KR100441940B1 - Preparation method of nickel-aluminum-titanium fuel electrode for melt carbonate type fuel cell to improve performance of the resulted electrode with reduced cost - Google Patents

Preparation method of nickel-aluminum-titanium fuel electrode for melt carbonate type fuel cell to improve performance of the resulted electrode with reduced cost Download PDF

Info

Publication number
KR100441940B1
KR100441940B1 KR1019970036670A KR19970036670A KR100441940B1 KR 100441940 B1 KR100441940 B1 KR 100441940B1 KR 1019970036670 A KR1019970036670 A KR 1019970036670A KR 19970036670 A KR19970036670 A KR 19970036670A KR 100441940 B1 KR100441940 B1 KR 100441940B1
Authority
KR
South Korea
Prior art keywords
aluminum
nickel
titanium
fuel cell
sintering
Prior art date
Application number
KR1019970036670A
Other languages
Korean (ko)
Other versions
KR19990013087A (en
Inventor
윤영기
최영태
Original Assignee
한국전력공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력공사 filed Critical 한국전력공사
Priority to KR1019970036670A priority Critical patent/KR100441940B1/en
Publication of KR19990013087A publication Critical patent/KR19990013087A/en
Application granted granted Critical
Publication of KR100441940B1 publication Critical patent/KR100441940B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • H01M4/8885Sintering or firing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8621Porous electrodes containing only metallic or ceramic material, e.g. made by sintering or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8857Casting, e.g. tape casting, vacuum slip casting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE: A preparation method of a nickel-aluminum-titanium fuel electrode for a melt carbonate type fuel cell is provided to improve the performance of the resulted fuel cell electrode, including creepage and sintering resistance while reducing the production cost and the number of steps, thereby being suitably applied to a mass production. CONSTITUTION: The preparation method of a nickel-aluminum-titanium fuel electrode for a melt carbonate type fuel cell is produced by mixing powder of nickel, aluminum and titanium; adding a solvent to the resulted mixture; ball milling the mixture to obtain a nickel-aluminum-titanium slurry; defoaming the slurry; carrying out tape casting of the resulted slurry and drying it to provide a green sheet; carrying out continuous sintering of the green sheet; and depositing intermetallic compounds for preventing creepage and post-sintering.

Description

용융탄산염형 연료전지용 니켈-알루미늄-타이타늄 연료극의 제조방법 및 연료극.A method for producing a nickel-aluminum-titanium fuel electrode for a molten carbonate fuel cell and a fuel electrode.

본 발명은 용융탄산염형 연료전지의 제조단가를 획기적으로 낮추며 연료극의 성능을 높이는 것을 목적으로 하는 니켈-알루미늄-타이타늄 연료극의 제조방법 및 그에 따라 제조된 연료극에 관한 것이다.The present invention relates to a method for manufacturing a nickel-aluminum-titanium fuel electrode, and a fuel electrode manufactured according to the purpose of significantly lowering the manufacturing cost of the molten carbonate type fuel cell and increasing the performance of the fuel electrode.

연료전지란 반응물의 화학에너지를 전기에너지로 직접 변환시키는 고효율, 저공해의 발전장치이다.A fuel cell is a high efficiency, low pollution power generation device that directly converts chemical energy of a reactant into electrical energy.

연료전지에서 사용되던 종래의 니켈 연료극은 연료전지의 장기 운전동안 소결저항성 부족과 더불어 크립 및 구조적 안정성문제를 겪어왔다. 이러한 문제들은 다음과 같은 여러 가지 바람직하지 못한 결과들을 초래한다. 즉, 연료극에서는 기공의 구조와 분포의 변화가 일어나며 전기적 접촉의 상실로 인한 접촉 저항의 증가가 발견된다. 더욱이 연료극은 미세기공의 형성으로 인해 전해질의 이동을 겪게되어, 전해질 크립과 연료극내의 전해질의 양이 증가하여 연료극의 성능이 떨어지게 된다고 알려져 왔다.Conventional nickel anodes used in fuel cells have suffered from creep and structural stability problems along with a lack of sintering resistance during long term operation of fuel cells. These problems have a number of undesirable consequences. That is, the change in the structure and distribution of the pore occurs in the anode and the increase in contact resistance due to the loss of electrical contact is found. Furthermore, it has been known that the anode undergoes migration of the electrolyte due to the formation of micropores, thereby increasing the amount of the electrolyte creep and the electrolyte in the anode, thereby degrading the performance of the anode.

상기의 문제점들을 해결 또는 감소시키기 위해, 연료극의 크립을 감소시키고 소결저항성을 증가시키려는 다양한 시도가 행하여져 왔다.In order to solve or reduce the above problems, various attempts have been made to reduce the creep of the anode and to increase the sintering resistance.

그 중 한 방법이 니켈 연료극에 리튬 알루미네이트를 물리적 또는 화학적인 방법으로 분산시키는 것이다. 그러나 이 방법은 연료극에 분산된 리튬 알루미네이트 입자들이 금속입자 표면에만 한정되어 존재하고 니켈 금속입자내의 디스로케이션(dislocation)이동을 방지하는 사이트(site)로서 작용하지 못하기 때문에 효과적이지 못하다. 예를 들어 알루미늄 산화물(Al2O3), 지르코늄 산화물(ZrO2), 타이타늄 산화물(TiO2), 마그네슘 산화물(MgO)등과 같은 다양한 산화물 입자들의 분산도, 이와 마찬가지로 니켈 금속입자내로 산화물 입자가 분산되지 않고 표면에만 존재하는 경우 효과적이지 못하다.One method is to disperse lithium aluminate in the nickel anode by physical or chemical methods. However, this method is not effective because the lithium aluminate particles dispersed in the anode are limited to the metal particle surface and do not act as a site for preventing dislocation movement in the nickel metal particles. For example, the dispersion of various oxide particles such as aluminum oxide (Al 2 O 3 ), zirconium oxide (ZrO 2 ), titanium oxide (TiO 2 ), magnesium oxide (MgO), and the like, and oxide particles are similarly dispersed in nickel metal particles. It is not effective if it exists only on the surface.

또 다른 방법은 연료극에 니켈-크롬 합금을 사용하여 전극내에 크롬산화물(Cr2O3) 입자들을 분산시키는 것이다. 니켈-크롬 합금으로 제조된 전극은 단시간의 연료전지 운전에서는 크립과 소결저항성의 상당한 증가를 보였으나, 장기간의 운전에서는 전극내에 분산된 크롬산화물 입자들에 의해 형성된 불안정한 구조에 의해 크립과 물리적 변화가 가속되는 것으로 판명되었다. 크롬의 함량이 큰 경우 크립저항성은 상당히 크게 증가하지만 합금입자 내부의 크롬산화물을 소모하면서 합금입자의 바깥쪽으로 성장하는 크롬 산화물 층은 전해질에 의한 전극의 지나친 적심(wetting)과 가스/금속 계면에서의 선택적인 산화물 손실을 유발한다.Another method is to disperse chromium oxide (Cr 2 O 3 ) particles in the electrode using a nickel-chromium alloy on the anode. Electrodes made of nickel-chromium alloys showed a significant increase in creep and sinter resistance in short-term fuel cell operation, but in long-term operation, creep and physical changes were caused by unstable structures formed by chromium oxide particles dispersed in the electrode. It turned out to be accelerated. If the chromium content is large, the creep resistance increases considerably, but the chromium oxide layer that grows out of the alloy particles while consuming the chromium oxide inside the alloy particles may be excessively wetted by the electrolyte and at the gas / metal interface. Causes selective oxide loss.

그 외의 방법으로는 연료극 제조에 금속이 코팅된 세라믹 입자를 사용하는 것이다. 그러나 이 방법은 연료전지 운전 초기에 크립이 심하고 장기운전에서의 크립저항성이 충분히 검증되지 않았다.Another method is to use ceramic particles coated with metal to manufacture the anode. However, this method is extremely creep early in fuel cell operation and the creep resistance in long term operation has not been fully verified.

최근 들어 연료극 크립 문제를 해결하는 방법 중 가장 효과적이라고 생각되는 방법은 니켈-알루미늄 합금을 사용하여 전극을 제조하는 것이다. 이 방법은 산화-환원의 2단계 소결을 거쳐 제조되는데 소결 후 합금입자 표면은 니켈 산화물을 포함하고 내부는 알루미늄 산화물 입자들이 분포된 구조를 가지게 되어 우수한 크립 저항성과 소결저항성을 가지게 된다. 그러나 산화-환원의 2단계 소결 방법은 대량생산에 필수적인 연속소결 조건에 불리하고 공정이 늘어나는 단점이 있다. 더욱이 2단계 소결방법으로는 산화단계에서 전극의 기공구조가 결정되어 이를 조절하기 어려우며, 분산된 산화물이 연료극의 전도도를 감소시키고 전해질과 반응하여 전해질을 소모시키는 단점이 있다. 일반적으로 기존의 니켈-알루미늄 합금 연료극은 크립저항성은 우수하나 장기성능이 비교적 좋지 못한 단점이 있다. 또한 니켈-알루미늄 합금분말은 고가이어서 연료극의 제작단가를 높이는 단점이 있다.In recent years, the most effective method to solve the anode creep problem is to manufacture an electrode using a nickel-aluminum alloy. This method is manufactured through two-step sintering of oxidation-reduction. After sintering, the alloy particle surface includes nickel oxide and the inside has a structure in which aluminum oxide particles are distributed, thereby having excellent creep resistance and sinter resistance. However, the two-step sintering method of redox is disadvantageous in terms of continuous sintering conditions necessary for mass production and an increase in process. In addition, the pore structure of the electrode is difficult to control by the two-step sintering method in the oxidation step, and the dispersed oxide reduces the conductivity of the anode and consumes the electrolyte by reacting with the electrolyte. In general, the conventional nickel-aluminum alloy anode has excellent creep resistance, but has a disadvantage in that long-term performance is relatively poor. In addition, the nickel-aluminum alloy powder is expensive, which increases the manufacturing cost of the anode.

본 발명의 목적은 니켈 분말, 알루미늄 분말 및 타이타늄 분말을 각각 혼합하여 용융탄산염형 연료전지용 니켈-알루미늄-타이타늄 연료극을 제조하는 방법을 제공하는데 있다.An object of the present invention is to provide a method for producing a nickel-aluminum-titanium fuel electrode for a molten carbonate fuel cell by mixing nickel powder, aluminum powder and titanium powder, respectively.

본 발명의 또 다른 목적은 상기 방법에 의해 용융탄산염형 연료전지용 니켈-알루미늄-타이타늄 연료극을 제공하는데 있다.Another object of the present invention is to provide a nickel-aluminum-titanium anode for a molten carbonate fuel cell by the above method.

상기와 같은 목적을 달성하기 위한 용융탄산염형 연료전지용 니켈-알루미늄-타이타늄 연료극의 제조방법은 니켈 분말, 알루미늄 분말 및 타이타늄 분말을 혼합하는 제 1단계; 상기 혼합물에 용매를 첨가하는 제 2단계; 상기 혼합물을 볼밀링하여 니켈-알루미늄-타이타늄 슬러리를 제조하는 제 3단계; 상기 슬러리를 탈포하는 제 4단계; 상기 슬러리를 테이프 캐스팅 및 건조하여 그린쉬트를 만드는 제 5단계; 상기 그린 쉬트를 연속소결하는 제 6단계 및 소결 후 크립과 후소결을 억제하기 위해 금속간화합물을 석출하는 제 7단계를 포함하는 것을 특징으로 한다.Method for producing a nickel-aluminum-titanium fuel electrode for a molten carbonate fuel cell for achieving the above object is a first step of mixing nickel powder, aluminum powder and titanium powder; Adding a solvent to the mixture; Ball milling the mixture to prepare a nickel-aluminum-titanium slurry; A fourth step of defoaming the slurry; A fifth step of making the green sheet by tape casting and drying the slurry; And a seventh step of continuously sintering the green sheet and a seventh step of depositing an intermetallic compound to suppress creep and post sintering after sintering.

본 발명의 또 다른 특징은 상기의 방법에 따라 제조된 용융탄산염형 연료전지용 니켈-알루미늄-타이타늄 연료극에 있다.Another feature of the present invention is a nickel-aluminum-titanium fuel electrode for a molten carbonate fuel cell manufactured according to the above method.

이하에서 먼저 니켈-알루미늄-타이타늄 연료극의 제조방법을 설명하고 그에 따라 제조된 니켈-알루미늄-타이타늄 연료극에 관해 설명하기로 한다.Hereinafter, a method of manufacturing a nickel-aluminum-titanium anode is described first, and a nickel-aluminum-titanium anode prepared accordingly will be described.

우선 니켈-알루미늄-타이타늄 연료극의 제조방법은 니켈 분말, 알루미늄 분말 및 타이타늄 분말을 혼합하는 단계, 상기 혼합물에 용매를 혼합하는 단계, 상기 혼합물로 니켈-알루미늄-타이타늄 슬러리를 만드는 단계, 슬러리로 그린 쉬트를 만드는 단계, 그린 쉬트를 연속소결하는 단계 및 소결 후 금속간 화합물을 석출하는 단계로 구분되어질 수 있다.First, a method of manufacturing a nickel-aluminum-titanium anode is a method of mixing nickel powder, aluminum powder and titanium powder, mixing a solvent with the mixture, making a nickel-aluminum-titanium slurry from the mixture, and a green sheet from the slurry. It can be divided into the step of making, the step of continuously sintering the green sheet and the step of precipitating the intermetallic compound after sintering.

본 발명은 연료극에 우수한 크립 저항성과 우수한 초기 및 장기성능을 부여하기 위해 타이타늄을 이용한다. 즉, 타이타늄은 니켈에 고용되어 존재하거나 단독으로 존재하며, 연료전지 작동온도에서 수소의 용해도가 크므로 수소화합물을 잘 형성한다. 따라서 타이타늄과 그 금속간화합물의 존재는 연료극내에서 유효 수소농도를 높이는 역할을 하여 연료극에 우수한 크립 저항성과 우수한 초기 및 장기성능을 부여한다.The present invention uses titanium to give the fuel electrode excellent creep resistance and excellent initial and long term performance. That is, titanium is dissolved in nickel or exists alone, and since the solubility of hydrogen is high at the fuel cell operating temperature, it forms a hydrogen compound well. Therefore, the presence of titanium and the intermetallic compound serves to increase the effective hydrogen concentration in the anode, thereby giving the anode excellent creep resistance and excellent initial and long term performance.

상기와 같은 타이타늄을 이용한 니켈-알루미늄-타이타늄 혼합물을 만드는 단계에서, 니켈 분말, 알루미늄 분말, 및 타이타늄 분말의 입도는 각각 2내지 3㎛, 2내지 10㎛ 및 2내지 10㎛ 크기인 것이 바람직하며, 니켈분말, 알루미늄분말, 타이타늄분말을 무게비로 80wt.%: 5wt.%: 15wt.% 내지 90wt.%: 5wt.%: 5wt.%로 혼합하는 것이 바람직하다.In the step of making the nickel-aluminum-titanium mixture using titanium as described above, the particle size of the nickel powder, the aluminum powder, and the titanium powder is preferably 2 to 3 µm, 2 to 10 µm, and 2 to 10 µm, respectively. Nickel powder, aluminum powder and titanium powder are preferably mixed at a weight ratio of 80 wt.%: 5 wt.%: 15 wt.% To 90 wt.%: 5 wt.%: 5 wt.%.

니켈, 알루미늄, 타이타늄 분말을 각각 혼합한 후, 상기 혼합물에 용매를 혼합한다. 용매는 상기 니켈-알루미늄-타이타늄 혼합물에 대해 무게비가 1:0.7 내지 1:1.2, 바람직하게는 1:0.8로 첨가되며, 용매로는 알루미늄과 반응하지 않는 유기용제를 사용한다. 특히 톨루엔, 헵탄, 헥산 등을 사용하는 것이 적당하다.After mixing nickel, aluminum and titanium powder, respectively, the solvent is mixed with the mixture. The solvent is added in a weight ratio of 1: 0.7 to 1: 1.2, preferably 1: 0.8 with respect to the nickel-aluminum-titanium mixture, and an organic solvent that does not react with aluminum is used as the solvent. In particular, it is suitable to use toluene, heptane, hexane and the like.

용매가 첨가된 니켈-알루미늄-타이타늄 혼합물을 슬러리로 만들어 볼밀링한다. 볼밀링시에는 바인더와 분산제 및 소포제를 상기 혼합물에 혼합하며, 24시간 내지 48시간 볼밀링하는 것이 바람직하다. 상기에서 소포제는 기포제거제의 역할을 한다.The solvent-added nickel-aluminum-titanium mixture is slurried and ball milled. When ball milling, it is preferable to mix a binder, a dispersing agent, and an antifoamer to the said mixture, and to ball mill 24 to 48 hours. The antifoaming agent serves as a defoamer.

볼밀링에 의해 획득된 슬러리는 슬러리에 포함된 기포를 제거하기 위해 탈포과정을 거치며, 바람직하게는 10분 내지 30분 진공펌프로 탈포하는 것이 적당하다.The slurry obtained by ball milling is subjected to a degassing process to remove bubbles contained in the slurry, and preferably degassed with a vacuum pump for 10 minutes to 30 minutes.

탈포가 끝난 슬러리는 테이프 캐스팅을 하고 건조하여 그린 쉬트를 제조한다. 테이프 캐스팅의 방법으로는 닥터-블레이드법(doctor-blade)법이 적당하며, 그린 쉬트의 두께는 0.7 내지 0.8㎜로 제조하는 것이 바람직하다.The degassed slurry is tape casted and dried to produce a green sheet. The doctor-blade method is suitable for the tape casting method, and the thickness of the green sheet is preferably made from 0.7 to 0.8 mm.

상기의 그린 쉬트를 연속소결로에서 연속소결한다. 연속소결은 최고온도가 1000 내지 1300℃, 시간은 30분 내지 4시간이 되도록 설정한 후, 질소/수소 환원분위기에서 실행하는 것이 바람직하다. 배치(batch)형의 로일경우에도 상기와 동일하게 최고온도는 1000 내지 1300℃로, 시간은 30분이 되도록 설정한 후 질소/수소 환원분위기에서 소결한다.The green sheet is continuously sintered in a continuous sintering furnace. Continuous sintering is preferably performed in a nitrogen / hydrogen reduction atmosphere after setting the maximum temperature at 1000 to 1300 ° C. and the time at 30 minutes to 4 hours. Even in the case of a batch furnace, the maximum temperature is set to 1000 to 1300 ° C. and the time is set to 30 minutes, followed by sintering in a nitrogen / hydrogen reduction atmosphere.

상기의 소결과정 후, 연료극의 크립과 후소결을 억제하기 위해, 금속간 화합물을 석출한다.After the above sintering process, intermetallic compounds are deposited to suppress creep and post sintering of the anode.

즉, 소결과정에서 알루미늄은 액상을 형성하고, 알루미늄의 표면은 환원분위기 가스에 불순물로 포함된 산소와 반응하여 산화물을 형성하고, 니켈과 접촉한 알루미늄은 니켈에 고용되어 액상으로 존재하는 알루미늄은 사라지게 된다. 이 과정에서 알루미늄의 타이타늄으로의 고용화와 타이타늄의 니켈로의 고용화가 동시에 진행된다.That is, in the sintering process, aluminum forms a liquid phase, and the surface of aluminum reacts with oxygen contained as impurities in the reducing atmosphere gas to form an oxide, and aluminum in contact with nickel dissolves in nickel so that aluminum existing in the liquid phase disappears. do. In this process, the solid solution of aluminum to titanium and the solid solution of titanium to nickel proceed simultaneously.

그리고 소결 후 온도를 내리는 과정에서, 니켈에 과포화된 알루미늄과 타이타늄에 과포화된 알루미늄은 니켈입자와 타이타늄입자의 표면과 내부에서 알루미늄니켈(Ni3Al)과 알루미늄타이타늄(TiAl) 형태의 금속간 화합물로 석출되게 된다. 이러한 방식의 강화를 석출강화라고 한다.In the process of lowering the temperature after sintering, aluminum supersaturated in nickel and aluminum supersaturated in titanium are intermetallic compounds in the form of aluminum nickel (Ni 3 Al) and aluminum titanium (TiAl) on the inside and inside of the nickel particles and the titanium particles. It will be deposited. This type of strengthening is called precipitation strengthening.

상기의 석출되는 금속간 화합물의 양과 분포는 첨가되는 알루미늄 분말의 양, 소결온도 및 온도를 내리는 속도에 의해 결정된다. 즉, 소결온도가 높아질수록 니켈과 타이타늄에 고용된 후 석출되는 알루미늄의 양이 많으며, 온도를 내리는 속도가 빠를수록 석출되는 입자의 크기가 작아지므로 석출강화에 유리하다.The amount and distribution of the precipitated intermetallic compound is determined by the amount of aluminum powder added, the sintering temperature and the rate of lowering the temperature. That is, as the sintering temperature increases, the amount of aluminum precipitated after solid solution in nickel and titanium increases, and the faster the temperature is lowered, the smaller the size of precipitated particles is, which is advantageous for strengthening precipitation.

본 발명인 용융탄산염형 연료전지용 니켈-알루미늄-타이타늄 연료극의 제조방법 및 연료극에 의해, 고가의 니켈-알루미늄 합금분말로 인한 높은 제작단가를 획기적으로 낮출 수 있게 되었다. 그리고 기존의 니켈-알루미늄 합금 연료극과는 달리 크립 강도는 유지하면서 전도도의 저하는 방지할 수 있게 되었으며, 전해질의 소모는 감소시킬 수 있게 되었다. 또한 기존의 니켈-알루미늄 합금 연료극 제조에 비해 본 발명에서는 환원의 1단계 소결만으로 연료극을 제조하여 공정을 단순화하고 대량생산에 필수적인 연속소결이 가능하도록 하는 우수성이 있다.The manufacturing method and fuel electrode of the nickel-aluminum-titanium fuel electrode for the molten carbonate fuel cell of the present invention can significantly lower the manufacturing cost due to the expensive nickel-aluminum alloy powder. Unlike the conventional nickel-aluminum alloy anode, the conductivity can be prevented while maintaining the creep strength, and the electrolyte consumption can be reduced. In addition, in the present invention, compared to the conventional nickel-aluminum alloy anode production, there is an advantage of simplifying the process by manufacturing the anode by only one step sintering of reduction and enabling continuous sintering, which is essential for mass production.

Claims (6)

용융탄산염형 연료전지용 니켈-알루미늄-타이타늄 연료극의 제조방법에 있어서,In the method of manufacturing a nickel-aluminum-titanium fuel electrode for a molten carbonate fuel cell, 니켈 분말, 알루미늄 분말 및 타이타늄 분말을 혼합하는 제 1단계; 상기 혼합물에 용매를 첨가하는 제 2단계; 상기 혼합물을 볼밀링하여 니켈-알루미늄-타이타늄 슬러리를 제조하는 제 3단계; 상기 슬러리를 탈포하는 제 4단계; 상기 슬러리를 테이프 캐스팅 및 건조하여 그린쉬트를 만드는 제 5단계; 상기 그린 쉬트를 연속소결하는 제 6단계 및 소결 후 크립과 후소결을 억제하기 위해 금속간화합물을 석출하는 제 7단계를 포함하는 용융탄산염형 연료전지용 니켈-알루미늄-타이타늄 연료극의 제조방법.A first step of mixing nickel powder, aluminum powder and titanium powder; Adding a solvent to the mixture; Ball milling the mixture to prepare a nickel-aluminum-titanium slurry; A fourth step of defoaming the slurry; A fifth step of making the green sheet by tape casting and drying the slurry; And a seventh step of continuously sintering the green sheet and a seventh step of depositing an intermetallic compound to suppress creep and post sintering after sintering. 제 1항에 있어서, 제 1단계는 니켈 분말, 알루미늄 분말 및 타이타늄 분말을 80wt.% :5wt.% :15wt.% 내지 90wt.% :5wt.% :5wt.% 의 무게비로 혼합하는 것을 특징으로 하는 용융탄산염형 연료전지용 니켈-알루미늄-타이타늄 연료극의 제조방법.The method of claim 1, wherein the first step is to mix the nickel powder, aluminum powder and titanium powder in a weight ratio of 80wt.%: 5wt.%: 15wt.% To 90wt.%: 5wt.%: 5wt.%. A method for producing a nickel-aluminum-titanium fuel electrode for a molten carbonate fuel cell. 제 1항에 있어서, 상기 용매는 알루미늄과 반응하지 않는 유기용제, 바람직하게는 톨루엔, 헵탄, 헥산 등으로부터 선택되며 니켈-알루미늄-타이타늄 혼합물에 대해 무게비가 1:0.7 내지 1:1.2, 바람직하게는 1:0.8로 첨가되는 것을 특징으로 하는 용융탄산염형 연료전지용 니켈-알루미늄-타이타늄 연료극의 제조방법.The method of claim 1, wherein the solvent is selected from an organic solvent which does not react with aluminum, preferably toluene, heptane, hexane and the like, and has a weight ratio of 1: 0.7 to 1: 1.2 with respect to the nickel-aluminum-titanium mixture. A method for producing a nickel-aluminum-titanium fuel electrode for molten carbonate fuel cell, characterized in that it is added at 1: 0.8. 제 1항에 있어서, 제 6단계의 연속소결은 최고온도가 1000 내지 1300℃, 시간은 30분 내지 4시간으로, 질소/수소 환원분위기로 하는 것을 특징으로 하는 용융탄산염형 연료전지용 니켈-알루미늄-타이타늄 연료극의 제조방법.The method of claim 1, wherein the continuous sintering of the sixth step, the maximum temperature is 1000 to 1300 ℃, the time is 30 minutes to 4 hours, the molten carbonate type fuel cell nickel-aluminum-, characterized in that the nitrogen / hydrogen reduction atmosphere Titanium fuel electrode manufacturing method. 제 1항에 있어서, 제 7단계의 금속간 화합물의 석출은 석출강화방식을 사용하며, 금속간 화합물의 석출양과 분포는 첨가되는 알루미늄 분말의 양, 소결온도 및 온도를 내리는 속도에 의해 결정되는 것을 특징으로 하는 용융탄산염형 연료전지용 니켈-알루미늄-타이타늄 연료극의 제조방법.The method of claim 1, wherein the precipitation of the intermetallic compound in the seventh step uses a precipitation strengthening method, and the amount and distribution of the intermetallic compound are determined by the amount of aluminum powder added, the sintering temperature, and the rate of decreasing the temperature. A method for producing a nickel-aluminum-titanium fuel electrode for a molten carbonate fuel cell. 제 1항 내지 제 5항 중 어느 한 항에 따른 방법에 의해 제조된 용융탄산염형 연료전지용 니켈-알루미늄-타이타늄 연료극.A nickel-aluminum-titanium fuel electrode for a molten carbonate fuel cell manufactured by the method according to any one of claims 1 to 5.
KR1019970036670A 1997-07-31 1997-07-31 Preparation method of nickel-aluminum-titanium fuel electrode for melt carbonate type fuel cell to improve performance of the resulted electrode with reduced cost KR100441940B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970036670A KR100441940B1 (en) 1997-07-31 1997-07-31 Preparation method of nickel-aluminum-titanium fuel electrode for melt carbonate type fuel cell to improve performance of the resulted electrode with reduced cost

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970036670A KR100441940B1 (en) 1997-07-31 1997-07-31 Preparation method of nickel-aluminum-titanium fuel electrode for melt carbonate type fuel cell to improve performance of the resulted electrode with reduced cost

Publications (2)

Publication Number Publication Date
KR19990013087A KR19990013087A (en) 1999-02-25
KR100441940B1 true KR100441940B1 (en) 2004-09-18

Family

ID=37357559

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970036670A KR100441940B1 (en) 1997-07-31 1997-07-31 Preparation method of nickel-aluminum-titanium fuel electrode for melt carbonate type fuel cell to improve performance of the resulted electrode with reduced cost

Country Status (1)

Country Link
KR (1) KR100441940B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02301966A (en) * 1989-05-17 1990-12-14 Matsushita Electric Ind Co Ltd Manufacture of electrode for fuel cell
JPH03141555A (en) * 1989-10-25 1991-06-17 Sanyo Electric Co Ltd Manufacture of fuel electrode for molten carbonate fuel cell
JPH0433265A (en) * 1990-05-28 1992-02-04 Ishikawajima Harima Heavy Ind Co Ltd Manufacture of electrode for molten carbonate fuel cell
KR0123709B1 (en) * 1994-08-17 1997-12-09 김광호 Anode for molten carbonate fuel cell and its synthesizing method
KR100403133B1 (en) * 1996-06-19 2004-02-25 한국전력공사 Method for making reinforced anode by dispersing metal salt-added oxide

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02301966A (en) * 1989-05-17 1990-12-14 Matsushita Electric Ind Co Ltd Manufacture of electrode for fuel cell
JPH03141555A (en) * 1989-10-25 1991-06-17 Sanyo Electric Co Ltd Manufacture of fuel electrode for molten carbonate fuel cell
JPH0433265A (en) * 1990-05-28 1992-02-04 Ishikawajima Harima Heavy Ind Co Ltd Manufacture of electrode for molten carbonate fuel cell
KR0123709B1 (en) * 1994-08-17 1997-12-09 김광호 Anode for molten carbonate fuel cell and its synthesizing method
KR100403133B1 (en) * 1996-06-19 2004-02-25 한국전력공사 Method for making reinforced anode by dispersing metal salt-added oxide

Also Published As

Publication number Publication date
KR19990013087A (en) 1999-02-25

Similar Documents

Publication Publication Date Title
US5312582A (en) Porous structures from solid solutions of reduced oxides
JPH0433265A (en) Manufacture of electrode for molten carbonate fuel cell
JPH07326366A (en) Preparation of cathode of fuel cell
JPS62154465A (en) Anode of molten carbonate fuel battery and manufacture of the same
KR100467348B1 (en) Precipitation-reinforced nickel-aluminum fuel electrode and manufacturing method between intermetallic compounds
KR100441940B1 (en) Preparation method of nickel-aluminum-titanium fuel electrode for melt carbonate type fuel cell to improve performance of the resulted electrode with reduced cost
Huang et al. Study of NiO cathode modified by ZnO additive for MCFC
KR100441939B1 (en) Nickel-aluminum alloy fuel electrode and simplified production method thereof to improve creepage and sintering resistance, activate electrochemical reaction and porosity of the electrode
KR100314513B1 (en) An Alloy Anode for Molten Carbonate Fuel Cell and a Process for Production Thereof
KR100681771B1 (en) Ni-Al alloy anode for molten carbonate fuel cell by in-situ sintering the Ni-Al alloy and Method for preparing the same
KR100467347B1 (en) Manufacture method of oxide dispersed fuel electrode and fuel electrode
KR100350364B1 (en) Ceramic Fiber Reinforced Matrix for Molten Carbonate Fuel Cell and a Process for Production Thereof
KR20000043716A (en) Method for manufacturing a fuel electrode
US6238619B1 (en) Process for the production of an electrode for a fused carbonate fuel cell
JPH0520872B2 (en)
KR100331083B1 (en) An anode of molten carbonate fuel cell
KR100779741B1 (en) The reinforced matrix containing sintering aids for molten carbonate fuel cell
KR101158317B1 (en) Preparation method of ternary alloy anode for molten carbonate fuel cell
KR19990081359A (en) Method for manufacturing anode of molten carbonate fuel cell
KR100331082B1 (en) A method for making anode of molten carbonate fuel cell
KR100775643B1 (en) The modified cathode for molten carbonate fuel cell using transition metal salts
KR100884646B1 (en) Method for manufacturing mcfc cathode using nano sized cobalt oxide powder
KR100545826B1 (en) Manufacturing method of fuel cell
KR100533329B1 (en) Preparation method of Ni-Al alloy anode for fuel cells using nickel powder
CN118006996A (en) Tungsten/molybdenum alloy prepared by in-situ dehydrogenation and deep deoxidization of hydride and method thereof

Legal Events

Date Code Title Description
N231 Notification of change of applicant
N231 Notification of change of applicant
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130716

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20140716

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20150715

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20170717

Year of fee payment: 14