(2)は電池作動時水素雰囲気下で使用され、しかも
650℃の高温下2〜4kg/cff11の締付圧(面
圧)下におかれるため、長期に亘る作動中ニッケル粒子
同志の焼結・凝集が進行して収縮を起し、極厚の減少・
気化率の低下を伴う。
Both the fuel electrode (2) and the oxidizer electrode (3) are porous bodies formed by molding nickel powder into a plate shape and then sintering it. Among these, the fuel electrode (2) is used in a hydrogen atmosphere during battery operation, and is also subjected to a high temperature of 650°C and a clamping pressure (surface pressure) of 2 to 4 kg/cff11, so nickel particles are exposed during long-term operation. Sintering and agglomeration of comrades progresses, causing shrinkage, resulting in a decrease in extremely thick
Accompanied by a decrease in evaporation rate.

その結果ガス拡散性を損なうと共に電解質板(1)や集
電板(4)などとの接触不良により内部抵抗の増大をま
ねき、特性劣化の原因となっていた。
As a result, gas diffusivity is impaired and internal resistance increases due to poor contact with the electrolyte plate (1), current collector plate (4), etc., causing characteristic deterioration.

このため燃料極としてニッケルとC01(r。For this reason, nickel and C01 (r.

Atなどの安定化剤となる金属との合金粉末を焼結する
方法、またはニッケル粉末の多孔質焼結体にC01Cr
、Alなどの金属塩を含む溶液を含浸させた後熱処理を
施しNi焼結体に前記金属を析出させる方法などが提案
されている。しかし前者の合金を用いる方法においては
焼結待合金粒子表面に析出した第2金属によりNi粒子
同志のシンタリングは抑制されるが、合金粉末自体が単
体金属粉末と比較してはるかに高価でコスト上の問題が
あり、後者の含浸熱処理による方法において基体となる
Niがすでに多孔質構造体の骨格を形成しているため、
長期間にわたってはその形状安定性に劣るという問題が
あった。
A method of sintering an alloy powder with a metal that serves as a stabilizer such as At, or a method of sintering a porous sintered body of nickel powder with C01Cr.
, a method has been proposed in which a Ni sintered body is impregnated with a solution containing a metal salt such as Al and then subjected to heat treatment to precipitate the metal. However, in the method using the former alloy, sintering of Ni particles is suppressed by the second metal precipitated on the surface of the pre-sintered alloy particles, but the alloy powder itself is much more expensive than single metal powder. Due to the above problem, in the latter method of impregnation heat treatment, the Ni serving as the base already forms the skeleton of the porous structure.
There was a problem that the shape stability was poor over a long period of time.

(ハ)発明が解決しようとする課題 本発明は従来のものに比し形状安定性にすぐれしかも安
価に作成し得る燃料極を提供するものである。
(c) Problems to be Solved by the Invention The present invention provides a fuel electrode that has better shape stability than conventional ones and can be produced at a lower cost.

(ニ)  課題を解決するための手段 本発明による燃料極は、ニッケル粉末と異種金属の塩と
を結着剤・可塑剤及び溶媒とともに混合して得たスラリ
ーをシート状に成型した後、酸化雰囲気中約400℃で
熱処理を施し、前記結着剤・可塑剤を分解除去すると共
に前記金属塩を前記ニッケル粒子表面に金属酸化物とし
て分解析出せしめ、ついで約800℃の還元雰囲気中で
焼結したものである。
(d) Means for Solving the Problems The fuel electrode according to the present invention is produced by forming a slurry obtained by mixing nickel powder and a salt of a different metal together with a binder/plasticizer and a solvent into a sheet shape, and then oxidizing the slurry. A heat treatment is performed at about 400°C in an atmosphere to decompose and remove the binder and plasticizer, and the metal salt is separated out as a metal oxide on the surface of the nickel particles, and then sintered in a reducing atmosphere at about 800°C. It is a result of the following.

(ホ)作 用 本発明ではニッケル粉末と異種金属の塩とを焼結前に、
結着剤・可塑剤・溶媒を用いて混合成型後熱処理を施す
ことによりニッケル粒子表面に前記金属塩を金属酸化物
として析出させているため、ニッケル粉末同志が直接多
孔質体の骨格を形成するのを抑制し、燃料極の長期使用
によるシンタリング・クリーピングを防止して安定な形
状を維持することができる。
(E) Function In the present invention, before sintering nickel powder and a salt of a different metal,
The metal salt is precipitated as a metal oxide on the surface of the nickel particles by heat treatment after mixing and molding using a binder, plasticizer, and solvent, so that the nickel powders directly form the framework of the porous body. It is possible to suppress sintering and creeping caused by long-term use of the fuel electrode and maintain a stable shape.

(へ)実施例 本発明による燃料極の作成例について説明する。(f) Example An example of creating a fuel electrode according to the present invention will be described.

カーボニルニッケル粉末      900g硝酸コバ
ルト粉末         100gポリビニールブチ
ラール粉末(結着剤)20g溶媒としてエタノール50
0g、水500g以上をボールミルで充分に分散混合さ
せスラリーとする。このスラリーをドクタブレードなど
を用いてグリーンシートに成型し、乾燥後空気巾約40
0℃で熱処理を施す。
Carbonyl nickel powder 900g Cobalt nitrate powder 100g Polyvinyl butyral powder (binder) 20g Ethanol 50g as solvent
0 g and 500 g or more of water are sufficiently dispersed and mixed in a ball mill to form a slurry. This slurry is formed into a green sheet using a doctor blade, etc., and after drying, the air width is approximately 40 mm.
Heat treatment is performed at 0°C.

この熱処理で結着剤・可塑剤を分解除去すると共に硝酸
コバルトを熱分解してNf粒子表面に酸化コバルトとし
て析出せしめる。ついで800℃の還元雰囲気中で焼結
して燃料極を得る。このとき酸化コバルトは金属コバル
トに還元される。
This heat treatment decomposes and removes the binder and plasticizer, and also thermally decomposes cobalt nitrate to precipitate cobalt oxide on the surface of the Nf particles. Then, it is sintered in a reducing atmosphere at 800°C to obtain a fuel electrode. At this time, cobalt oxide is reduced to metallic cobalt.

金属塩として硝酸コバルトの他に硝酸クロム、硝酸アル
ミニウムなどを用い前記と同様の方法で燃料極を作成し
た。
A fuel electrode was prepared in the same manner as above using chromium nitrate, aluminum nitrate, etc. in addition to cobalt nitrate as a metal salt.

第2図はこれら燃料極(A)を用いて組立な単セル(a
)の寿命特性及びセル抵抗の変化を示す。比較のためN
i−Co合金粉末を焼結した燃料極(B)を用いた単セ
ル(b)及びNi焼結板に硝酸コバルト溶液を含浸して
後熱処理によりコバルトを析出させた燃料極<C>を用
いた単セル(c)についても示した。
Figure 2 shows a single cell (a) assembled using these fuel electrodes (A).
) shows the life characteristics and changes in cell resistance. N for comparison
A single cell (b) using a fuel electrode (B) made of sintered i-Co alloy powder and a fuel electrode <C> in which a Ni sintered plate is impregnated with a cobalt nitrate solution and cobalt is precipitated by post-heat treatment. Also shown is the single cell (c).

又第3図は650℃アノードガス雰囲気で行った前記燃
料極(A )(B )(C)の締付圧下における厚み減
少率を夫々示した。この試験において本発明燃料極(A
)は(B)と同様の形状安定性を有するに対し、(C)
は形状安定性に劣ることがわかる。これが第2図の単セ
ル寿命特性及びセル抵抗に現れ、単セル(C)はシンタ
リング及びクリーピングによる反応サイトの減少及び接
触抵抗の増加のため特性劣化が著しいが、本発明による
単セル(a)は(C)とほぼ同程度で特性が改善されて
いる。
Moreover, FIG. 3 shows the thickness reduction rate of the fuel electrodes (A), (B), and (C) under tightening pressure, which were conducted in an anode gas atmosphere at 650°C. In this test, the present invention fuel electrode (A
) has similar shape stability to (B), whereas (C)
It can be seen that the shape stability is poor. This appears in the single cell life characteristics and cell resistance in Figure 2, and the characteristics of the single cell (C) are markedly deteriorated due to a decrease in reaction sites and an increase in contact resistance due to sintering and creeping, but the single cell according to the present invention ( The characteristics of a) are improved to almost the same extent as (C).

(ト)発明の効果 本発明によればニッケル粉末と異種金属の塩とを焼結前
に、結着剤・可塑剤・溶媒を用いて混合成型後熱処理を
施すことにより、ニッケル粒子表面に前記塩を金属酸化
物として析出させているため、ニッケル粉末同志が直接
焼結体の骨格を形成するのを抑制し、燃料極の長期使用
によるシンタリンダ・クリ−ピンクを防止して高価なニ
ッケル合金粉末を用いた燃料極に比しそんしよくのない
形状安定性の良好な燃料極を安価に作成することができ
る。
(G) Effects of the Invention According to the present invention, the nickel powder and the salt of different metals are mixed and molded using a binder, a plasticizer, and a solvent and heat treated before sintering, so that the surface of the nickel particles has the above-mentioned properties. Because the salt is precipitated as a metal oxide, it prevents the nickel powder from directly forming the skeleton of the sintered body, prevents sintering and creeping caused by long-term use of the fuel electrode, and reduces the cost of expensive nickel alloy powder. A fuel electrode with good shape stability, which is not as good as that of a fuel electrode using a fuel electrode, can be produced at a low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は溶融炭酸塩燃料電池単セルの模式的縦断面図、
第2図は本発明燃料極を備える単セルの寿命特性及び内
部抵抗の変化を示す特性図、第3図は本発明燃料極の厚
み変化率を示す特性図で、第2図及び第3図において(
a)および(A)が本発明の場合、(b)(c)及び(
B )(C)ガ夫々従来例の場合である。 l・・・電解質板、2・・・燃料極、3・・・酸化剤極
Figure 1 is a schematic longitudinal cross-sectional view of a single cell of a molten carbonate fuel cell;
Fig. 2 is a characteristic diagram showing the life characteristics and changes in internal resistance of a single cell equipped with the fuel electrode of the present invention, and Fig. 3 is a characteristic diagram showing the rate of change in thickness of the fuel electrode of the present invention. In (
When a) and (A) are the present invention, (b), (c) and (
B) and C) are the cases of the conventional example. 1... Electrolyte plate, 2... Fuel electrode, 3... Oxidizer electrode.

Claims (2)

【特許請求の範囲】[Claims] (1)ニッケル粉末と異種金属の塩とを結着剤・可塑剤
及び溶媒とともに混合して得たスラリーをシート状に成
型した後、酸化雰囲気中約400℃で熱処理を施し、前
記結着剤・可塑剤を分解除去すると共に前記金属塩を前
記ニッケル粒子表面に金属酸化物として分解析出せしめ
、ついで還元雰囲気中約800℃で焼結したことを特徴
とする溶融炭酸塩燃料電池用燃料極の製法。
(1) After forming a slurry obtained by mixing nickel powder and a salt of a different metal together with a binder/plasticizer and a solvent into a sheet shape, heat treatment is performed at about 400°C in an oxidizing atmosphere, and the binder - A fuel electrode for a molten carbonate fuel cell, characterized in that the plasticizer is decomposed and removed, the metal salt is separated out as a metal oxide on the surface of the nickel particles, and then sintered at about 800°C in a reducing atmosphere. manufacturing method.
(2)前記異種金属の塩がクロム・コバルト・アルミニ
ウムから選ばれた金属の硝酸塩もしくは硫酸塩であるこ
とを特徴とする請求項1の溶融炭酸塩燃料電池用燃料極
の製法。
(2) The method for producing a fuel electrode for a molten carbonate fuel cell according to claim 1, wherein the dissimilar metal salt is a nitrate or sulfate of a metal selected from chromium, cobalt, and aluminum.
JP1278936A 1989-10-25 1989-10-25 Manufacture of fuel electrode for molten carbonate fuel cell Pending JPH03141555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1278936A JPH03141555A (en) 1989-10-25 1989-10-25 Manufacture of fuel electrode for molten carbonate fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1278936A JPH03141555A (en) 1989-10-25 1989-10-25 Manufacture of fuel electrode for molten carbonate fuel cell

Publications (1)

Publication Number Publication Date
JPH03141555A true JPH03141555A (en) 1991-06-17

Family

ID=17604137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1278936A Pending JPH03141555A (en) 1989-10-25 1989-10-25 Manufacture of fuel electrode for molten carbonate fuel cell

Country Status (1)

Country Link
JP (1) JPH03141555A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100403133B1 (en) * 1996-06-19 2004-02-25 한국전력공사 Method for making reinforced anode by dispersing metal salt-added oxide
KR100448518B1 (en) * 2002-09-13 2004-09-13 한국과학기술연구원 Method for manufacturing high-strength cathode for molten carbonate fuel cell and high-strength cathode made from the same method
KR100441940B1 (en) * 1997-07-31 2004-09-18 한국전력공사 Preparation method of nickel-aluminum-titanium fuel electrode for melt carbonate type fuel cell to improve performance of the resulted electrode with reduced cost
KR100441939B1 (en) * 1997-07-16 2004-09-18 한국전력공사 Nickel-aluminum alloy fuel electrode and simplified production method thereof to improve creepage and sintering resistance, activate electrochemical reaction and porosity of the electrode
KR100467347B1 (en) * 1997-07-31 2005-05-17 한국전력공사 Manufacture method of oxide dispersed fuel electrode and fuel electrode
KR100467348B1 (en) * 1997-07-16 2005-05-17 한국전력공사 Precipitation-reinforced nickel-aluminum fuel electrode and manufacturing method between intermetallic compounds

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100403133B1 (en) * 1996-06-19 2004-02-25 한국전력공사 Method for making reinforced anode by dispersing metal salt-added oxide
KR100441939B1 (en) * 1997-07-16 2004-09-18 한국전력공사 Nickel-aluminum alloy fuel electrode and simplified production method thereof to improve creepage and sintering resistance, activate electrochemical reaction and porosity of the electrode
KR100467348B1 (en) * 1997-07-16 2005-05-17 한국전력공사 Precipitation-reinforced nickel-aluminum fuel electrode and manufacturing method between intermetallic compounds
KR100441940B1 (en) * 1997-07-31 2004-09-18 한국전력공사 Preparation method of nickel-aluminum-titanium fuel electrode for melt carbonate type fuel cell to improve performance of the resulted electrode with reduced cost
KR100467347B1 (en) * 1997-07-31 2005-05-17 한국전력공사 Manufacture method of oxide dispersed fuel electrode and fuel electrode
KR100448518B1 (en) * 2002-09-13 2004-09-13 한국과학기술연구원 Method for manufacturing high-strength cathode for molten carbonate fuel cell and high-strength cathode made from the same method

Similar Documents

Publication Publication Date Title
JP2846738B2 (en) Method for producing molten carbonate-fuel cell
JPS6322023B2 (en)
JP3365640B2 (en) Double-layer negative electrode for molten carbonate fuel cell and method for producing the same
JPH03141555A (en) Manufacture of fuel electrode for molten carbonate fuel cell
US3753782A (en) Electrode for electrochemical reduction of oxygen and process for its production
JP2999918B2 (en) Method for producing positive electrode for molten carbonate fuel cell
JPH07240205A (en) Preparation of fuel cell and anode
JPH0869804A (en) Anode for fused carbonate fuel cell and its preparation
JPS6124158A (en) Electrode of fused carbonate type fuel cell
US4902587A (en) Fuel cell
JPH0241142B2 (en)
JPH0261095B2 (en)
JPS60150558A (en) Production method of fuel electrode for melted carbonate type fuel cell
JP2730074B2 (en) Anode for fuel cell
JPH0711962B2 (en) Method for manufacturing gas diffusion electrode
JPS63218163A (en) Anode for molten carbonate type fuel cell
JPH0711961B2 (en) Method for manufacturing gas diffusion electrode
JPS58129767A (en) Fuel cell electrode
JPS60167270A (en) Oxidation electrode for molten salt fuel cell
JPS6276159A (en) Manufacture of fuel electrode for fuel cell of molten carbonate type
JPS58142764A (en) Manufacture of gas diffusion type air electrode
JPS6044967A (en) Molten carbonate fuel cell
JPS6012670A (en) Molten carbonate fuel cell
JPH04215257A (en) Molten carbonate fuel cell
JPS58100363A (en) Electrode for fuel cell or air cell