JPS6276159A - Manufacture of fuel electrode for fuel cell of molten carbonate type - Google Patents

Manufacture of fuel electrode for fuel cell of molten carbonate type

Info

Publication number
JPS6276159A
JPS6276159A JP60214509A JP21450985A JPS6276159A JP S6276159 A JPS6276159 A JP S6276159A JP 60214509 A JP60214509 A JP 60214509A JP 21450985 A JP21450985 A JP 21450985A JP S6276159 A JPS6276159 A JP S6276159A
Authority
JP
Japan
Prior art keywords
metal
base
fuel cell
fuel electrode
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60214509A
Other languages
Japanese (ja)
Inventor
Atsuo Muneuchi
篤夫 宗内
Kenji Murata
謙二 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60214509A priority Critical patent/JPS6276159A/en
Publication of JPS6276159A publication Critical patent/JPS6276159A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8621Porous electrodes containing only metallic or ceramic material, e.g. made by sintering or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • H01M4/8885Sintering or firing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8892Impregnation or coating of the catalyst layer, e.g. by an ionomer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To enable the good-yield easy manufacturing of a fuel electrode whose high porosity ratio can be maintained for a long period of time, by immersing a porous base in a solution, drying the base, and then setting it in a cell to enhance a metal out of the base during the operation of the cell. CONSTITUTION:A powder of only a first metal such as nickel and cobalt, as to which it is easy to control the size of each pore and the ratio of porosity, is sintered to produce a porous base of desired porosity ratio. The base is immersed in a solution containing a stabilizing agent and then dried so that fine grains of the agent uniformly cling to the surface of the base. The base is then treated with heat in a cell (650 deg.C) to cause the fuse-bonding reaction of the base and the stabilizing agent to uniformly progress. For that reason, the base does not crack or warp during the heat treatment in the cell.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、長期に亙り溶融炭酸塩型燃料電池の出力安定
化に寄与できるようにした溶融炭酸塩型燃料電池の燃料
極の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a fuel electrode for a molten carbonate fuel cell that can contribute to stabilizing the output of the molten carbonate fuel cell over a long period of time.

(発明の技術的背景とその問題点) 近年、開発が進められている溶融炭酸塩型燃料電池は、
炭酸塩からなる電解質を高温下で溶融状態にし電極反応
を生起させるもので、リン酸型、固体電解質型等の他の
燃料電池に比べ電極反応が起り易く、発電熱効率が高い
うえ、高価な貴金属触媒を必要としない等の特長を有し
ている。
(Technical background of the invention and its problems) Molten carbonate fuel cells, which have been developed in recent years, are
The electrolyte made of carbonate is molten at high temperature to cause an electrode reaction.Compared to other fuel cells such as phosphoric acid type and solid electrolyte type, the electrode reaction occurs more easily and the heat generation efficiency is high, and it uses expensive precious metals. It has features such as not requiring a catalyst.

ところで、このような溶融炭酸塩型燃料電池では1つの
燃料電池で得られる起電力が1Vと低いため、高出力の
発電プラントを構成するには、複数の単位電池を直列に
積層して燃料電池本体を構成し、各単位電池の加算出力
を得るようにしなければならない。したがって、この種
の燃料電池は次のように構成される。
By the way, in such a molten carbonate fuel cell, the electromotive force obtained by one fuel cell is as low as 1V, so in order to configure a high-output power generation plant, multiple unit cells are stacked in series to form a fuel cell. The main body must be configured to obtain the summed output of each unit battery. Therefore, this type of fuel cell is constructed as follows.

すなわち、各単位電池は一対のガス拡散電極板、すなわ
ち燃料極および酸化剤極と、これらの間に介在されたア
ルカリ炭酸塩からなる電解質層とで構成される。これら
各単位電池は、単位電池間の電気的な接続礪能と、各電
極板への反応ガスの通路を形成する機能とを兼漏えたセ
パレータを介して積層される。
That is, each unit cell is composed of a pair of gas diffusion electrode plates, that is, a fuel electrode and an oxidizer electrode, and an electrolyte layer made of an alkali carbonate interposed between them. These unit cells are stacked with a separator interposed therebetween, which functions both to electrically connect the unit cells and to form a passage for reactant gas to each electrode plate.

燃料電池本体の4つの側面には、反応ガスの分配、回収
機能を有するマニホールドが当てがわれ、これらマニホ
ールドのうちの一つに酸化剤ガスQを供給するとともに
隣接するマニホールドに燃料ガスPを供給し、単位電池
の両面に両ガスを例えば直交するように通流させる。そ
して、燃料極において、 H2+CO32−−+H20+CO2+26−なる反応
を、また酸化剤極において、 1/202 +GO2+2e−−+CO32−なる反応
を生起せしめ、直流出力を得た後、それぞれの対向する
マニホールドからガスを排出させるようにしている。
Manifolds with reactive gas distribution and recovery functions are placed on the four sides of the fuel cell body, and oxidizing gas Q is supplied to one of these manifolds, and fuel gas P is supplied to the adjacent manifold. Then, both gases are made to flow, for example, perpendicularly, to both sides of the unit cell. Then, a reaction of H2+CO32--+H20+CO2+26- is caused at the fuel electrode, and a reaction of 1/202 +GO2+2e--+CO32- is caused at the oxidizer electrode, and after obtaining a DC output, gas is released from each opposing manifold. I'm trying to get it out.

ところで、上記ガス拡散電極は、前述した起電反応の生
起する場所を提供するものである。したがって、起電反
応を効率良く進行させるために、ガス拡散電極には、た
とえば溶融炭酸塩型燃料電池の運転条件である500〜
750℃の温度において、炭酸塩に冒されない化学的な
安定性が要求されることはもとより、可能な限り広い反
応面積を有していることが望まれる。すなわち、比表面
積を大きくできるように微細な空孔が高い空孔率で存在
し、かつのその空孔率が長期間維持できるガス拡散電極
が望まれる。
By the way, the gas diffusion electrode provides a place where the electromotive reaction described above occurs. Therefore, in order to efficiently advance the electromotive reaction, the gas diffusion electrode has a
Not only is chemical stability unaffected by carbonates required at a temperature of 750°C, but it is also desirable to have as wide a reaction area as possible. That is, a gas diffusion electrode is desired in which fine pores are present at a high porosity so as to increase the specific surface area, and the porosity can be maintained for a long period of time.

このような事情から、従来、ガス拡散電極には、空孔の
大きさおよび空孔率を所望の値に制御でき、微細な空孔
を高い空孔率で得ることができるニッケル、コバルトま
たは銅などの微粉末の焼結体が専ら使用されている。し
かし、このような焼結体からなるガス拡散電極のうち、
燃料極には以下のような問題があった。
For this reason, gas diffusion electrodes have traditionally been made of nickel, cobalt, or copper, which can control the pore size and porosity to desired values and can obtain fine pores with a high porosity. Sintered bodies of fine powder such as are used exclusively. However, among gas diffusion electrodes made of such sintered bodies,
The fuel electrode had the following problems.

すなわち、ガス拡散電極のうち、酸化剤種は、酸化雰囲
気中で使用されている過程で、その表面に酸化物層を形
成するので、電池の作動温度ではニッケルまたはコバル
ト同士の融着は殆ど発生しない。しかし、燃料極は水素
を含む還元雰囲気中で使用されるので、その表面が金属
状態を維持しており、しかも上記ニッケルやコバルト等
の融点が低い(たとえばニッケルでは1455℃)ので
、電池の作動温度において金属同士の融着が発生するこ
とがあった。このような融着が進行すると、多孔質体の
空孔率が徐々に減少して燃料極の比表面積の低下をもた
らし、燃料電池の電池特性の劣化につながるという問題
があった。
In other words, the oxidizing agent species in the gas diffusion electrode forms an oxide layer on its surface during the process of being used in an oxidizing atmosphere, so fusion of nickel or cobalt hardly occurs at the operating temperature of the battery. do not. However, since the fuel electrode is used in a reducing atmosphere containing hydrogen, its surface maintains a metallic state, and the melting point of the above-mentioned nickel and cobalt is low (for example, 1455°C for nickel), so it is difficult to operate the battery. Metal-to-metal fusion could occur at high temperatures. As such fusion progresses, the porosity of the porous body gradually decreases, leading to a decrease in the specific surface area of the fuel electrode, leading to a problem in that the cell characteristics of the fuel cell deteriorate.

そこで、このような問題を解決するために、従来、ニッ
ケル、コバルトまたは銅の基体に、融着防止安定化剤を
10Mo1%程度含有ざぜることが望ましいとされてい
る。そして、基体に融着安定化剤を含有させて燃料極を
製造する方法として、従来、以下の2つの方法が提案さ
れている。
In order to solve this problem, it has conventionally been considered desirable to incorporate a fusion-preventing stabilizer in a nickel, cobalt or copper substrate in an amount of about 10Mo1%. Conventionally, the following two methods have been proposed as a method for manufacturing a fuel electrode by incorporating a fusion stabilizer into a base.

すなわち、まず第1の製造方法は、ニッケルまたはコバ
ルト等、基体となる金属粉末と、クロム、アルミニウム
またはコバルトなどの安定止剤粉末とを混合した後、薄
板状に成形し、水素を含む還元雰囲気中で焼結する方法
である。
That is, the first manufacturing method is to mix a base metal powder such as nickel or cobalt with a stabilizer powder such as chromium, aluminum or cobalt, then form it into a thin plate and place it in a reducing atmosphere containing hydrogen. This method involves sintering inside.

また、第2の製造方法は、上記基体となる金属と安定化
剤となる金属との合金粉末を薄板状に成形し、水素を含
む還元雰囲気中で焼結する方法である。
A second manufacturing method is a method in which an alloy powder of the metal serving as the base and the metal serving as the stabilizer is formed into a thin plate shape and sintered in a reducing atmosphere containing hydrogen.

しかしながら、上記第1の製造方法では、基体となる金
属粉末と、安定化剤となる金属粉末とを原子オーダーで
均一に混合することが不可能であるため、焼結時に部分
的に合金反応を起こしたり、また異種粒子間で融着反応
を起こしたりし、これが原因で不均一収縮を起こすこと
があった。このため、焼結時に割れや反りが発生し、歩
留りが低いという欠点があった。また、このような混合
粉末を焼結づる際の焼結温度(1065°C)は、通常
、基体となる金属単体の焼結温度(800〜950℃)
よりも高く、したがって、製造コストの上昇を招くとい
う問題もあった。
However, in the first manufacturing method described above, it is impossible to uniformly mix the metal powder serving as the base and the metal powder serving as the stabilizer on an atomic order, so that the alloy reaction occurs partially during sintering. In some cases, a fusion reaction occurs between different types of particles, which may cause non-uniform shrinkage. For this reason, cracks and warpage occur during sintering, resulting in a low yield. In addition, the sintering temperature (1065°C) when sintering such a mixed powder is usually the sintering temperature of the base metal (800 to 950°C).
Therefore, there was also a problem that the manufacturing cost increased.

一方、前記第2の製造方法は、合金粉末を焼結する方法
であるため、第1の製造方法の如き不均一収縮を起こす
ことがない。しかし、通常この種の合金粉末は、溶融状
態の金属をノズルから噴射させるアトマイズ法で形成さ
れるので、金属粒子が球状になる。このため、金属粉末
の焼結時に各粒子が均一にしかも隙間なく配置されてし
まうという問題があった。また、このような合金の焼結
温度<1050〜1060℃)も、やはり単体金属に比
べて高く、製造コストの上昇を18<という問題があっ
た。
On the other hand, since the second manufacturing method is a method of sintering alloy powder, non-uniform shrinkage as in the first manufacturing method does not occur. However, since this type of alloy powder is usually formed by an atomization method in which molten metal is injected from a nozzle, the metal particles become spherical. For this reason, there was a problem in that the particles were arranged uniformly and without gaps during sintering of the metal powder. Further, the sintering temperature of such an alloy (<1050 to 1060°C) is also higher than that of a single metal, resulting in a problem that the manufacturing cost increases by 18°C.

〔発明の目的〕[Purpose of the invention]

本発明は、このような事情に基づきなされたもので、そ
の目的とするところは、高い空孔率を長期に厘っで維持
することのできる燃料極を、歩留りが良く、しかも製造
コストの上昇を招くことなく容易に製造できる溶融炭M
塩型燃料電池の燃料極の製造方法を提供することにある
The present invention was developed based on these circumstances, and its purpose is to provide a fuel electrode that can maintain a high porosity for a long period of time, with a high yield, and at the same time, to reduce the increase in manufacturing costs. Molten coal M that can be easily produced without causing
An object of the present invention is to provide a method for manufacturing a fuel electrode for a salt-type fuel cell.

〔発明の概要〕[Summary of the invention]

本発明は、第1の金属からなる粉末を焼結して多孔質基
体を形成し、しかる後、この基体を第2の金属を含む溶
液中に浸漬し乾燥させた後、そのまま電池に組込み、電
池動作中に、上記基体中の上記第2の金属を析出させる
ようにしたことを特徴としている。
The present invention involves sintering a powder made of a first metal to form a porous substrate, then immersing this substrate in a solution containing a second metal, drying it, and then incorporating it into a battery as it is. The battery is characterized in that the second metal in the base is deposited during battery operation.

前記第1の金属としては、ニッケル、コバルトまたは銅
が用いられ、また前記第2の金属としては、クロム、ア
ルミニウム、コバルト、スカンジウム、イツトリア、ラ
ンタンノイド系元素(ランタン(57)〜ルテエチーウ
ム(71))が用いられる。
As the first metal, nickel, cobalt or copper is used, and as the second metal, chromium, aluminum, cobalt, scandium, ittria, lanthanoid elements (lanthanum (57) to luteethium (71)) are used. ) is used.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、空孔の大ぎさおよび空孔率の制御が容
易であるニッケル、コバルト等の第1の金属の単体粉末
を焼結して多孔質体を得るようにしているので、所望の
空孔率を得ることができる。
According to the present invention, a porous body is obtained by sintering a single powder of a first metal such as nickel or cobalt whose pore size and porosity can be easily controlled. porosity can be obtained.

そして、得られた基体を、安定化剤が含有された溶液中
に浸漬し、乾燥させるようにしているので、上記安定化
剤を微細な粒子の状態で基体表面に均一に付着させるこ
とができる。したがって、このように安定化剤が均一に
付着した基体を、電池内(650℃)で熱処理すると、
基体と安定化剤との@i着反応を均一に進行させること
ができるので、電池内での熱処理の過程で基体に割れや
反り発生することはない。このため、歩留りを従来に比
べて大幅に向上させることができる。また、上記安定化
剤は、微細な粒子の状態で基体表面に付着しているので
、電池動作温度でも容易に基体と融着反応を起こすこと
に着目し、本発明では燃料極単体での特別な熱処理工程
を設けていないので、製造コストの低減を図ることがで
きる。
Then, the obtained substrate is immersed in a solution containing the stabilizer and dried, so that the stabilizer can be uniformly adhered to the surface of the substrate in the form of fine particles. . Therefore, when the substrate to which the stabilizer is uniformly adhered in this way is heat-treated in the battery (650°C),
Since the adhesion reaction between the substrate and the stabilizer can proceed uniformly, the substrate does not crack or warp during the heat treatment process within the battery. Therefore, the yield can be significantly improved compared to the conventional method. In addition, since the above-mentioned stabilizer is attached to the substrate surface in the form of fine particles, we focused on the fact that it easily causes a fusion reaction with the substrate even at battery operating temperatures. Since no heat treatment step is required, manufacturing costs can be reduced.

そして、このような工程で製造された燃料極は安定化剤
を均一に含み、燃料電池の動作温度においても基体を形
成する金属の融着が発生し難い。
Further, the fuel electrode manufactured through such a process uniformly contains the stabilizer, and the metal forming the base body is unlikely to be fused even at the operating temperature of the fuel cell.

したがって、燃料極の空孔率変化を抑制することができ
る。このようなことから、本発明により製造された燃料
極を組込んだ燃料電池は、長期間安定な出力を得ること
ができる。
Therefore, changes in the porosity of the fuel electrode can be suppressed. For this reason, a fuel cell incorporating a fuel electrode manufactured according to the present invention can obtain stable output for a long period of time.

(発明の実施例) 以下、本発明の実施例について説明する。(Example of the invention) Examples of the present invention will be described below.

〈実施例1〉 粒子径が4〜81tLのカルボニールニッケル粉末5C
1を加圧成形して、厚さ0.8InIn、大きざ170
mta各、密度1.4g/iの板体を得た。この板体を
水素を含む雰囲気中で15分間焼結し、空孔率70%、
平均孔径6岬の多孔質焼結体からむる基体を得た。
<Example 1> Carbonyl nickel powder 5C with a particle size of 4 to 81 tL
1 is pressure molded to have a thickness of 0.8 InIn and a size of 170 mm.
A plate having a density of 1.4 g/i was obtained for each mta. This plate was sintered for 15 minutes in an atmosphere containing hydrogen, and the porosity was 70%.
A substrate made of a porous sintered body having an average pore diameter of 6 capes was obtained.

この基体を1 M oh−’ gの硝酸クロム溶液に1
0分間浸漬した後、80°C130分で乾燥させた。
This substrate was diluted with 1 M oh-' g of chromium nitrate solution.
After being immersed for 0 minutes, it was dried at 80°C for 130 minutes.

この浸漬〜乾燥の工程を3回繰返した。この結果、基体
中にはニッケル100に対し、クロムが9.8ftff
i%含有されたことが確認された。
This process of dipping and drying was repeated three times. As a result, 9.8 ftff of chromium was contained in the substrate for every 100 nickel.
It was confirmed that the content was i%.

本実施例によれば、空孔の制御が容易なカルボニールニ
ッケル粉末を加圧形成して、多孔質基体を得るようにし
ているので、上記の如くその空孔率を70%という惨め
で高い値にすることができた。
According to this embodiment, carbonyl nickel powder whose pores can be easily controlled is pressurized to obtain a porous substrate, so that the porosity is as high as 70%, which is a pitiful 70% as described above. could be made into a value.

〈実施例2〉 上記実施例1における、ニッケル多孔質の基体を1M0
1/Rの硝酸アルミニウム溶液に浸漬し、上記実施例と
同一の条件にて浸漬〜乾燥工程を繰返した。この結果、
基体中には、ニッケル100に対し、上記硝酸アルミニ
ウムを8.5重量%含有させることができた。
<Example 2> The nickel porous substrate in Example 1 above was 1M0
It was immersed in a 1/R aluminum nitrate solution, and the immersion-drying process was repeated under the same conditions as in the above example. As a result,
The base material was able to contain 8.5% by weight of the aluminum nitrate based on 100% of nickel.

〈実施例3〉 上記実施例1における、ニッケル多孔質の基体をlMo
1/りの硝酸コバルト溶液に浸漬し、上記実施例と同一
の条件にて浸漬〜乾燥工程を繰返した。この結果、基体
中には、ニッケル100に対し、上記硝酸コバルトを9
.2重泊%含有させることができた。
<Example 3> The porous nickel substrate in Example 1 was
It was immersed in a 1/l cobalt nitrate solution, and the immersion-drying process was repeated under the same conditions as in the above example. As a result, the above-mentioned cobalt nitrate was added to 90% of the nickel in the base.
.. It was possible to contain 20% of the content.

〈実施例4〉 上記実施例1における、ニッケル多孔質の基体を1M0
1/Qの硝酸スカンジウム溶液に1回浸漬し、上記実施
例と同一の条件にて乾燥させた。この結果、基体中には
、ニッケル100に対し、上記硝酸スカンジウムを5.
8重量%含有させることができた。
<Example 4> The nickel porous substrate in Example 1 above was 1M0
It was immersed once in a 1/Q scandium nitrate solution and dried under the same conditions as in the above example. As a result, the above-mentioned scandium nitrate was contained in the base material in proportion to 100 parts of nickel.
It was possible to contain 8% by weight.

〈実施例5〉 上記実施例1における、多孔質基体をコバルトに代え、
このコバルト多孔質の基体をlMo1/ffの硝酸イツ
トリア溶液に浸漬し、上記実施例と同一の条件にて乾燥
させた。この結果、基体中には、コバルト100に対し
、上記硝酸イツトリアを6.2重量%含有させることが
できた。
<Example 5> In Example 1 above, the porous substrate was replaced with cobalt,
This cobalt porous substrate was immersed in a lMo1/ff solution of ytria nitrate and dried under the same conditions as in the above example. As a result, the base material was able to contain 6.2% by weight of the above-mentioned itria nitrate based on 100% cobalt.

〈実施例6〉 上記実施例1における、ニッケル多孔質の基体をlMo
1/(lの硝酸ランタン溶液に浸漬し、上記実施例と同
一の条件にて浸漬〜乾燥工程を繰返した。この結果、基
体中には、ニッケル100に対し、上記硝酸ランタンを
8.31%含有させる口とができた。
<Example 6> The nickel porous substrate in Example 1 above was
The substrate was immersed in a 1/(l) lanthanum nitrate solution, and the immersion-drying process was repeated under the same conditions as in the above example. As a result, the lanthanum nitrate content was 8.31% based on 100 nickel in the substrate. Now we have a mouth to contain it.

〈実施例7〉 上記実施例1における、ニッケル多孔質の基体を1 M
ol/ /lの硝酸セリウム溶液に浸漬し、上記実施例
と同一の条件にて浸漬〜乾燥工程を繰返した。この結果
、基体中には、ニッケル100に対し、上記硝酸セリウ
ムを9.2重間%含有させることができた。
<Example 7> The nickel porous substrate in Example 1 above was 1 M
The sample was immersed in a cerium nitrate solution of 1/2 ol//l, and the immersion-drying process was repeated under the same conditions as in the above example. As a result, the base material was able to contain 9.2% by weight of the cerium nitrate based on 100% nickel.

〈実施例8〉 上記実施例1における、ニッケル多孔質の基体をlMo
1/4のl111@プラセオジウム溶液に浸漬し、上記
実施1りjと同一の条件にて浸漬〜乾燥工程を繰返した
。この結果、基体中には、ニッケル100に対し、上記
gA酸プラセオジウムを9.2tff1%含有させるこ
とができた。
<Example 8> The porous nickel substrate in Example 1 was
It was immersed in 1/4 l111@praseodymium solution, and the immersion-drying process was repeated under the same conditions as in Example 1-j above. As a result, the base material was able to contain 9.2 tff1% of the gA acid praseodymium based on 100 nickel.

〈実施例9〉 上記実施例1における、ニッケル多孔質の基体を1 M
ol/ Qの硝酸ネオジウム溶液に浸漬し、上記実施例
と同一の条件にて浸漬〜乾燥工程を繰返した。この結果
、基体中には、ニッケル100に対し、上記硝酸ネオジ
ウムを8.3重量%含有させることができた。
<Example 9> The porous nickel substrate in Example 1 above was 1 M
The sample was immersed in a neodymium nitrate solution of OL/Q, and the immersion-drying process was repeated under the same conditions as in the above example. As a result, the above-mentioned neodymium nitrate was able to be contained in an amount of 8.3% by weight based on 100% of nickel.

〈実施例10> 上記実施例1における、ニッケル多孔質の基体をlMo
1/gの硝酸プロメチウム溶液に浸漬し、上記実施例と
同一の条件にて浸漬〜乾燥工程を繰返した。この結果、
基体中には、ニッケル100に対し、上記硝酸プロメチ
ウムを8.3重ω%含有させることができた。
<Example 10> The porous nickel substrate in Example 1 was
It was immersed in a 1/g promethium nitrate solution, and the immersion-drying process was repeated under the same conditions as in the above example. As a result,
The base material was able to contain 8.3 weight ω% of the promethium nitrate based on 100% of nickel.

〈実施例11〉 上記実施例1における、ニッケル多孔質の基体を1M0
1/ffの硝酸サマリウム溶液に浸漬し、上記実施例と
同一の条件にて浸漬〜乾燥工程を繰返した。この結果、
基体中には、ニッケル100に対し、上記硝酸サマリウ
ムを9,7重機%含有ざせることかできた。
<Example 11> The nickel porous substrate in Example 1 above was 1M0
It was immersed in a 1/ff samarium nitrate solution, and the immersion-drying process was repeated under the same conditions as in the above example. As a result,
The base material was able to contain 9.7% of the samarium nitrate based on 100% of nickel.

〈実施例12〉 上記実[’lJ1における、ニッケル多孔質の基体をl
Mo1./、2の硝酸ヨーロピニウム溶液に浸漬し、上
記実施例と同一の条件にて浸漬〜乾燥工程を繰返した。
<Example 12> The nickel porous substrate in the above actual ['lJ1]
Mo1. /, 2, and the immersion-drying process was repeated under the same conditions as in the above example.

この結果、基体中には、ニッケル100に対し、上記硝
酸ヨーロビニウムを7.8重量%含有させることができ
た。
As a result, the base material was able to contain 7.8% by weight of eurobinium nitrate based on 100% of nickel.

〈実施例13〉 上記実施例1における、ニッケル多孔質の基体をlMo
1/ffの硝酸イツテリピウム溶液に浸漬し、上記実施
例と同一の条件にて浸漬〜乾燥工程を繰返した。この結
果、基体中には、ニッケル100に対し、上記硝酸イッ
テリビウムを9.5重量%含有させることができた。
<Example 13> The porous nickel substrate in Example 1 was
It was immersed in a 1/ff ittelipium nitrate solution, and the immersion-drying process was repeated under the same conditions as in the above example. As a result, the base material was able to contain 9.5% by weight of the above-mentioned ytterbium nitrate based on 100% of nickel.

以上のようにして得られた各多孔質体を燃料極とし、平
均孔径10JJr!L、空孔率65%のニッケル多孔質
体からなる空気極とを、炭酸塩電解質層の両面に配置し
て燃料電池を構成した。なお、上記電解質層は、炭R塩
60重量%と、この炭酸塩の保持用のセラミック40重
1%との混合物を450℃でホットプレスして得た。
Each of the porous bodies obtained as described above was used as a fuel electrode, and the average pore diameter was 10JJr! A fuel cell was constructed by disposing L and an air electrode made of a nickel porous material with a porosity of 65% on both sides of the carbonate electrolyte layer. The electrolyte layer was obtained by hot pressing at 450° C. a mixture of 60% by weight of carbonate R salt and 1% by weight of 40% ceramic for retaining the carbonate.

これらの各燃料電池の出力特性の経時特性を図中Aに示
す。なお、比較のために、従来の前記第1の方法で得ら
れた燃料極を用いて上述と同様の条件で燃料電池を構成
し、この電池の経時特性を調べたところ、図中8に示す
結果を得た。すなわち、従来の製造方法で製造された燃
料極を組込んだ電池では、作動開始から1000時間経
過した時点で、初期電圧に対してsomvと低下したが
、本実施例の製造方法で製造された燃料極を組込んだ電
池では、初期電圧に対して20mV〜70mvの低下で
あった。
The output characteristics of each of these fuel cells over time are shown in A in the figure. For comparison, a fuel cell was constructed under the same conditions as above using the fuel electrode obtained by the conventional first method, and the aging characteristics of this cell were investigated, as shown in 8 in the figure. Got the results. That is, in a battery incorporating a fuel electrode manufactured by the conventional manufacturing method, the somv decreased with respect to the initial voltage after 1000 hours from the start of operation, but in the battery manufactured by the manufacturing method of this example, the somv decreased. In the batteries incorporating the fuel electrode, the voltage decreased by 20 mV to 70 mV with respect to the initial voltage.

したがって、本発明の方法により得られた燃料極は、燃
料電池の経時的特性向上に十分寄与できることが確認で
きた。
Therefore, it was confirmed that the fuel electrode obtained by the method of the present invention can sufficiently contribute to improving the characteristics of a fuel cell over time.

なお、電池試験後、燃料極を取り外し、X線回折で調査
したところ、基体のピーク以外に添加元素の酸化物が検
出された。したがって、基体に安定化剤を融着させて燃
料極を形成する工程は電池内で十分に行なうことができ
、特にこの熱処理工程を別に設けないことにより、従来
に比べ製造コストの低減を図れることが確認できた。
Note that after the battery test, the fuel electrode was removed and investigated by X-ray diffraction, and oxides of added elements were detected in addition to the peak of the base material. Therefore, the process of fusing the stabilizer to the base to form the fuel electrode can be fully performed within the battery, and in particular, by not providing this separate heat treatment process, manufacturing costs can be reduced compared to conventional methods. was confirmed.

以上詳述したが、本発明は上述した各実施例に限定され
るものではない。たとえばX上記実施例では基体として
ニッケルおよびコバルトを使用したが、銅を用いても良
い。また、安定化剤としてはクロム、アルミニウム、イ
ツトリア、スカンジウム、希土類元素(La  (57
) 〜mu  (71))等を用いることもできる。ま
た、上記実施例では、基体に十分な強度を有する焼結体
を用いたが、ハンドリングが可能な程度に半焼結したも
のを用い、安定化剤の添加工程の後、再焼結するように
しても良い。
Although described in detail above, the present invention is not limited to the embodiments described above. For example, although nickel and cobalt were used as the substrate in the above embodiment, copper may also be used. In addition, as stabilizers, chromium, aluminum, ittria, scandium, rare earth elements (La (57
) ~mu (71)) etc. can also be used. In addition, in the above example, a sintered body with sufficient strength was used as the base, but it was semi-sintered to the extent that it could be handled, and it was re-sintered after the stabilizer addition process. It's okay.

また、安定化剤を添加するための溶液は、硝酸塩水溶液
に限ることなく、塩化物、WIM等の水溶液であっても
良い。さらには、これらをアルカリ水溶液に浸漬して、
上記安定化剤を水酸化物として基体中に析出させても良
い。なお、アルカリ水溶液としては、水酸化カリウム、
水酸化リチウム、水酸化ナトリウムが使用できる。さら
には第2元素を含むアルコキシド溶液(アルコール溶液
)を用いて含浸したものを用いても良い。
Further, the solution for adding the stabilizer is not limited to an aqueous nitrate solution, but may be an aqueous solution of chloride, WIM, or the like. Furthermore, by immersing them in an alkaline aqueous solution,
The stabilizer may be precipitated into the substrate as a hydroxide. In addition, as the alkaline aqueous solution, potassium hydroxide,
Lithium hydroxide and sodium hydroxide can be used. Furthermore, a material impregnated with an alkoxide solution (alcohol solution) containing a second element may also be used.

また、本発明は、上記硝酸塩、塩化物、硫酸等の水溶液
に多孔質基体を浸漬し、乾燥させた後、上記アルカリ水
溶液に浸漬し乾燥させ、燃料電池に組込むようにしても
良い。本発明者等の実験によると、この場合には、上述
した各実施例よりも更に良好な特性が得られることが確
認できた。
Further, in the present invention, the porous substrate may be immersed in an aqueous solution of the above-mentioned nitrate, chloride, sulfuric acid, etc., dried, and then immersed in the above-mentioned alkaline aqueous solution, dried, and incorporated into a fuel cell. According to experiments conducted by the present inventors, it has been confirmed that in this case, even better characteristics than those of the above-mentioned Examples can be obtained.

このように、本発明は、その要旨を逸脱しない範囲で種
々変更して実施することができる。
As described above, the present invention can be implemented with various modifications without departing from the gist thereof.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の実施例1〜13で得られた燃料極を組込ん
だ燃料電池と比較例に係る燃料極を組込んだ燃料電池の
出力電圧の経時特性(低下電圧)を示す特性図である。
The figure is a characteristic diagram showing the temporal characteristics (voltage drop) of output voltage of fuel cells incorporating fuel electrodes obtained in Examples 1 to 13 of the present invention and fuel cells incorporating fuel electrodes according to comparative examples. be.

Claims (6)

【特許請求の範囲】[Claims] (1)第1の金属からなる粉末を焼結して多孔質基体を
形成し、得られた上記基体を第2の金属を含む溶液に含
浸し乾燥させた後、そのまま電池に組込み、電池動作温
度において前記第1の金属中に前記第2の金属を析出さ
せるようにしたことを特徴とする溶融炭酸塩型燃料電池
の燃料極の製造方法。
(1) Sinter a powder made of a first metal to form a porous substrate, impregnate the obtained substrate in a solution containing a second metal, dry it, and then incorporate it into a battery as it is to operate the battery. A method for manufacturing a fuel electrode for a molten carbonate fuel cell, characterized in that the second metal is precipitated in the first metal at a temperature.
(2)前記第1の金属は、ニッケル、コバルトまたは銅
からなり、第2の金属は、クロム、アルミニウム、コバ
ルト、スカンジウム、イットリア、ランタンノイド系元
素(ランタン(57)〜ルテエチーウム(Lu))また
はこれらの2種以上の混合物であることを特徴とする特
許請求の範囲第1項記載の溶融炭酸塩型燃料電池の燃料
極の製造方法。
(2) The first metal is nickel, cobalt or copper, and the second metal is chromium, aluminum, cobalt, scandium, yttria, lanthanoid elements (lanthanum (57) to luteethium (Lu)) or The method for producing a fuel electrode for a molten carbonate fuel cell according to claim 1, which is a mixture of two or more of these.
(3)前記第2の金属は、基体中に酸化物、水酸化物ま
たは前記第1の金属との合金の形態で析出されるもので
あることを特徴とする特許請求の範囲第1項記載の溶融
炭酸塩型燃料電池の燃料極の製造方法。
(3) The second metal is deposited in the substrate in the form of an oxide, hydroxide, or an alloy with the first metal. A method for manufacturing a fuel electrode for a molten carbonate fuel cell.
(4)前記溶液は、硝酸塩、塩化物または硫酸物のうち
のいずれかひとつの水溶液であることを特徴とする特許
請求の範囲第1項記載の溶融炭酸塩型燃料電池の燃料極
の製造方法。
(4) The method for manufacturing a fuel electrode for a molten carbonate fuel cell according to claim 1, wherein the solution is an aqueous solution of any one of nitrates, chlorides, and sulfates. .
(5)前記溶液は、金属アルコキシドを含むアルコール
溶液であることを特徴とする特許請求の範囲第1項記載
の溶融炭酸塩型燃料電池の燃料極の製造方法。
(5) The method for manufacturing a fuel electrode for a molten carbonate fuel cell according to claim 1, wherein the solution is an alcohol solution containing a metal alkoxide.
(6)前記第2の金属を含む硝酸塩水溶液に前記基体を
浸漬した後乾燥させ、前記第2の金属を含むアルカリ水
溶液に浸漬して乾燥させるようにしたことを特徴とする
特許請求の範囲第1項記載の溶融炭酸塩型燃料電池の燃
料極の製造方法。
(6) The substrate is immersed in a nitrate aqueous solution containing the second metal and then dried, and then immersed in an alkaline aqueous solution containing the second metal and dried. A method for producing a fuel electrode for a molten carbonate fuel cell according to item 1.
JP60214509A 1985-09-30 1985-09-30 Manufacture of fuel electrode for fuel cell of molten carbonate type Pending JPS6276159A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60214509A JPS6276159A (en) 1985-09-30 1985-09-30 Manufacture of fuel electrode for fuel cell of molten carbonate type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60214509A JPS6276159A (en) 1985-09-30 1985-09-30 Manufacture of fuel electrode for fuel cell of molten carbonate type

Publications (1)

Publication Number Publication Date
JPS6276159A true JPS6276159A (en) 1987-04-08

Family

ID=16656894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60214509A Pending JPS6276159A (en) 1985-09-30 1985-09-30 Manufacture of fuel electrode for fuel cell of molten carbonate type

Country Status (1)

Country Link
JP (1) JPS6276159A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63138658A (en) * 1986-11-28 1988-06-10 Sanyo Electric Co Ltd Fuel electrode for fused carbonate fuel cell
JPS6460965A (en) * 1986-04-02 1989-03-08 Inst Gas Technology Manufacture of stabilized molten carbonate fuel cell porous anode
JPH05159785A (en) * 1991-12-02 1993-06-25 Hitachi Ltd Electrode and manufacture thereof for fuel cell

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60150558A (en) * 1984-01-17 1985-08-08 Agency Of Ind Science & Technol Production method of fuel electrode for melted carbonate type fuel cell
JPS60154466A (en) * 1984-01-24 1985-08-14 Matsushita Electric Ind Co Ltd Manufacture of fuel electrode for molten carbonate fuel cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60150558A (en) * 1984-01-17 1985-08-08 Agency Of Ind Science & Technol Production method of fuel electrode for melted carbonate type fuel cell
JPS60154466A (en) * 1984-01-24 1985-08-14 Matsushita Electric Ind Co Ltd Manufacture of fuel electrode for molten carbonate fuel cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6460965A (en) * 1986-04-02 1989-03-08 Inst Gas Technology Manufacture of stabilized molten carbonate fuel cell porous anode
JPS63138658A (en) * 1986-11-28 1988-06-10 Sanyo Electric Co Ltd Fuel electrode for fused carbonate fuel cell
JPH05159785A (en) * 1991-12-02 1993-06-25 Hitachi Ltd Electrode and manufacture thereof for fuel cell

Similar Documents

Publication Publication Date Title
US4247604A (en) Carbonate fuel cell anodes
JP5391391B2 (en) Method for producing NiO-ceramic composite powder
JP5642197B2 (en) Composite ceramic material and method for producing the same
JP3003163B2 (en) Method for producing electrode for molten carbonate fuel cell
JP5218419B2 (en) Nickel oxide powder material for solid oxide fuel cell, method for producing the same, fuel electrode material using the same, fuel electrode, and solid oxide fuel cell
Maric et al. High‐performance Ni‐SDC cermet anode for solid oxide fuel cells at medium operating temperature
EP0448517B1 (en) Carbonate fuel cell anodes
JPH0746610B2 (en) Molten carbonate fuel cell positive electrode and method for producing the same
US4654195A (en) Method for fabricating molten carbonate ribbed anodes
JPS6276159A (en) Manufacture of fuel electrode for fuel cell of molten carbonate type
KR101756695B1 (en) Method of preparing Ni/YSZ core-shell structures by using surfactant and ultrasonication
JPH09259895A (en) Electrode base of solid electrolytic fuel cell
JPH0869804A (en) Anode for fused carbonate fuel cell and its preparation
JPS60150558A (en) Production method of fuel electrode for melted carbonate type fuel cell
JP2947495B2 (en) Fuel electrode fabrication method for solid oxide fuel cells
CN115548356B (en) Preparation method and application of perovskite type solid oxide battery electrode catalyst
JPH03141555A (en) Manufacture of fuel electrode for molten carbonate fuel cell
JP2005166285A (en) Material for solid oxide electrolyte and manufacturing method of solid oxide electrolyte
JP2771090B2 (en) Solid oxide fuel cell
JPH077668B2 (en) Molten carbonate fuel cell electrode
JPS61225772A (en) Manufacture of molten carbonate fuel cell
JPH10247502A (en) Method for forming fuel electrode of solid electrolyte type fuel cell
JPS60212963A (en) Manufacture of electrolyte of molten carbonate fuel cell
JPS625566A (en) Manufacture of fuel electrode of molten carbonate type fuel cell
JPH06267571A (en) Solid electrolyte type fuel cell