JPH03136216A - Manufacture of soft magnetic alloy film and heat treatment method - Google Patents

Manufacture of soft magnetic alloy film and heat treatment method

Info

Publication number
JPH03136216A
JPH03136216A JP25140889A JP25140889A JPH03136216A JP H03136216 A JPH03136216 A JP H03136216A JP 25140889 A JP25140889 A JP 25140889A JP 25140889 A JP25140889 A JP 25140889A JP H03136216 A JPH03136216 A JP H03136216A
Authority
JP
Japan
Prior art keywords
heat treatment
magnetic field
alloy film
soft magnetic
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25140889A
Other languages
Japanese (ja)
Other versions
JP2774611B2 (en
Inventor
Naoya Hasegawa
直也 長谷川
Masaji Saito
正路 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Publication of JPH03136216A publication Critical patent/JPH03136216A/en
Application granted granted Critical
Publication of JP2774611B2 publication Critical patent/JP2774611B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title alloy film having excellent magnetic characteristics and high permeability by controlling the induction magnetic anisotropy of a soft magnetic alloy film having thermally stabilized characteristics by a method wherein, after a specific soft magnetic alloy film has been formed while a magnetic field is being applied in the direction where it crosses almost at right angle with the direction in which a high permeability can be obtained, a heat treatment is conducted in a specific temperature range in a non-magnetic field state. CONSTITUTION:Compositional formula is shown by CoxTyMzCw. M indicate metal elements consisting of one or two or more kinds selected from Ti, Zr, Hf, V, Nb, Ta, Mo and W or their mixture, and T indicate metal elements consisting of one or two or more kinds selected from Fe, Ni and Mn or their mixture. Compositional ratios (x), (y), (z) and (w) satisfy the relation of x+y+z+w=100 in atomic % of 50<=x<=96, 0<=y<=20, 2<=z<=25 and 0.1<=w<=20, and its texture fundamentally consists of the crystal grains of 0.05mum or smaller in average grain diameter, and when a soft magnetic alloy film, containing the crystal phase of carbide of element M in a part of the above-mentioned crystal grains, is manufactured, a heat treatment is conducted in the temperature range of 520 to 730 deg.C in a non-magnetic field state after a film has been formed while a magnetic field is being applied in the direction where it crosses almost at right angle with the direction in which a high permeability can be obtained.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、磁気ヘッド等に適した軟磁性合金膜の製造
方法に関し、特に誘導磁気異方性を制御してより高い透
磁率とした軟磁性合金膜を得るための方法および熱処理
方法に関する。
Detailed Description of the Invention "Field of Industrial Application" The present invention relates to a method of manufacturing a soft magnetic alloy film suitable for magnetic heads, etc., and in particular to a method for manufacturing a soft magnetic alloy film with higher magnetic permeability by controlling induced magnetic anisotropy. The present invention relates to a method and a heat treatment method for obtaining a magnetic alloy film.

「従来の技術」 近年、磁気記録の分野においては、記録密度を高めるた
めに磁気記録媒体の高保磁力化が進められているので、
磁気ヘッドの材料にも飽和磁束密度の高いしのが要求さ
れている。その上、最近の磁気ヘッドにおいては、磁気
特性が優れている上に、耐環境性や耐摩耗性にも優れ、
ガラス溶着工程の高温にし耐えることが要求されている
"Prior Art" In recent years, in the field of magnetic recording, efforts have been made to increase the coercive force of magnetic recording media in order to increase recording density.
Materials for magnetic heads are also required to have high saturation magnetic flux density. Furthermore, recent magnetic heads not only have excellent magnetic properties, but also have excellent environmental resistance and abrasion resistance.
It is required to withstand the high temperatures of the glass welding process.

そこで本願発明者らは先に、特願平1−55571号明
細書において、これらの要求に答えることができる軟磁
性合金膜を特許出願している。
Therefore, the inventors of the present application have previously filed a patent application for a soft magnetic alloy film that can meet these requirements in Japanese Patent Application No. 1-55571.

この出願に係る軟磁性合金膜は組成式がC0XTV〜1
 z Cwて示され、MはT i、Zr、Hf、V 、
NbTaMo、−Vのうち1種または2種以上からなる
金属元素i′fこはその混合物、TはFe、Ni、Mn
のうら、少なくとも1種または2種以上からなる金属元
?:またはその混合物であり、組成比x 、y 、zッ
:よ皇子゛%て50≦x≦96.0≦y ≦20.2≦
 Z ≦ 25、0 1 ≦ 、≦ 20、 x +y
+z+w=100なる関係を満足させるとともに、その
組織が基本的に平均粒径0.05μm以下の結晶粒から
なり、その一部に元素Mの炭化物の結晶相を含むものな
どである。この軟磁性合金膜は、センダスト合金を越え
る高い飽和磁束密度を示し、優れた軟磁気特性を有する
とともに、ガラス融着工程の熱に耐えるものである二 「発明が解決しようとする課題」 ところで磁気ヘッド用の軟磁性材料においては、高周波
域(約IMHz以上)において高い透磁率が要求される
ようになってきている。そこでこのような高周波域にお
ける透磁率を検討してみると、−軸磁気異方性を何する
軟磁性膜においては、磁壁移動よりも応答速度の速いス
ピン回転による磁化過程をとった方が有利なので、一般
に磁化困難軸を磁路方向として用いている。ところが、
−軸磁気異方性が強すぎると逆に透磁率は低下してしま
うので、困難軸方向で磁壁が不安定にならない範囲でな
るべく弱い一軸異方性(異方性磁界Hkにして約2〜8
0e)を誘起することが好ましい。
The soft magnetic alloy film according to this application has a composition formula of C0XTV~1
z Cw, M is T i, Zr, Hf, V,
NbTaMo, a metal element i'f consisting of one or two or more of -V is a mixture thereof; T is Fe, Ni, Mn;
Noura, is it a metal source consisting of at least one or two or more types? : or a mixture thereof, with a composition ratio of x, y, z: 50≦x≦96.0≦y≦20.2≦
Z ≦ 25, 0 1 ≦ , ≦ 20, x +y
It satisfies the relationship +z+w=100, and its structure basically consists of crystal grains with an average grain size of 0.05 μm or less, and a part thereof includes a crystal phase of carbide of element M. This soft magnetic alloy film exhibits a higher saturation magnetic flux density than Sendust alloy, has excellent soft magnetic properties, and can withstand the heat of the glass fusing process. Soft magnetic materials for heads are required to have high magnetic permeability in a high frequency range (approximately IMHz or higher). Therefore, when we examine the magnetic permeability in such a high frequency range, we find that in soft magnetic films with -axis magnetic anisotropy, it is more advantageous to use a magnetization process based on spin rotation, which has a faster response speed, than domain wall motion. Therefore, the axis of difficult magnetization is generally used as the magnetic path direction. However,
- If the axial magnetic anisotropy is too strong, the magnetic permeability will decrease, so the uniaxial anisotropy should be as weak as possible within the range that does not make the domain wall unstable in the difficult axis direction (approximately 2 to 2 8
It is preferable to induce 0e).

このような背景から、従来一般的なアモルファス磁性合
金を製造する方法においては、磁場中の熱処理によって
誘導磁気質方性を制御することが一般的である。ところ
が、本願発明者らが先に提案している前述の軟磁性合金
膜は、成膜したままの状態ではアモルファスを主体とす
る状態であるが、熱処理により結晶化が起こって微結晶
が析出し、この微結晶の析出により優れた磁気特性が得
られるようになっている。従って先に特許出願している
軟磁性合金膜は、従来一般のアモルファス材料とは異な
り、非可逆的な熱処理挙動を示すので、その熱処理方法
を含めた製造方法において、従来とは冗なった処理か必
要である。
Against this background, in conventional methods for manufacturing general amorphous magnetic alloys, it is common to control the induced magnetic orientation by heat treatment in a magnetic field. However, the above-mentioned soft magnetic alloy film previously proposed by the present inventors is mainly amorphous in the as-deposited state, but crystallization occurs during heat treatment and microcrystals precipitate. The precipitation of these microcrystals makes it possible to obtain excellent magnetic properties. Therefore, unlike conventional amorphous materials, the soft magnetic alloy film for which we have previously applied for a patent exhibits irreversible heat treatment behavior, so the manufacturing method, including its heat treatment method, requires redundant processing compared to conventional methods. or is necessary.

本願発明台らはこのような背景のらとて鋭位研究を重ね
た結果、優れた透磁率の得られる製造条件を見出して本
願発明に到達した。
As a result of intensive research against this background, the inventors of the present application have found manufacturing conditions that provide excellent magnetic permeability, and have arrived at the present invention.

本願発明は前記課題を解決するためになされたしので、
本願発明者らが先に特許出願している軟磁性合金膜であ
って、磁気特性に優れ、その特性が熱的に安定した軟磁
性合金膜について、誘導磁気異方性を制御してより高い
透磁率を得ることができるようにした製造方法と熱処理
方法を提供することを目的とする。
Since the present invention was made to solve the above problems,
The inventors of this application have previously applied for a patent for a soft magnetic alloy film that has excellent magnetic properties and is thermally stable. It is an object of the present invention to provide a manufacturing method and a heat treatment method that make it possible to obtain magnetic permeability.

「課題を解決するための手段」 請求項1に記載した発明は前記課題を解決するために、
組成式がCoxTyMzCwで示され、MはTi、Zr
、I(r、V、Nb、Ta、Mo、Wのうち、1種また
は2種以上からなる金属元素またはその混合物、TはF
e、Ni、Mnのうち、少なくとも1種または2種以上
からなる金属元素またはその混合物であり、組成比x,
y,z,wは原子%て50≦x≦96 0<y≦20 2≦2≦25 0.1≦、≦20 x+y→−z + w = 100 なる関係を満足させるとともに、その組織が基本的に平
均粒径0.05μm以下の結晶粒からなり、その一部に
元素Mの炭化物の結晶相を含む軟磁性合金膜の製造方法
において、 高い透磁率を得たい方向と略直交する方向に磁場を印加
しつつ成膜する工程と、成膜後に520〜730℃の温
度範囲において無磁場状態で熱処理を行う工程を具備す
るものである。
"Means for solving the problem" In order to solve the problem, the invention described in claim 1 has the following features:
The compositional formula is shown as CoxTyMzCw, where M is Ti, Zr
, I(r, V, Nb, Ta, Mo, W, a metal element consisting of one or more kinds or a mixture thereof; T is F
A metal element consisting of at least one or two or more of e, Ni, and Mn, or a mixture thereof, with a composition ratio x,
y, z, w are atomic % and satisfy the following relationships: 50≦x≦96 0<y≦20 2≦2≦25 0.1≦,≦20 x+y→−z + w = 100, and the structure is basic. In a method for producing a soft magnetic alloy film, which consists of crystal grains with an average grain size of 0.05 μm or less, and which partially contains a crystal phase of carbide of element M, The method includes a step of forming a film while applying a magnetic field, and a step of performing heat treatment in a temperature range of 520 to 730° C. without a magnetic field after the film is formed.

請求項2に記載した発明は前記課題を解決するために、
請求項1に記載した組成の軟磁性合金膜を製造するに際
し、高い透磁率を得たい方向と略直交4−る方向に磁場
を印加しつつ成膜する工程と、成膜後に520〜730
℃の温度範囲で回転磁場中において熱処理を行う工程と
を具備したものである。
In order to solve the above problem, the invention described in claim 2 has the following features:
In manufacturing the soft magnetic alloy film having the composition described in claim 1, a step of forming the film while applying a magnetic field in a direction approximately perpendicular to the direction in which high magnetic permeability is desired, and a step of forming the film while applying a magnetic field in a direction approximately perpendicular to the direction in which high magnetic permeability is desired;
The method includes a step of performing heat treatment in a rotating magnetic field at a temperature range of .degree.

請求項3に記載した発明は前記課題を解決するために、
請求項1に記載した組成の軟磁性合金膜を製造するに際
し、成膜後、350〜550℃の温if fl!囲で高
い透磁率を得たい方向と略直交する方向に印1]ITさ
れた静磁場中において熱処理を行う]工程と、それに引
き続き行なわれる520〜730℃の温度範囲での無磁
場熱処理工程を具備した乙、′)である。
In order to solve the above problem, the invention described in claim 3 has the following features:
When producing a soft magnetic alloy film having the composition described in claim 1, after film formation, the temperature if fl! is 350 to 550°C. Mark in the direction approximately perpendicular to the direction in which high magnetic permeability is desired to be obtained in the heat treatment step 1] Heat treatment in an IT static magnetic field and the subsequent non-magnetic field heat treatment step in a temperature range of 520 to 730°C. It is ′).

請求項4に記載した発明は前記課題を解決するために、
請求項1に記載した組成の軟磁性合金膜を製造するに際
し、成膜後、350〜550℃の温度範囲で高い透磁率
を得たい方向と略直交する方向に印加された静磁場中に
おいて熱処理を行う工程と、それに引き続き行なわれる
520〜730℃の温度範囲での回転磁場中における熱
処理工程を具備したものである。
In order to solve the above problem, the invention described in claim 4 has the following features:
When manufacturing a soft magnetic alloy film having the composition described in claim 1, after film formation, heat treatment is performed in a static magnetic field applied in a direction substantially perpendicular to the direction in which high magnetic permeability is desired in the temperature range of 350 to 550°C. The method includes a step of performing a heat treatment in a rotating magnetic field in a temperature range of 520 to 730° C., which is followed by a step of heat treatment in a rotating magnetic field in a temperature range of 520 to 730°C.

請求項5に記載した発明は前記課題を解決するために、
請求項1に記載した組成の軟磁性合金膜を製造するに際
し、成膜後、500〜730℃の温度範囲で回転磁場中
において熱処理する工程と、それに引き続き行なわれる
高い透磁率を得たい方向と略直交する方向に印加された
静磁場中において350〜600℃の温度範囲で熱処理
を行う工程を具備したものである。
In order to solve the above problem, the invention described in claim 5 has the following features:
When manufacturing a soft magnetic alloy film having the composition described in claim 1, after the film is formed, a heat treatment step is performed in a rotating magnetic field at a temperature range of 500 to 730°C, and a subsequent step is performed in a direction in which high magnetic permeability is desired. The method includes a step of performing heat treatment at a temperature range of 350 to 600° C. in a static magnetic field applied in substantially orthogonal directions.

請求項6に記載した発明は前記課題を解決ずろために、
請求項1に記載した組成の軟磁性合金膜に対し、最終的
に高い透磁率を得たい方向と略直交する方向に磁界を印
加した静磁場中で350−700℃の温度範囲で第1段
の熱処理を行い、微結晶を一部析出させた状態で一軸磁
気異方性を誘導した後、第1段の熱処理温度と同じかそ
れ以下の温度で最終的に高い透磁率を得たい方向に磁界
を印加した静磁場中において第2段の熱処理を行い、第
1段と第2段の熱処理温度と保持時間の少なくとも一方
を調節することで、その組織が、基本的に平均粒径0.
05μm以下の結晶粒からなり、その一部に元素Mの炭
化物の結晶相を含む軟磁性合金膜の一軸磁気異方性を制
御するものである。
In order to solve the above problem, the invention described in claim 6 has the following features:
The soft magnetic alloy film having the composition described in claim 1 is subjected to the first stage in a temperature range of 350 to 700°C in a static magnetic field in which a magnetic field is applied in a direction substantially perpendicular to the direction in which high magnetic permeability is desired to be obtained. After heat treatment to induce uniaxial magnetic anisotropy in a state where some of the microcrystals are precipitated, it is applied at a temperature equal to or lower than the first heat treatment temperature in the direction in which high magnetic permeability is desired to be obtained. By performing the second heat treatment in a static magnetic field and adjusting at least one of the heat treatment temperature and holding time of the first and second stages, the structure basically has an average grain size of 0.
The purpose is to control the uniaxial magnetic anisotropy of a soft magnetic alloy film consisting of crystal grains of 0.05 μm or less and containing a crystal phase of carbide of element M in a portion thereof.

請求項7に記載した発明は前記課題を解決するために、
請求項1に記載した組成の軟磁性合金膜に対し、最終的
に高い透磁率を得たい方向に磁界を印加した静磁場中で
350〜700℃の温度範囲で第1段の熱処理を行い、
微結晶を一部析出させた状態で一軸磁気異方性を誘導し
た後、350〜700℃の温度範囲で、最終的に高い透
磁率を得たい方向と略直交する方向に磁界を印加した静
磁場中において第2段の熱処理を行い、第1段と第2段
の熱処理温度と保持時間の少なくとも一方を調節するこ
とで、その組織が、基本的に平均粒径0.05μm以下
の結晶粒からなり、その一部に元素Mの炭化物の結晶相
を含む軟磁性合金膜の一軸磁気異方性の大きさを制御す
るものである。
In order to solve the above problem, the invention described in claim 7 has the following features:
The soft magnetic alloy film having the composition described in claim 1 is subjected to a first heat treatment in a temperature range of 350 to 700° C. in a static magnetic field in which a magnetic field is applied in a direction in which high magnetic permeability is desired to be obtained,
After inducing uniaxial magnetic anisotropy in a state where some microcrystals are precipitated, a static magnetic field is applied at a temperature range of 350 to 700°C in a direction approximately perpendicular to the direction in which high magnetic permeability is desired to be obtained. By performing a second heat treatment in a magnetic field and adjusting at least one of the heat treatment temperature and holding time of the first and second stages, the structure basically becomes crystal grains with an average grain size of 0.05 μm or less. This is to control the magnitude of uniaxial magnetic anisotropy of a soft magnetic alloy film containing a crystal phase of carbide of element M in a part thereof.

請求項8に記載した発明は前記課題を解決するために、
組成式がCoxMzCwで示され、MはTi、Zr、l
−1r、V、Nb、Ta、Mo、Wのうち、1種または
2種以上からなる金属元素またはその混合物であり、組
成比x 、z 、wは原子%で50≦x≦96 2≦2≦25 0.1≦1≦20 x 十z 十w = 100 なる関係を満足させるとともに、その組織が基本的に平
均粒径005μm以下の結晶粒からなり、その一部に元
素Mの炭化物の結晶相を含む軟磁性合金膜の製造方法に
おいて、 高い透磁率を得たい方向と略直交する方向に磁場を印加
しつつ成膜する工程と、成膜後に520〜730℃の温
度範囲において無磁場状態で熱処理を行う工程を具備す
るものである。
In order to solve the above problem, the invention described in claim 8 has the following features:
The compositional formula is shown as CoxMzCw, where M is Ti, Zr, l
-1r, V, Nb, Ta, Mo, W, a metal element consisting of one or more of them, or a mixture thereof, and the composition ratio x, z, w is 50≦x≦96 2≦2 in atomic % ≦25 0.1≦1≦20 A method for manufacturing a soft magnetic alloy film containing a phase includes a step of forming the film while applying a magnetic field in a direction substantially perpendicular to the direction in which high magnetic permeability is desired, and a step of forming the film while applying a magnetic field in a direction substantially perpendicular to the direction in which high magnetic permeability is desired, and a step of forming the film in a non-magnetic field state in a temperature range of 520 to 730 ° C. The process includes a step of performing heat treatment.

請求項9に記載した発明は前記課題を解決するために、
請求項8に記載した組成の軟磁性合金膜を製造するに際
し、高い透磁率を得たい方向と略直交する方向に磁場を
印加しつつ成膜する工程と、成膜後に520〜730℃
の温度範囲で回転磁場中において熱処理を行う工程とを
具備したものである。
In order to solve the above problem, the invention described in claim 9 has the following features:
In manufacturing the soft magnetic alloy film having the composition described in claim 8, there are a step of forming the film while applying a magnetic field in a direction substantially perpendicular to the direction in which high magnetic permeability is desired, and a step of forming the film at 520 to 730° C. after forming the film.
The process includes a step of performing heat treatment in a rotating magnetic field at a temperature range of .

請求項1Oに記載した発明は前記課題を解決するために
、請求項8に記載した組成の軟磁性合金膜を製造するに
際し、成膜後、350〜550℃の温度範囲で高い透磁
率を得たい方向と略直交する方向に印加された静磁場中
において熱処理を行う工程と、それに引き続き行なイつ
れる520〜730℃の温度範囲での無磁場熱処理工程
を具備したしのである。
In order to solve the problem, the invention described in claim 1O, when manufacturing a soft magnetic alloy film having the composition described in claim 8, obtains high magnetic permeability in a temperature range of 350 to 550°C after film formation. The method includes a step of performing heat treatment in a static magnetic field applied in a direction substantially perpendicular to the desired direction, and a subsequent step of heat treatment in a non-magnetic field at a temperature range of 520 to 730°C.

請求項I+に記I或した発明は前記課題を解決するため
に、請求項8に記載した組成の軟磁性合金膜を製造する
に際し、成膜後、350〜550℃’ :、111度範
囲で高い透磁率を得たい方向と略直交する方向に印加さ
れた静磁場中において熱処理を行う工程と、それに引き
続き行なわれる520〜730℃の温度範囲での回転磁
場中における熱処理工程を具備したものである。
In order to solve the above-mentioned problem, the invention set forth in claim I+ provides a method of manufacturing a soft magnetic alloy film having the composition described in claim 8 at a temperature of 350 to 550°C': 111 degrees after film formation. It comprises a process of heat treatment in a static magnetic field applied in a direction substantially perpendicular to the direction in which high magnetic permeability is desired, and a subsequent heat treatment process in a rotating magnetic field at a temperature range of 520 to 730°C. be.

請求項12に記載した発明は前記課題を解決するために
、請求項8に記載した組成の軟磁性合金膜を製造するに
際し、成膜後、500〜730℃の温度範囲で回転磁場
中において熱処理する工程と、それに引き続き行なわれ
る高い透磁率を得たい方向と略直交する方向に印加され
た静磁場中において350〜600℃の温度範囲で熱処
理を行う工程を具備したものである。
In order to solve the above problem, the invention described in claim 12, when manufacturing a soft magnetic alloy film having the composition described in claim 8, heat treatment is performed in a rotating magnetic field at a temperature range of 500 to 730° C. after film formation. The process includes a subsequent step of performing heat treatment at a temperature in the range of 350 to 600° C. in a static magnetic field applied in a direction substantially perpendicular to the direction in which high magnetic permeability is desired.

請求項13に記載した発明は前記課題を解決するために
、請求項8に記載した組成の軟磁性合金膜に対し、最終
的に高い透磁率を得たい方向と略直交する方向に磁界を
印加した静磁場中で350〜700℃の温度範囲で第1
段の熱処理を行い、微結晶を一部析出させた状態で一軸
磁気異方性を誘導した後、第1段の熱処理温度と同じか
それ以下の温度で最終的に高い透磁率を得たい方向に磁
界を印加した静磁場中において第2段の熱処理を行い、
第1段と第2段の熱処理温度と保持時間の少なくとも一
方を調節することでその組織が、基本的に平均粒径00
5μm以下の結晶粒からなり、その一部に元素Mの炭化
物の結晶相を含む軟磁性合金膜の一軸磁気異方性を制御
するものである。
In order to solve the above problem, the invention described in claim 13 applies a magnetic field to the soft magnetic alloy film having the composition described in claim 8 in a direction substantially perpendicular to the direction in which high magnetic permeability is desired to be obtained. The first in the temperature range of 350-700℃ in a static magnetic field
After performing stage heat treatment and inducing uniaxial magnetic anisotropy in a state where some microcrystals are precipitated, the direction in which you want to finally obtain high magnetic permeability at a temperature that is the same as or lower than the first stage heat treatment temperature. A second heat treatment is performed in a static magnetic field with a magnetic field applied to the
By adjusting at least one of the heat treatment temperature and holding time in the first and second stages, the structure can be basically changed to an average grain size of 0.
The purpose is to control the uniaxial magnetic anisotropy of a soft magnetic alloy film consisting of crystal grains of 5 μm or less and containing a crystal phase of carbide of element M in a portion thereof.

請求項14に記載した発明は+iij記課題を解決する
ために、請求項8に記載した組成の軟磁性合金膜に対し
、最終的に高い透磁率を得たい方向に磁界を印加した静
磁場中て350〜700℃の温度範囲で第1段の熱処理
を行い、微結晶を一部析出させた状態で一軸磁気異方性
を誘導した後、350〜700℃の温度範囲で、最終的
に高い透磁率を得たい方向と略直交ずろ方向に磁界を印
加した静磁場中において第2段の熱処理を行い、第1段
と第2段の熱処理温度と保持時間の少なくとら一方を調
節することで、その組織が、基本的に平均粒径0.05
μm以下の結晶粒からなり、その一部に元素Mの炭化物
の結晶相を含む軟磁性合金膜の一軸磁気異方性の大きさ
を制御するものである。
In order to solve the +iii problem, the invention set forth in claim 14 provides a soft magnetic alloy film having a composition set forth in claim 8 in a static magnetic field in which a magnetic field is applied in a direction in which high magnetic permeability is desired to be obtained. After performing the first heat treatment in the temperature range of 350 to 700℃ to induce uniaxial magnetic anisotropy in a state where some microcrystals are precipitated, the final high temperature The second stage of heat treatment is performed in a static magnetic field in which a magnetic field is applied in a direction substantially orthogonal to the direction in which magnetic permeability is desired to be obtained, and by adjusting at least one of the heat treatment temperature and holding time of the first and second stages. , whose structure basically has an average grain size of 0.05
The purpose is to control the magnitude of uniaxial magnetic anisotropy of a soft magnetic alloy film that is composed of crystal grains of μm or less and includes a crystal phase of carbide of element M in a part thereof.

以下に本発明を更に詳細に説明する。The present invention will be explained in more detail below.

請求項1.8に記載した発明においては、スパッタ法な
どの真空薄膜形成技術を用いて成膜し、成膜する場合、
高い透磁率を得たい方向と略直交する方向(好ましくは
直交する方向)に磁場を印加しつつ成膜し、続いて、5
20〜730℃、より好ましくは、600〜700℃の
温度範囲で無磁場熱処理を行う。
In the invention described in claim 1.8, when forming a film using a vacuum thin film forming technique such as a sputtering method,
A film is formed while applying a magnetic field in a direction substantially perpendicular (preferably perpendicular) to the direction in which high magnetic permeability is desired, and then 5
The non-magnetic field heat treatment is performed at a temperature range of 20 to 730°C, more preferably 600 to 700°C.

なお、本願の明細書において略直交する方向とは、正確
に直交する方向に対する角度差にして±lO°程度の差
異まで許容するしのとする。
Note that, in the specification of the present application, a substantially orthogonal direction refers to an angular difference with respect to a direction that is exactly orthogonal, and a difference of about ±10° is allowed.

請求項1,8に記載した組成の軟磁性合金膜においては
、成膜したまま(as deposited)の状態で
は、アモルファスを主体とした乙のであり、アモルファ
ス構造のらのは一般的に、短範囲での&1原子の配列の
仕方に自由度があるため、誘導磁気異方性がつき易い。
In the soft magnetic alloy film having the composition described in claims 1 and 8, in the as-deposited state, it is mainly amorphous, and the amorphous structure generally has a short range. Since there is a degree of freedom in how the &1 atoms are arranged, induced magnetic anisotropy is likely to occur.

このため磁場中で成膜を行うことにより、成膜したまま
の状態では強い一軸異方性(異方性磁界Hkにして約2
00e以上)が誘起される。
For this reason, by forming the film in a magnetic field, the as-formed film exhibits strong uniaxial anisotropy (approximately 2
00e or higher) is induced.

しかし請求項1.8に記載した組成の軟磁性合金膜は、
熱処理により微細な結晶が析出してくるために、結晶化
の進行に伴い、当然ながら異方性磁界は低下する。また
、この軟磁性合金膜は、結晶化後においては700〜8
00℃程度のキュリー温度を示すが、キュリー温度に近
い温度(520〜730℃、より好ましくは600〜7
00℃)での熱処理によって異方性磁界を低下できるこ
とになる。
However, the soft magnetic alloy film having the composition described in claim 1.8,
Since fine crystals are precipitated by heat treatment, the anisotropic magnetic field naturally decreases as crystallization progresses. Moreover, this soft magnetic alloy film has a crystallization temperature of 700 to 8
It exhibits a Curie temperature of about 00°C, but a temperature close to the Curie temperature (520 to 730°C, more preferably 600 to 7
The anisotropic magnetic field can be reduced by heat treatment at 00°C.

これらの効果により、熱処理後において高透磁率に適し
た、弱い磁気異方性を得ることができる。
Due to these effects, weak magnetic anisotropy suitable for high magnetic permeability can be obtained after heat treatment.

この熱処理は、無磁場中で行う。また、熱処理温度は、
520℃以上でないと、異方性磁界が下がらず、高い透
磁率を得ることができない。また、熱処理温度か720
℃を越えると、異方性磁界か低くなりすぎろことと、微
結晶の成長が進行して結晶磁気w方性による異方性分散
か顕粁になって、軟磁気特性が失われるようになるので
好ましくない。
This heat treatment is performed in the absence of a magnetic field. In addition, the heat treatment temperature is
If the temperature is not 520° C. or higher, the anisotropic magnetic field will not decrease and high magnetic permeability cannot be obtained. Also, the heat treatment temperature is 720
If the temperature exceeds ℃, the anisotropic magnetic field will become too low, and the growth of microcrystals will progress, resulting in anisotropic dispersion due to magnetocrystalline orientation, and the soft magnetic properties will be lost. This is not desirable.

以上のような方法を実施することで、誘導磁気異方性が
制御された透磁率の高い軟磁性合金膜が得られる。また
、このような方法により得られた軟磁性合金膜は、基本
的に平均粒径0.05μm以下の結晶粒からなり、その
一部に元素Mの炭化物の結晶粒を含むものであり、先に
特願平1−55571号明細書において特許出願してい
る通り、センダスト合金を越える高い飽和磁束密度と良
好な軟磁気特性を有し、ガラス融着工程において600
℃以上の温度に加熱されても結晶粒が粗大化することが
なく、耐熱性に優れている。
By implementing the above method, a soft magnetic alloy film with high magnetic permeability and controlled induced magnetic anisotropy can be obtained. In addition, the soft magnetic alloy film obtained by such a method basically consists of crystal grains with an average grain size of 0.05 μm or less, and some of them contain crystal grains of carbide of element M. As patented in Japanese Patent Application No. 1-55571, it has a higher saturation magnetic flux density and better soft magnetic properties than Sendust alloy, and it
Crystal grains do not become coarse even when heated to temperatures above ℃, and have excellent heat resistance.

請求項2.9に記載した発明においては、成膜後に行う
熱処理を請求項1.8に記載したような無磁場中ではな
く、回転磁場中において行う。ここで回転磁場中の熱処
理とは、例えば、第1図に示すように電磁石のポールピ
ースのN極lとS極2の間に、軟磁性合金膜3か形成さ
れた基板4を配置し、基板4を回転軸Gを中心として矢
印方向に回転させなから熱処理することを示す。熱処理
する際の温度は、請求項1.8に記載の発明と同様に5
20〜730℃の範囲とする。
In the invention described in claim 2.9, the heat treatment performed after film formation is performed in a rotating magnetic field rather than in a non-magnetic field as described in claim 1.8. Here, the heat treatment in a rotating magnetic field means, for example, as shown in FIG. 1, a substrate 4 on which a soft magnetic alloy film 3 is formed is placed between the north pole 1 and the south pole 2 of the pole piece of an electromagnet. This shows that the substrate 4 is heat-treated before being rotated about the rotation axis G in the direction of the arrow. The temperature during the heat treatment is 5 as in the invention described in claim 1.8.
The temperature should be in the range of 20 to 730°C.

このように回転磁場中の熱処理により、請求項1.8で
行った方法の場合よりも更に高い透磁率を何する軟磁性
合金膜を得ることができる。
As described above, by heat treatment in a rotating magnetic field, a soft magnetic alloy film having a higher magnetic permeability than that obtained by the method according to claim 1.8 can be obtained.

この理由は、熱処理中の高温状態でも軟磁性合金膜を常
に単磁区の状態として、磁壁が存在しない状態で処理で
きるので、磁区の回前化(熱処理中に存在していた磁壁
がその場所で安定化してしまい、動きにくくなること)
が妨げられるからである。このような熱処理を行っても
、上記と同様な温度範囲で、適切な弱い異方性磁界を残
すことができる。
The reason for this is that even at high temperatures during heat treatment, the soft magnetic alloy film can always be treated in a single magnetic domain state, with no domain walls present. becomes stable and becomes difficult to move)
This is because it is hindered. Even if such heat treatment is performed, an appropriately weak anisotropic magnetic field can remain in the same temperature range as above.

なお、請求項2.9に記載した発明の方法により得られ
た軟磁性合金膜においては、透磁率以外の磁気特性と耐
熱性において、請求項1.8に記載の方法で得られた軟
磁性合金膜と同等に優れている。
In addition, in the soft magnetic alloy film obtained by the method of the invention described in claim 2.9, magnetic properties other than magnetic permeability and heat resistance are superior to those obtained by the method described in claim 1.8. It is as good as an alloy film.

請求項3.10に記載した発明においては、無磁場ある
いは磁場中で成膜した後に、高い透磁率を得たい方向と
略直交する方向(好ましくは直交する方向)に印加され
た静磁場中で350〜550℃の温度範囲で熱処理し、
続いて520〜730℃、より好ましくは600〜70
0 ℃の温度範囲で無磁場熱処理を行う。
In the invention described in claim 3.10, after the film is formed in no magnetic field or in a magnetic field, the film is formed in a static magnetic field applied in a direction substantially perpendicular (preferably perpendicular) to the direction in which high magnetic permeability is desired. Heat treated at a temperature range of 350 to 550°C,
followed by 520-730°C, more preferably 600-70°C
Non-magnetic field heat treatment is performed in a temperature range of 0°C.

無磁場中でスパッタ等の成膜を行うと、成膜したままの
状態では均一な異方性は付与できないが、スパッタ等の
成膜工程は簡略化することができる。
If film formation is performed by sputtering or the like in the absence of a magnetic field, uniform anisotropy cannot be imparted to the film as it is formed, but the film formation process such as sputtering can be simplified.

また、成膜後の静磁場中の熱処理によって一軸異方性を
付与できるが、この際の温度が低すぎると十分な異方性
がつけられないばかりでなく、それに引き続く無磁場熱
処理によってこの異方性が完全に消滅してしまう。これ
は、熱処理温度が低いと、微結晶の析出を伴わないため
に、誘導磁気異方性が可逆的に変化し易くなっているた
めである。
In addition, uniaxial anisotropy can be imparted by heat treatment in a static magnetic field after film formation, but if the temperature at this time is too low, not only will sufficient anisotropy not be imparted, but the subsequent non-magnetic field heat treatment may cause this anisotropy. Orientation completely disappears. This is because when the heat treatment temperature is low, the induced magnetic anisotropy tends to change reversibly because no crystallites are precipitated.

従って微結晶の析出が始まる程度まで温度を上げること
により、それに引き続く無磁場熱処理後に適度な異方性
(弱い異方性磁界Hk)を残すことができる。
Therefore, by raising the temperature to the extent that crystallite precipitation begins, a suitable anisotropy (weak anisotropic magnetic field Hk) can remain after the subsequent non-magnetic field heat treatment.

第2図は、前記組成の軟磁性合金膜において、軟磁性合
金膜の比抵抗が低下し始める熱処理温度、即ち、微結晶
の析出が起こり始める温度を示す。
FIG. 2 shows the heat treatment temperature at which the specific resistance of the soft magnetic alloy film begins to decrease, that is, the temperature at which precipitation of microcrystals begins to occur in the soft magnetic alloy film having the above composition.

微結晶の析出は350℃程度から起こり始めることが明
らかである。このため第1段目の熱処理温度は最低35
0℃は必要である。
It is clear that precipitation of microcrystals begins to occur at about 350°C. Therefore, the first stage heat treatment temperature is at least 35
0°C is necessary.

また、この第1段目の熱処理を550℃を越える温度で
行ってしまうと、あまりに安定な強い一軸異方性が付与
されてしまい、第2段目の無磁場熱処理によって適度に
調整し難くなってしまう問題を生しる。よって第2段目
の熱処理は、第1段目の静磁場中熱処理で付与した一軸
異方性を適度に弱めるために、無磁場で行う。熱処理温
度の限定理由は請求項11.:、id載の方法の場合と
同様である。
Furthermore, if this first stage heat treatment is performed at a temperature exceeding 550°C, an extremely stable and strong uniaxial anisotropy will be imparted, making it difficult to adjust it appropriately by the second stage non-magnetic field heat treatment. This can cause problems. Therefore, the second heat treatment is performed without a magnetic field in order to appropriately weaken the uniaxial anisotropy imparted by the first heat treatment in a static magnetic field. The reason for limiting the heat treatment temperature is as described in claim 11. :, This is the same as in the case of the id listing method.

また、第1段目と第2段目の熱処理は、同一の炉、)中
で、温度履歴を第3図に示すように設定して行うことが
できる。
Further, the first and second stage heat treatments can be performed in the same furnace, with the temperature history set as shown in FIG.

請求項4.11に記載した発明においては、請求項3.
10に記載した発明の第2段目の熱処理を回転磁場中で
行う。熱処理温度は、請求項31Oに記載の発明と同様
に、第1段目において3)O〜550℃1第2段目にお
いて520〜730℃に設定する。以上の熱処理により
、請求項3゜lOに記載した方法により得られた軟磁性
合金膜よりら更に高い透磁率を有する軟磁性合金膜を得
ることができる。
In the invention described in claim 4.11, claim 3.
The second stage heat treatment of the invention described in No. 10 is performed in a rotating magnetic field. The heat treatment temperature is set to 3) O to 550°C in the first stage and 520 to 730°C in the second stage, as in the invention described in claim 31O. By the above heat treatment, it is possible to obtain a soft magnetic alloy film having a higher magnetic permeability than the soft magnetic alloy film obtained by the method described in claim 3.

なお、この場合、第4図に示すように2段階の熱処理を
同一の炉の中で行うことができ、第1段目の熱処理時に
磁場中で静止させておいた試料を第2段目の熱処理時に
回転させることで容易に回転磁場中熱処理を実施できる
In this case, as shown in Figure 4, two stages of heat treatment can be performed in the same furnace, and the sample kept stationary in the magnetic field during the first stage heat treatment can be transferred to the second stage. By rotating during heat treatment, heat treatment in a rotating magnetic field can be easily performed.

請求項5,12に記載した発明においては、成膜後に行
う第1段目の熱処理をある程度高い温度で回転磁場中で
行うことにより、微結晶化をかなり促進させて安定化さ
せてしまう。これに、第2段目の静磁場中の熱処理を行
って誘起される異方性磁界を適度に小さいものにする。
In the inventions described in claims 5 and 12, microcrystalization is significantly promoted and stabilized by performing the first stage heat treatment after film formation at a relatively high temperature in a rotating magnetic field. This is then subjected to a second heat treatment in a static magnetic field to reduce the induced anisotropic magnetic field to an appropriate level.

第1段目の熱処理は、600℃以上で行わないと第2段
目の熱処理で励起される異方性磁界が大きくなりすぎ、
l000以上の透磁率が得られない。ただし、第2段目
の熱処理温度が350〜450℃と低い場合は第1段目
の熱処理を500〜600℃で行っても良い。
If the first stage heat treatment is not performed at 600°C or higher, the anisotropic magnetic field excited in the second stage heat treatment will become too large.
A magnetic permeability of 1000 or more cannot be obtained. However, if the second stage heat treatment temperature is as low as 350 to 450°C, the first stage heat treatment may be performed at 500 to 600°C.

また、第1段目の熱処理温度が730℃を越えると結晶
粒の粗大化による軟磁性の低下を招く。
Furthermore, if the first stage heat treatment temperature exceeds 730° C., the soft magnetism deteriorates due to coarsening of crystal grains.

第2段目の熱処理温度が350℃未満であると、−軸磁
気異方性を付与できず、また、600℃を越えると誘起
される異方性磁界が大きくなり、高い透磁率を得られな
くなる。
If the second stage heat treatment temperature is less than 350°C, -axis magnetic anisotropy cannot be imparted, and if it exceeds 600°C, the induced anisotropic magnetic field becomes large and high magnetic permeability cannot be obtained. It disappears.

第1段目と第2段目の熱処理は第5図に示すように同一
の炉内で行うことができる。この場合、回転磁場中の処
理後に静磁場処理を行うには、高透磁率を得たい方向と
略直交する方向となる位置で、試料を回転させるモータ
などの駆動装置を停止して、試料を所定の方向を向けて
停止し、この状態で第2段目の熱処理を行なえば良い。
The first and second stage heat treatments can be performed in the same furnace as shown in FIG. In this case, to perform static magnetic field processing after processing in a rotating magnetic field, stop the drive device such as a motor that rotates the sample at a position that is approximately perpendicular to the direction in which you want to obtain high magnetic permeability, and then The second stage heat treatment may be performed in a predetermined direction and stopped in this state.

請求項6.13に記載した発明において、成膜したまま
の状態の膜は、アモルファスを主体としたものであるが
、第2図に示すように、膜の比抵抗が低下し始める温度
以上で熱処理を行うとC。
In the invention set forth in claim 6.13, the film in the as-deposited state is mainly amorphous, but as shown in FIG. C when heat treated.

と元素Mの炭化物を主体とする微結晶の析出が生じる。and precipitation of microcrystals mainly consisting of carbide of element M occurs.

(第2図の組成では350℃以上)このように微結晶状
態にすることにより、成膜したままの状態より飽和磁束
密度が高くなり、軟磁気特性も優れているのがこの膜の
特徴である。微結晶を析出させるためには、少なくとも
350℃以上の熱処理が必要となる。
(350°C or higher for the composition shown in Figure 2) By forming the film into a microcrystalline state, the saturation magnetic flux density is higher than that in the as-deposited state, and the film has excellent soft magnetic properties. be. In order to precipitate microcrystals, heat treatment at at least 350° C. or higher is required.

なお、最終的に高い透磁率を得たい方向と略直交する方
向(例えば、第6図に示す試料5のX方向)に磁界を印
加した静磁界中での第1段の熱処理を350℃以下の温
度で行っても一軸磁気異方性を誘起できるが、アモルフ
ァスを主体とする状態であるので、引き続き最終的に高
い透磁率を得たい方向(例えば、第6図に示すY方向あ
るいは鎖線の矢印方向)に磁界を印加した静磁場中での
第2段の熱処理を350℃以上で行うと、第1段の熱処
理で誘起した一軸磁気異方性は90°回転してしまい、
最終的にY方向が磁化容易軸になってしまうので高い透
磁率が得られない。
Note that the first stage heat treatment in a static magnetic field in which a magnetic field is applied in a direction substantially perpendicular to the direction in which high magnetic permeability is desired (for example, the X direction of sample 5 shown in Figure 6) is performed at a temperature of 350°C or lower. Although it is possible to induce uniaxial magnetic anisotropy even if carried out at a temperature of If the second stage heat treatment is performed at 350°C or higher in a static magnetic field with a magnetic field applied in the direction of the arrow), the uniaxial magnetic anisotropy induced in the first stage heat treatment will be rotated by 90°,
In the end, the Y direction becomes the axis of easy magnetization, so high magnetic permeability cannot be obtained.

また、第1段のX方向の静磁場中熱処理を温度T、(T
、>350℃)で行った後、第2段のY方向の静磁場中
熱処理(温度T、)をT、より高い温度で行うと、最終
的にY方向が磁化容易軸になってしまい、高い透磁率が
得られない。
In addition, the heat treatment in the static magnetic field in the X direction in the first stage was carried out at temperatures T, (T
, >350°C), and then the second step of heat treatment in the static magnetic field in the Y direction (temperature T, ) is performed at a higher temperature than T, the Y direction eventually becomes the axis of easy magnetization. High magnetic permeability cannot be obtained.

更に、温度T 、、T 、のどちらか一方でも700℃
を越えてしまうと結晶粒の粗大化により軟磁気特性が劣
化してしまうので熱処理温度の上限は700℃とする。
Furthermore, either temperature T , , T is 700°C.
The upper limit of the heat treatment temperature is set at 700° C., since if it exceeds this temperature, the soft magnetic properties will deteriorate due to coarsening of the crystal grains.

以上をまとめると、T1とT、の温度は次の関係を満た
す必要がある。350℃≦T1≦700℃、より好まし
くは500℃≦T1≦700℃、T、5700℃かっT
、≦T、となる。
To summarize the above, the temperatures of T1 and T need to satisfy the following relationship. 350°C≦T1≦700°C, more preferably 500°C≦T1≦700°C, T, 5700°C
, ≦T.

請求項7.14に記載した発明では、最終的に高い透磁
率を得たい方向(例えば、第6図に示すY方向)に磁界
を印加した静磁場中で第1段の熱処理(温度T3)を行
い、X方向を磁化困難軸にしておき、引き続いて第2段
の熱処理をX方向に磁界を印加した静磁場中(温度T、
)で行うことにより磁化困難軸をX方向からY方向に9
0°回転させることにより最終的にY方向に高い透磁率
が得られる。
In the invention described in claim 7.14, the first stage heat treatment (temperature T3) is performed in a static magnetic field in which a magnetic field is applied in a direction in which high magnetic permeability is ultimately desired (for example, the Y direction shown in FIG. 6). The X direction was set as the axis of difficult magnetization, and the second stage of heat treatment was performed in a static magnetic field with a magnetic field applied in the X direction (temperature T,
), the axis of difficult magnetization is moved from the X direction to the Y direction by 9
By rotating it by 0°, high magnetic permeability is finally obtained in the Y direction.

温lff1T3.T、とも上限温度は前記と同じ理由か
ら700℃にする必要がある。また、T、はT3より低
くてもかまわない。T 3.T 、の下限は350℃と
なる。以上の関係をまとめると、次のようになる。35
0℃≦(’r 1.T 、)5700℃、より好ましく
は、500℃≦(T8.’r、)5700℃となる。
Warm lff1T3. The upper limit temperature of both T and T needs to be 700° C. for the same reason as mentioned above. Further, T may be lower than T3. T 3. The lower limit of T is 350°C. The above relationships can be summarized as follows. 35
0°C≦('r1.T,)5700°C, more preferably 500°C≦(T8.'r,)5700°C.

以上のように請求項6.13と請求項7,14に記載し
た熱処理方法によれば、磁化困難軸方向で磁壁が不安定
にならない範囲のなるべく弱い一軸異方性を誘起するこ
とにより軟磁気特性の優秀な軟磁性合金膜を得ることが
できる。
As described above, according to the heat treatment method described in claims 6.13 and 7, 14, soft magnetic A soft magnetic alloy film with excellent properties can be obtained.

また、熱処理を行う場合、350〜700℃の広い範囲
で熱処理温度を選定できるので選定の幅が広く、温度設
定が容易にできるとともに、応用上有利な特徴がある。
Further, when heat treatment is performed, the heat treatment temperature can be selected within a wide range of 350 to 700°C, so there is a wide range of selection, temperature setting can be made easily, and there are features that are advantageous in terms of application.

更に、請求項6.13と請求項7.14に記載の発明で
は回転磁場中の熱処理工程を要しないために、軟磁性合
金膜を磁気ヘッド用として用いた場合、ギャップ形成時
に伴うガラス溶着に必要な装置の構成を簡略化できる効
果がある。
Furthermore, since the inventions described in claims 6.13 and 7.14 do not require a heat treatment process in a rotating magnetic field, when a soft magnetic alloy film is used for a magnetic head, glass welding that accompanies gap formation is avoided. This has the effect of simplifying the configuration of necessary equipment.

以下に実施例について説明する。Examples will be described below.

RF2極スパッタ装置を用い、幅4 mm、長さ24m
mの矩形状の結晶化ガラス基板の上に、厚さ約5〜6μ
mのG o−(T )−M−C系の軟磁性合金膜を成膜
し、得られた複数の軟磁性合金膜について後記するよう
に種々の測定を行った。
Width: 4 mm, length: 24 m using RF 2-pole sputtering equipment
m rectangular crystallized glass substrate with a thickness of approximately 5 to 6 μm.
A Go-(T)-M-C based soft magnetic alloy film of m was formed, and various measurements were performed on the obtained soft magnetic alloy films as described later.

その際、透磁率の測定は、基板の長手方向の透磁率につ
いて、8の字コイル型のパーミアンス計を用いて行った
At that time, the magnetic permeability was measured in the longitudinal direction of the substrate using a figure-8 coil type permeance meter.

また、熱処理条件は、下記の通りとした。Further, the heat treatment conditions were as follows.

・静磁場中熱処理 昇温速度: 設定温度まで1時間かけて昇温降温速度、
  −1,5℃/分 保持時間: 20分(以上、第7図参照)雰囲気:  
N、ガス気流 磁場、   基板の幅方向に5.000e印加・回転磁
場中熱処理 昇温速度と保持時間と降温速度は前記と同じ雰囲気; 
 真空雰囲気 磁場:    20000e 回転数   2 Orpm なお、以上の処理方法は後述の実施例1〜8について適
用した。
・Heat treatment temperature increase rate in static magnetic field: Temperature increase rate over 1 hour to the set temperature,
-1.5℃/min Holding time: 20 minutes (see Figure 7) Atmosphere:
N, gas flow magnetic field, heat treatment in a rotating magnetic field with 5.000 e applied in the width direction of the substrate; temperature increase rate, holding time, and temperature decrease rate in the same atmosphere as above;
Vacuum atmosphere magnetic field: 20000e Number of revolutions: 2 Orpm The above processing method was applied to Examples 1 to 8 described later.

(実施例1) Coターゲット上にTaのペレットを配置した複合ター
ゲットを用い、A r+ CH4の混合ガス中で基板の
幅方向に200eの磁場を印加しつつスパッタすること
により、C01ll+、4T a4.tc 11.9な
る組成の軟磁性合金膜を得た。得られた軟磁性合金膜に
ついて種々の温度で20分間、無磁場熱処理した後の初
透磁率(IMHz)を測定した。第8図にその結果を示
す。
(Example 1) Using a composite target in which Ta pellets are placed on a Co target, sputtering is performed in a mixed gas of Ar+ CH4 while applying a magnetic field of 200 e in the width direction of the substrate, thereby producing CO1ll+, 4T a4. A soft magnetic alloy film having a composition of tc 11.9 was obtained. The obtained soft magnetic alloy films were subjected to non-magnetic field heat treatment at various temperatures for 20 minutes, and then the initial magnetic permeability (IMHz) was measured. Figure 8 shows the results.

また、前記のように得られた軟磁性合金膜について種々
の温度で20分間、無磁場熱処理した後の異方性磁界(
Hk)を測定した。第9図にその結果を示す。
In addition, the anisotropic magnetic field (
Hk) was measured. Figure 9 shows the results.

第8図に示す初透磁率は、500℃を越えて520℃近
傍から向上し始め、650℃前後でピークを示し、その
後急激に減少しているが、730℃でもかなり高い値を
示している。
The initial magnetic permeability shown in Figure 8 exceeds 500°C and begins to improve around 520°C, peaks at around 650°C, and then rapidly decreases, but it still shows a fairly high value even at 730°C. .

第9図に示す異方性磁界は、550℃を越える温度から
急激に低下し始めている。最も好ましいと思われる異方
性磁界2〜8 0eの範囲あるいはその近傍の範囲には
、無磁場熱処理温度600〜700℃の範囲で到達して
いる。
The anisotropic magnetic field shown in FIG. 9 begins to decrease rapidly from temperatures exceeding 550°C. The most preferable range of anisotropic magnetic field of 2 to 80e or a range close thereto is reached at a non-magnetic field heat treatment temperature range of 600 to 700°C.

(実施例2) Coターゲット上にNbあるいはZrのペレットを配置
した複合ターゲットを用い、基板の幅方向に200e磁
場を印加しつつA r+ CL(4の混合ガス中てスパ
ッタすることにより、C085,4N bs、aC9,
2とC05a、elra、4Cs、oなる組成の各合金
膜を得た。得られた合金膜を各温度で20分間無磁場熱
処理した後の初透磁率を測定した。その結果を第10図
に示す。
(Example 2) Using a composite target in which Nb or Zr pellets are arranged on a Co target, C085, 4N bs, aC9,
Each alloy film having a composition of 2, C05a, elra, 4Cs, and o was obtained. The obtained alloy films were subjected to non-magnetic field heat treatment at each temperature for 20 minutes, and then the initial magnetic permeability was measured. The results are shown in FIG.

第1O図に示す初透磁率は、約550〜720℃の範囲
で1000以上の優秀な値を示した。
The initial magnetic permeability shown in FIG. 1O showed an excellent value of 1000 or more in the range of about 550 to 720°C.

(実施例3) 00ターゲツト上にTaおよびFeのペレットを配置し
た複合ターゲットを用い、基板の幅方向に200eの磁
場を印加しつつA r + CH4の混合ガス中でスパ
ッタすることにより、COe+、sF e3.4T a
t、sc lo、tなる組成の軟磁性合金膜を得た。得
られた合金膜を各温度で20分間無磁場熱処理した後の
初透磁率を測定した。その結果を第11図に示す。
(Example 3) COe+, sF e3.4T a
A soft magnetic alloy film having a composition of t, sc lo, and t was obtained. The obtained alloy films were subjected to non-magnetic field heat treatment at each temperature for 20 minutes, and then the initial magnetic permeability was measured. The results are shown in FIG.

第11図に示す初透磁率は、520℃近傍から向上し始
め、600〜650℃で極大となり、その後減少してい
る。
The initial magnetic permeability shown in FIG. 11 starts to improve around 520°C, reaches a maximum at 600 to 650°C, and then decreases.

以上のように実施例1〜3から得られた第8図ないし第
11図に示す結果から鑑みて、成膜後に無磁場熱処理を
行う場合の温度は520〜730℃に設定することが好
適であり、600〜700℃に設定することがより好ま
しい。
In view of the results shown in FIGS. 8 to 11 obtained from Examples 1 to 3 as described above, it is preferable to set the temperature at 520 to 730°C when non-magnetic field heat treatment is performed after film formation. It is more preferable to set the temperature to 600 to 700°C.

(実施例4) Coターゲット上にTaのペレットを配置した複合ター
ゲットを用い、基板の幅方向に2008の磁場を印加し
つつA 1 + CH4ガス中でスパッタすることによ
りCOa+、tTas、sC+t、sなる組成の軟磁性
合金膜を得た。得られた合金膜を各温度で20分間回転
磁場中で熱処理した後の初透磁率を測定した。その結果
を第12図に示す。
(Example 4) Using a composite target in which Ta pellets are placed on a Co target, sputtering is performed in A 1 + CH4 gas while applying a magnetic field of 2008 in the width direction of the substrate to produce COa+, tTas, sC+t, s. A soft magnetic alloy film having the following composition was obtained. The obtained alloy films were heat treated in a rotating magnetic field at each temperature for 20 minutes, and then the initial magnetic permeability was measured. The results are shown in FIG.

第12図に示す初透磁率は熱処理温度550〜700℃
で1000以上の高い値を示し、特に700℃で極大と
なっている。また、前記実施例1〜3の合金膜の場合、
各合金膜の保磁力は1〜20eであったのに対し、本実
施例の場合、保磁力は0.6 0e以下にまで低下し、
更に優れた軟磁性が得られた。
The initial magnetic permeability shown in Figure 12 is at a heat treatment temperature of 550 to 700℃.
It shows a high value of 1000 or more, and reaches a maximum especially at 700°C. In addition, in the case of the alloy films of Examples 1 to 3,
While the coercive force of each alloy film was 1 to 20e, in the case of this example, the coercive force decreased to 0.60e or less,
Even better soft magnetism was obtained.

(実施例5) COes、5Tas、oHfs、+なる組成の合金ター
ゲットを用い、無磁場の状態でA r+ CH4混合ガ
ス中でスパッタすることによりG O6s、sT a7
.、I−1fs、。
(Example 5) Using an alloy target with a composition of COes, 5Tas, oHfs, +, GO6s, sTa7 was sputtered in an Ar+ CH4 mixed gas in the absence of a magnetic field.
.. ,I-1fs,.

Cy、。なる組成の軟磁性合金膜を得た。得られた合金
膜を400〜550℃の各温度で20分間、静磁場中で
熱処理した後の初透磁率を測定した。
Cy. A soft magnetic alloy film having the following composition was obtained. The obtained alloy films were heat-treated in a static magnetic field at each temperature of 400 to 550° C. for 20 minutes, and then the initial magnetic permeability was measured.

その結果を第13図に・印で示す。この段階ではいずれ
の熱処理温度でも初透磁率が200〜500程度の低い
値しか得られなかった。
The results are shown in Fig. 13 with a * mark. At this stage, the initial magnetic permeability was only a low value of about 200 to 500 at any heat treatment temperature.

この合金膜を引き続き、第2段目の熱処理として650
℃で回転磁場中で熱処理し、熱処理後の初透磁率を第1
3図にO印で示した。この合金膜はいずれの熱処理温度
でも2000以上の高い値が得られた。
This alloy film was then subjected to a second heat treatment at 650°C.
℃ in a rotating magnetic field, and the initial permeability after heat treatment is
It is marked O in Figure 3. This alloy film obtained a high value of 2000 or more at any heat treatment temperature.

また、比較のために、前記合金膜と同一組成の合金膜を
前記と同一方法で製造し、この合金膜について第1段目
の静磁場中熱処理を省略し、直接650℃の回転磁場中
で熱処理を行って合金膜を得た。この合金膜の初透磁率
は1050を示した。
For comparison, an alloy film with the same composition as the above alloy film was manufactured by the same method as above, and the first stage heat treatment in a static magnetic field was omitted, and the alloy film was directly exposed to a rotating magnetic field at 650°C. Heat treatment was performed to obtain an alloy film. The initial magnetic permeability of this alloy film was 1050.

従って前記方法により得られた合金膜の方が優れた特性
を示した。
Therefore, the alloy film obtained by the above method showed superior properties.

(実施例6) Co+H,sF e3.+r as、iなる組成の合金
にグラファイトベレットを配置した複合ターゲットを用
い、無磁場状態で純Arガス中でスパッタすることによ
りCOa+、tFe3.5Tat、7C7,sなる組成
の軟磁性合金膜を得た。得られた合金膜を400〜55
0℃の各温度で20分間、静磁場中で熱処理した後の初
透磁率を測定した。その結果を第14図に・印で示す。
(Example 6) Co+H, sF e3. A soft magnetic alloy film with a composition of COa+, tFe3.5Tat, 7C7,s was obtained by sputtering in pure Ar gas without a magnetic field using a composite target in which graphite pellets were placed on an alloy with a composition of +r as,i. Ta. The obtained alloy film was heated to 400 to 55
The initial magnetic permeability was measured after heat treatment in a static magnetic field at each temperature of 0° C. for 20 minutes. The results are shown in Fig. 14 with a * mark.

この段階ではいずれの温度で熱処理しても200〜40
0程度の低い初透磁率しか得られなかった。
At this stage, heat treatment at any temperature will result in a
Only a low initial magnetic permeability of about 0 was obtained.

この合金膜を引き続き第2段目の熱処理として、550
℃で回転磁場中で熱処理した後の初透磁率を測定した。
This alloy film was then subjected to a second heat treatment at 550°C.
The initial permeability was measured after heat treatment in a rotating magnetic field at °C.

その結果を第14図にO印で示す。The results are shown by O in FIG.

この合金膜はいずれもtooo以上の高い初透磁率が得
られた。
In all of these alloy films, high initial magnetic permeability of more than too much was obtained.

また、比較のために、前記組成と同一組成の合金膜を用
い、第1段目の静磁場中での熱処理を省略し、成膜後に
直接550℃の回転磁場中熱処理を行って合金膜を得た
。この合金膜においては、初透磁率が78となり、前記
した本願発明方法により得られた合金膜の方が優れた特
性を示すことが明らかになった。
For comparison, we used an alloy film with the same composition as above, omitted the heat treatment in the static magnetic field in the first stage, and directly heat-treated the alloy film in a rotating magnetic field at 550°C after film formation. Obtained. In this alloy film, the initial magnetic permeability was 78, and it became clear that the alloy film obtained by the method of the present invention described above exhibits superior characteristics.

(実施例7) COse、zF e+、+T as、aなる組成の合金
にグラファイトのベレットを配置した複合ターゲットを
用い、無磁場状態で、純Arガス中でスパッタすること
によりG O+z、tF e3.5T aワ、、c 7
4なる組成の軟磁性合金膜を得た。得られた合金膜を5
50〜750℃の各温度で回転磁場中熱処理した後の初
透磁率を測定し、その結果を第15図に・印で示す。
(Example 7) G O+z, tF e3. 5T awa,,c 7
A soft magnetic alloy film having a composition of 4 was obtained. The obtained alloy film was
The initial magnetic permeability after heat treatment in a rotating magnetic field at various temperatures of 50 to 750°C was measured, and the results are shown in FIG. 15 with marks.

この段階では、650〜700℃で初透磁率が極大にな
っているものの、最大でも300程度の初透磁率しか得
られていない。
At this stage, although the initial magnetic permeability reaches a maximum at 650 to 700°C, the initial magnetic permeability is only about 300 at most.

この合金膜を第2段目の熱処理として引き続き550℃
で静磁場中熱処理した後の初透磁率を測定した。その結
果を第15図に○印で示す。
This alloy film was then subjected to a second heat treatment at 550°C.
The initial magnetic permeability was measured after heat treatment in a static magnetic field. The results are shown in FIG. 15 by circles.

第1段目の回転磁場中熱処理温度が約630〜720℃
の時に1000以上の高い初透磁率が得られた。
Heat treatment temperature in the first stage rotating magnetic field is approximately 630-720℃
A high initial permeability of 1000 or more was obtained when

また、比較例として、前記と同一組成の合金膜を用い、
第1段目の回転磁場中熱処理を省略し、直接550℃の
静磁場中熱処理して合金膜を得た。
In addition, as a comparative example, using an alloy film with the same composition as above,
The first stage heat treatment in a rotating magnetic field was omitted, and the alloy film was directly heat-treated in a static magnetic field at 550° C. to obtain an alloy film.

この合金膜においては、初透磁率が400となり、前記
した本願発明方法により得られた合金膜の方が優れた特
性を示すことが明らかになった。
In this alloy film, the initial magnetic permeability was 400, and it was revealed that the alloy film obtained by the method of the present invention described above exhibits superior characteristics.

(実施例8) 実施例7と同等の条件でCOa+、tF e3.sT 
a2.707.8なる組成の合金膜を成膜し、この合金
膜を550℃で回転磁場中熱処理した後、400℃で静
磁場中で熱処理して軟磁性合金膜を得た。この合金膜の
初透磁率を測定したところ、950となり、優れた値を
示した。
(Example 8) COa+, tF e3. under the same conditions as Example 7. sT
An alloy film having a composition of a2.707.8 was formed, and this alloy film was heat-treated at 550° C. in a rotating magnetic field, and then heat-treated at 400° C. in a static magnetic field to obtain a soft magnetic alloy film. When the initial magnetic permeability of this alloy film was measured, it was 950, which was an excellent value.

(実施例9) 第16図に示すように、幅4 mm、長さ24mmの矩
形状の結晶化ガラス基板上に、C0ea、3F C3,
+Tas、eなる組成の合金にグラファイトのペレット
を配置した複合ターゲットを用い、無磁場状態で純Ar
ガス中でスパッタすることでC0eI−tP e+、s
T a7.tc 7.1+なる組成の軟磁性合金膜を得
、第16図に示ずX方向に5000eの磁界を印加した
状態で550℃20分保持の条件で第1段目の熱処理を
行った後、第16図のY方向に、20000eの磁界を
印加した状態で400℃20分保持、450℃20分保
持、475℃20分保持、500℃20分保持、550
℃20分保持および350℃180分保持の6条件で第
2段目の熱処理を行った後のY方向のl M Hzの透
磁率と異方性磁界(11k)を測定した。その結果を第
17図と第18図に示す。
(Example 9) As shown in FIG. 16, C0ea, 3F C3,
Using a composite target in which graphite pellets are arranged in an alloy with a composition of +Tas, e, pure Ar is
C0eI-tP e+,s by sputtering in gas
T a7. A soft magnetic alloy film with a composition of tc 7.1+ was obtained, and after performing the first heat treatment under the condition of holding at 550°C for 20 minutes with a magnetic field of 5000e applied in the X direction (not shown in Fig. 16), In the Y direction of Fig. 16, with a magnetic field of 20000e applied, hold at 400°C for 20 minutes, hold at 450°C for 20 minutes, hold at 475°C for 20 minutes, hold at 500°C for 20 minutes, 550°C.
After the second heat treatment was performed under six conditions: 20 minutes at 350° C. and 180 minutes at 350° C., the magnetic permeability at 1 MHz in the Y direction and the anisotropic magnetic field (11k) were measured. The results are shown in FIGS. 17 and 18.

第16図のY方向に磁界を印加して測定したBHループ
から求めたY方向の異方性磁界は、第18図に示す如く
第1段の熱処理後は約49.。
The anisotropic magnetic field in the Y direction obtained from the BH loop measured by applying a magnetic field in the Y direction in FIG. 16 is approximately 49.9 mm after the first heat treatment, as shown in FIG. .

Oeと強く、I M Hzの初透磁率も第17図に示す
如く450までしか上がらないが、第2段目の熱処理後
の異方性磁界は、400℃20分保持、450℃20分
保持、475℃20分保持、350℃180分保持の場
合、いずれも約3.2〜16゜9 0eに制御でき、l
 M Hzの初透磁率も1050〜2I30の高い値を
示す。
Oe, and the initial magnetic permeability at I MHz only increases to 450 as shown in Figure 17, but the anisotropic magnetic field after the second stage heat treatment is maintained at 400°C for 20 minutes and 450°C for 20 minutes. , held at 475°C for 20 minutes, and held at 350°C for 180 minutes, can be controlled to approximately 3.2 to 16°90e, and l
The initial magnetic permeability at MHz also shows a high value of 1050 to 2I30.

第2段目の熱処理を500 ℃20分保持、550℃2
0分保持で行った場合、第16図のY方向が磁化容易軸
になってしまい、IMHzの初透磁率も80.60と劣
化する。ただし、500℃ 550℃の場合も保持時間
を短くすることによりY方向を磁化困難軸のままにして
おくことは可能になる。
2nd stage heat treatment held at 500℃ for 20 minutes, 550℃2
When holding for 0 minutes, the Y direction in FIG. 16 becomes the axis of easy magnetization, and the initial magnetic permeability at IMHz deteriorates to 80.60. However, even in the case of 500° C. to 550° C., it is possible to keep the Y direction as the axis of difficulty in magnetization by shortening the holding time.

(実施例10) 前記実施例9と同じ組成の合金試料を得、この試料につ
いて第16図のY方向に20000eの磁界を印加した
状態で500℃20分保持、5506C20分保持、6
00℃20分保持の各条件で第1段目の熱処理を行った
後、第16図のX方向に5000eの磁界を印加した状
態で550℃、20分保持の条件で第2段目の熱処理を
行った後のY方向のI M Hzの透磁率と異方性磁界
を測定した。その結果を第19図と第20図に示す。
(Example 10) An alloy sample having the same composition as in Example 9 was obtained, and this sample was held at 500°C for 20 minutes, 5506C for 20 minutes, and 6
After performing the first stage heat treatment under the conditions of holding at 00°C for 20 minutes, the second stage heat treatment was performed under the conditions of holding at 550°C for 20 minutes while applying a magnetic field of 5000e in the X direction in Figure 16. After performing this, the I MHz magnetic permeability and anisotropic magnetic field in the Y direction were measured. The results are shown in FIGS. 19 and 20.

Y方向の熱処理後では3者ともY方向が磁化容易軸にな
っていて、Y方向のIMHzの初透磁率6100以下で
あるが、X方向に第2段の熱処理を行っにらのは、磁化
容易軸がY方向からX方向へ90°回転し、Y方向が磁
化困難軸になるととらに、Y方向の異方性磁界もそれぞ
れ約33.40e、16.9 0e、1.7 0eに制
御され、IMllzの初透磁率ら640% +240、
l910と向」ニしている。
After heat treatment in the Y direction, the Y direction is the axis of easy magnetization for all three, and the initial magnetic permeability at IMHz in the Y direction is 6100 or less, but after the second heat treatment in the X direction, the magnetization When the easy axis rotates 90 degrees from the Y direction to the X direction, and the Y direction becomes the difficult axis of magnetization, the anisotropic magnetic field in the Y direction is also controlled to approximately 33.40e, 16.90e, and 1.70e, respectively. The initial permeability of IMllz is 640% +240,
It is facing 1910.

1発明の効果ヨ 以上説明したように請求項1.8に記載の方法こよれば
、特別な組成の軟磁性合金膜について、磁場中成膜した
後に520〜730℃で無磁場熱処理するので、熱処理
後において、弱い異方性磁界を得ることができ、高い透
磁率の軟磁性合金膜を得ることができる。また、得られ
た軟磁性合金膜はセンダスト以上の高い飽和磁束密度を
有し、ガラス融着工程の熱にも耐えるような耐熱性に優
れている。
1. Effects of the Invention As explained above, according to the method according to claim 1.8, a soft magnetic alloy film having a special composition is formed in a magnetic field and then subjected to non-magnetic field heat treatment at 520 to 730°C. After the heat treatment, a weak anisotropic magnetic field can be obtained and a soft magnetic alloy film with high magnetic permeability can be obtained. Furthermore, the obtained soft magnetic alloy film has a saturation magnetic flux density higher than that of Sendust, and has excellent heat resistance such that it can withstand the heat of the glass fusing process.

請求項2.9に記載の発明の方法によれば、特別な組成
の軟磁性合金膜について、磁場中成膜した後に、回転磁
場中で520〜730℃で熱処理するので、高い透磁率
を有し、センダスト以上の高い飽和磁束密度と良好な耐
熱性を有する軟磁性合金膜を得ることができる。また、
回転磁場中で熱処理することで、請求項1.8に記載の
方法で得られた軟磁性合金膜よりも更に保磁力の低い軟
磁性合金膜を得ることができる。
According to the method of the invention described in claim 2.9, the soft magnetic alloy film with a special composition is formed in a magnetic field and then heat-treated at 520 to 730°C in a rotating magnetic field, so that it has high magnetic permeability. However, a soft magnetic alloy film having a saturation magnetic flux density higher than that of Sendust and good heat resistance can be obtained. Also,
By performing the heat treatment in a rotating magnetic field, a soft magnetic alloy film having a lower coercive force than the soft magnetic alloy film obtained by the method according to claim 1.8 can be obtained.

請求項3.lOに記載の発明の方法によれば、特別な組
成の軟磁性合金膜について、成膜後に、静磁場中で35
0〜550で熱処理し、更に無磁場中で520〜730
℃で熱処理するので、高い透磁率を有し、センダスト以
上の高い飽和磁束密度と良好な耐熱性を有する軟磁性合
金膜を得ることができる。
Claim 3. According to the method of the invention described in 1O, a soft magnetic alloy film with a special composition is heated in a static magnetic field for 35 minutes after film formation.
Heat treated at 0 to 550 and further heated to 520 to 730 in no magnetic field.
Since the heat treatment is performed at .degree. C., a soft magnetic alloy film having high magnetic permeability, a saturation magnetic flux density higher than that of Sendust, and good heat resistance can be obtained.

請求項4.11に記載の発明の方法によれば、特別な組
成の軟磁性合金膜について、成膜後に、静磁場中で35
0〜550で熱処理し、更に回転磁場中で520〜73
0℃で熱処理するので、静磁場中熱処理温度が400〜
550℃のいずれの温度であっても2000以上の高い
透磁率を有し、高い飽和磁束密度と良好な耐熱性を有す
る軟磁性合金膜を得ることができる。
According to the method of the invention described in claim 4.11, a soft magnetic alloy film with a special composition is heated at 35°C in a static magnetic field after film formation.
Heat treated at 0 to 550 and further heated to 520 to 73 in a rotating magnetic field.
Since the heat treatment is performed at 0℃, the heat treatment temperature in a static magnetic field is 400℃~
A soft magnetic alloy film having a high magnetic permeability of 2000 or more, a high saturation magnetic flux density, and good heat resistance can be obtained at any temperature of 550°C.

請求項5.12に記載の発明の方法によれば、特別な組
成の軟磁性合金膜について、成膜後に、回転磁場中で5
00〜730℃で熱処理し、更に静磁場中で350〜6
00℃で熱処理するので、1000前後の高い透磁率を
有し、センダスト以上の高い飽和磁束密度と良好な耐熱
性を有する軟磁性合金膜を得ることができる。
According to the method of the invention set forth in claim 5.12, a soft magnetic alloy film having a special composition is subjected to 500° C. in a rotating magnetic field after film formation.
Heat treated at 00~730℃ and further heated at 350~6℃ in a static magnetic field.
Since the heat treatment is performed at 00° C., it is possible to obtain a soft magnetic alloy film having a high magnetic permeability of around 1000, a saturation magnetic flux density higher than that of Sendust, and good heat resistance.

請求項6.13に記載の発明の方法によれば、特別な組
成の軟磁性合金膜について、高い透磁率を得たい方向と
略直交する方向に磁界を印加して350〜700℃で静
磁場中熱処理した後に前記方向に磁界を印加して前記温
度以下で静磁場中熱処理するので、異方性磁界をある程
度抑えた上で透磁率の高い、軟磁気特性の優れた合金膜
を得ることができる。また、この発明の方法によれば、
回転磁場中の熱処理を行わないために、ヘッド製造工程
時のギャップ形成時に伴うガラス溶着工程に要する装置
が単純な装置で済む利点がある。更に、熱処理温度を3
50〜700℃の広い範囲で選定できるので、熱処理条
件の選択幅が広がる特徴がある。
According to the method of the invention described in claim 6.13, a soft magnetic alloy film with a special composition is subjected to a static magnetic field at 350 to 700°C by applying a magnetic field in a direction substantially perpendicular to the direction in which high magnetic permeability is desired. After medium heat treatment, a magnetic field is applied in the above direction and heat treatment is performed in a static magnetic field at a temperature below the above temperature, so it is possible to obtain an alloy film with high magnetic permeability and excellent soft magnetic properties while suppressing the anisotropic magnetic field to some extent. can. Further, according to the method of this invention,
Since heat treatment in a rotating magnetic field is not performed, there is an advantage that a simple device is required for the glass welding process that accompanies gap formation in the head manufacturing process. Furthermore, the heat treatment temperature was increased to 3
Since it can be selected in a wide range of 50 to 700°C, it has the feature that the selection range of heat treatment conditions is widened.

請求項7.14に記載の発明の方法によれば、特別な組
成の軟磁性合金膜について、高い透磁率を得たい方向に
磁界を印加した350〜700℃の静磁場中熱処理後に
、前記方向と略直交する方向に磁界を印加する静磁場中
熱処理を行うので、異方性磁界をある程度抑えた上で透
磁率の高い、軟磁気特性の優れた合金膜を得ることがで
きる。
According to the method of the invention described in claim 7.14, a soft magnetic alloy film having a special composition is subjected to heat treatment in a static magnetic field at 350 to 700°C in which a magnetic field is applied in a direction in which high magnetic permeability is desired. Since the heat treatment is carried out in a static magnetic field in which a magnetic field is applied in a direction substantially perpendicular to the direction, an alloy film with high magnetic permeability and excellent soft magnetic properties can be obtained while suppressing the anisotropic magnetic field to some extent.

また、この発明の方法によれば、回転磁場中の熱処理を
行わないために、ヘッド製造工程時のギャップ形成時に
伴うガラス溶着工程に要する装置が単純な装置で済む利
点がある。更に、熱処理温度を350〜700℃の広い
範囲で選定できるので、熱処理条件の選択幅が広がる特
徴がある。
Further, according to the method of the present invention, since heat treatment in a rotating magnetic field is not performed, there is an advantage that a simple device is required for the glass welding step accompanying gap formation in the head manufacturing process. Furthermore, since the heat treatment temperature can be selected within a wide range of 350 to 700°C, there is a feature that the selection range of heat treatment conditions is widened.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は回転磁場中において行う熱処理方法の一例を示
す説明図、第2図は比抵抗と熱処理温度の関係を示すグ
ラフ、第3図は請求項3.8に記載した発明の熱処理過
程を示すグラフ、第4図は請求項4.9に記載した発明
の熱処理過程を示すグラフ、第5図は請求項5.10に
記載した発明の熱処理過程を示すグラフ、第6図は試料
に対して加える磁界の方向を説明するための図、第7図
は実施例で行った加熱冷却過程を示すグラフ、第8図は
実施例1の合金膜の初透磁率と無磁場熱処理温度の関係
を示すグラフ、第9図は実施例!の合金膜の異方性磁界
と無磁場熱処理温度の関係を示すグラフ、第1O図は実
施例2の合金膜の初透磁率と無磁場熱処理温度の関係を
示すグラフ、第11図は実施例3の合金膜の初透磁率と
無磁場熱処理温度の関係を示すグラフ、第12図は実施
例4の合金膜の初透磁率と回転磁場中熱処理温度の関係
を示すグラフ、第13図は実施例5の合金膜の初透磁率
と静磁場中熱処理温度の関係を示すグラフ、第14図は
実施例6の合金膜の初透磁率と静磁場中熱処理温度の関
係を示すグラフ、第15図は実施例7の合金膜の初透磁
率と回転磁場中熱処理温度の関係を示すグラフ、第16
図は実施例において試料に対して加える磁界の方向を説
明するための図、第17図と第18図は実施例9で得ら
れたデータを示すもので、第17図は初透磁率と熱処理
温度の関係を示すグラフ、第18図は異方性磁界と熱処
理温度の関係を示すグラフ、第19図と第20図は実施
例10で得られたデータを示すもので、第19図は初透
磁率と熱処理温度の関係を示すグラフ、第20図は異方
性磁界と熱処理温度の関係を示すグラフである。 l・・・N極、2・・・S極、3・・・軟磁性合金膜、
4・・・基板、5.6・・・試料。 比 抵 抗 (、LIJI−cm) 第 第16囚 図 初透磁率 、u(IMHz) 初透磁率 /J(IMH2) 異方性磁界 Hk(Oe) 初透磁s 、u(IMHz) 回転磁場中熱処理1度(”C) 静磁場中熱処理1度(”C) 第17 図 静磁場中熱処理1度(”C) 回転磁場中熱処理1度(℃) 第18囚 Y方向の静磁場中熱処理1度じCコ 第19図 Y方向の静磁場中熱処理1度 [℃] 第20図 Y方向の静磁場中熱処理1度[℃]
FIG. 1 is an explanatory diagram showing an example of a heat treatment method performed in a rotating magnetic field, FIG. 2 is a graph showing the relationship between specific resistance and heat treatment temperature, and FIG. 3 is a diagram showing the heat treatment process of the invention described in claim 3.8. FIG. 4 is a graph showing the heat treatment process of the invention set forth in claim 4.9, FIG. 5 is a graph showing the heat treatment process of the invention set forth in claim 5.10, and FIG. Figure 7 is a graph showing the heating and cooling process carried out in the example, and Figure 8 shows the relationship between the initial magnetic permeability of the alloy film of Example 1 and the non-magnetic field heat treatment temperature. The graph shown in Figure 9 is an example! 10 is a graph showing the relationship between the initial magnetic permeability and the non-magnetic field heat treatment temperature of the alloy film of Example 2, and FIG. FIG. 12 is a graph showing the relationship between the initial magnetic permeability of the alloy film of Example 4 and the heat treatment temperature in a rotating magnetic field, and FIG. 13 is a graph showing the relationship between the initial magnetic permeability of the alloy film of Example 4 and the heat treatment temperature in a rotating magnetic field. A graph showing the relationship between the initial magnetic permeability of the alloy film of Example 5 and the heat treatment temperature in a static magnetic field, FIG. 14 is a graph showing the relationship between the initial magnetic permeability of the alloy film of Example 6 and the heat treatment temperature in a static magnetic field, and FIG. 15 16 is a graph showing the relationship between the initial magnetic permeability of the alloy film of Example 7 and the heat treatment temperature in a rotating magnetic field.
The figure is a diagram for explaining the direction of the magnetic field applied to the sample in the example, Figures 17 and 18 show the data obtained in Example 9, and Figure 17 shows the initial magnetic permeability and heat treatment. Figure 18 is a graph showing the relationship between temperature, Figure 18 is a graph showing the relationship between anisotropic magnetic field and heat treatment temperature, Figures 19 and 20 are data obtained in Example 10, and Figure 19 is the graph for the first time. A graph showing the relationship between magnetic permeability and heat treatment temperature, and FIG. 20 is a graph showing the relationship between anisotropic magnetic field and heat treatment temperature. l...N pole, 2...S pole, 3...soft magnetic alloy film,
4... Substrate, 5.6... Sample. Specific resistance (, LIJI-cm) 16th prisoner diagram Initial permeability, u (IMHz) Initial permeability/J (IMH2) Anisotropic magnetic field Hk (Oe) Initial permeability s, u (IMHz) Heat treatment in rotating magnetic field 1 degree ("C) Heat treatment in a static magnetic field 1 degree ("C) Figure 17 Heat treatment in a static magnetic field 1 degree ("C) Heat treatment in a rotating magnetic field 1 degree (℃) 18th figure Heat treatment in a static magnetic field in the Y direction 1 degree Figure 19 Heat treatment in a static magnetic field in the Y direction 1 degree [℃] Figure 20 Heat treatment in a static magnetic field in the Y direction 1 degree [℃]

Claims (1)

【特許請求の範囲】 (1)組成式がCo_xT_yM_zC_wで示され、
MはTi,Zr,Hf,V,Nb,Ta,Mo,Wのう
ち、1種または2種以上からなる金属元素またはその混
合物、TはFe,Ni,Mnのうち、少なくとも1種ま
たは2種以上からなる金属元素またはその混合物であり
、組成比x,y,z,wは原子%で 50≦x≦96 0<y≦20 2≦z≦25 0.1≦w≦20 x+y+z+w=100 なる関係を満足させるとともに、その組織が基本的に平
均粒径0.05μm以下の結晶粒からなり、その一部に
元素Mの炭化物の結晶相を含む軟磁性合金膜の製造方法
において、 高い透磁率を得たい方向と略直交する方向に磁場を印加
しつつ成膜する工程と、成膜後に520〜730℃の温
度範囲において無磁場状態で熱処理を行う工程を具備す
ることを特徴とする軟磁性合金膜の製造方法。 (2)請求項1に記載した組成の軟磁性合金膜を製造す
るに際し、高い透磁率を得たい方向と略直交する方向に
磁場を印加しつつ成膜する工程と、成膜後に520〜7
30℃の温度範囲で回転磁場中において熱処理を行う工
程を具備することを特徴とする軟磁性合金膜の製造方法
。 (3)請求項1に記載した組成の軟磁性合金膜を製造す
るに際し、成膜後、350〜550℃の温度範囲で高い
透磁率を得たい方向と略直交する方向に印加された静磁
場中において熱処理を行う工程と、それに引き続き行な
われる520〜730℃の温度範囲での無磁場熱処理工
程を具備することを特徴とする軟磁性合金膜の製造方法
。 (4)請求項1に記載した組成の軟磁性合金膜を製造す
るに際し、成膜後、350〜550℃の温度範囲で高い
透磁率を得たい方向と略直交する方向に印加された静磁
場中において熱処理を行う工程と、それに引き続き行な
われる520〜730℃の温度範囲での回転磁場中にお
ける熱処理工程を具備することを特徴とする軟磁性合金
膜の製造方法。 (5)請求項1に記載した組成の軟磁性合金膜を製造す
るに際し、成膜後、500〜730℃の温度範囲で回転
磁場中において熱処理する工程と、それに引き続き行な
われる高い透磁率を得たい方向と略直交する方向に印加
された静磁場中において350〜600℃の温度範囲で
熱処理を行う工程を具備することを特徴とする軟磁性合
金膜の製造方法。 (6)請求項1に記載した組成の軟磁性合金膜に対し、
最終的に高い透磁率を得たい方向と略直交する方向に磁
界を印加した静磁場中で350〜700℃の温度範囲で
第1段の熱処理を行い、微結晶を一部析出させた状態で
一軸磁気異方性を誘導した後、第1段の熱処理温度以下
の温度で最終的に高い透磁率を得たい方向に磁界を印加
した静磁場中において第2段の熱処理を行い、前記第1
段と第2段の熱処理温度と保持時間の少なくとも一方を
調節することで、その組織が、基本的に平均粒径0.0
5μm以下の結晶粒からなり、その一部に元素Mの炭化
物の結晶相を含む軟磁性合金膜の一軸磁気異方性を制御
することを特徴とする軟磁性合金膜の熱処理方法。 (7)請求項1に記載した組成の軟磁性合金膜に対し、
最終的に高い透磁率を得たい方向に磁界を印加した静磁
場中で350〜700℃の温度範囲で第1段の熱処理を
行い、微結晶を一部析出させた状態で一軸磁気異方性を
誘導した後、350〜700℃の温度範囲で、最終的に
高い透磁率を得たい方向と略直交する方向に磁界を印加
した静磁場中において第2段の熱処理を行い、前記第1
段と第2段の熱処理温度と保持時間の少なくとも一方を
調節することで、その組織が、基本的に平均粒径0.0
5μm以下の結晶粒からなり、その一部に元素Mの炭化
物の結晶相を含む軟磁性合金膜の一軸磁気異方性の大き
さを制御することを特徴とする軟磁性合金膜の熱処理方
法。 (8)組成式がCo_xM_zC_wで示され、MはT
i,Zr,Hf,V,Nb,Ta,Mo,Wのうち、1
種または2種以上からなる金属元素またはその混合物で
あり、組成比x,z,wは原子%で 50≦x≦96 2≦z≦25 0.1≦w≦20 x+z+w=100 なる関係を満足させるとともに、その組織が基本的に平
均粒径0.05μm以下の結晶粒からなり、その一部に
元素Mの炭化物の結晶相を含む軟磁性合金膜の製造方法
において、 高い透磁率を得たい方向と略直交する方向に磁場を印加
しつつ成膜する工程と、成膜後に520〜730℃の温
度範囲において無磁場状態で熱処理を行う工程を具備す
ることを特徴とする軟磁性合金膜の製造方法。 (9)請求項8に記載した組成の軟磁性合金膜を製造す
るに際し、高い透磁率を得たい方向と略直交する方向に
磁場を印加しつつ成膜する工程と、成膜後に520〜7
30℃の温度範囲で回転磁場中において熱処理を行う工
程とを具備することを特徴とする軟磁性合金膜の製造方
法。 (10)請求項8に記載した組成の軟磁性合金膜を製造
するに際し、成膜後、350〜550℃の温度範囲で高
い透磁率を得たい方向と略直交する方向に印加された静
磁場中において熱処理を行う工程と、それに引き続き行
なわれる520〜730℃の温度範囲での無磁場熱処理
工程を具備することを特徴とする軟磁性合金膜の製造方
法。 (11)請求項8に記載した組成の軟磁性合金膜を製造
するに際し、成膜後、350〜550℃の温度範囲で高
い透磁率を得たい方向と略直交する方向に印加された静
磁場中において熱処理を行う工程と、それに引き続き行
なわれる520〜730℃の温度範囲での回転磁場中に
おける熱処理工程を具備することを特徴とする軟磁性合
金膜の製造方法。 (12)請求項8に記載した組成の軟磁性合金膜を製造
するに際し、成膜後、500〜730℃の温度範囲で回
転磁場中において熱処理する工程と、それに引き続き行
なわれる高い透磁率を得たい方向と略直交すろ方向に印
加された静磁場中において350〜600℃の温度範囲
で熱処理を行う工程を具備することを特徴とする軟磁性
合金膜の製造方法。 (13)請求項8に記載した組成の軟磁性合金膜に対し
、最終的に高い透磁率を得たい方向と略直交する方向に
磁界を印加した静磁場中で350〜700℃の温度範囲
で第1段の熱処理を行い、微結晶を一部析出させた状態
で一軸磁気異方性を誘導した後、第1段の熱処理温度以
下の温度で最終的に高い透磁率を得たい方向に磁界を印
加した静磁場中において第2段の熱処理を行い、第1段
と第2段の熱処理温度と保持時間の少なくとも一方を調
節することで、その組織が、基本的に平均粒径0.05
μm以下の結晶粒からなり、その一部に元素Mの炭化物
の結晶相を含む軟磁性合金膜の一軸磁気異方性を制御す
ることを特徴とする軟磁性合金膜の熱処理方法。 (14)請求項8に記載した組成の軟磁性合金膜に対し
、最終的に高い透磁率を得たい方向に磁界を印加した静
磁場中で350〜700℃の温度範囲で第1段の熱処理
を行い、微結晶を一部析出させた状態で一軸磁気異方性
を誘導した後、350〜700℃の温度範囲で、最終的
に高い透磁率が得たい方向と略直交する方向に磁界を印
加した静磁場中において第2段の熱処理を行い、第1段
と第2段の熱処理温度と保持時間の少なくとも一方を調
節することで、その組織が、基本的に平均粒径0.05
μm以下の結晶粒からなり、その一部に元素Mの炭化物
の結晶相を含む軟磁性合金膜の一軸磁気異方性の大きさ
を制御することを特徴とする軟磁性合金膜の熱処理方法
[Claims] (1) The compositional formula is represented by Co_xT_yM_zC_w,
M is a metal element consisting of one or more of Ti, Zr, Hf, V, Nb, Ta, Mo, and W, or a mixture thereof; T is at least one or two of Fe, Ni, and Mn; It is a metal element consisting of the above or a mixture thereof, and the composition ratio x, y, z, w in atomic % is 50≦x≦96 0<y≦20 2≦z≦25 0.1≦w≦20 x+y+z+w=100 In a method for manufacturing a soft magnetic alloy film that satisfies the relationship and whose structure basically consists of crystal grains with an average grain size of 0.05 μm or less and includes a crystal phase of a carbide of element M in a part thereof, the film has high magnetic permeability. Soft magnetism characterized by comprising a step of forming a film while applying a magnetic field in a direction substantially perpendicular to the desired direction, and a step of performing heat treatment in a temperature range of 520 to 730° C. in the absence of a magnetic field after forming the film. A method for producing an alloy film. (2) When producing a soft magnetic alloy film having the composition described in claim 1, a step of forming the film while applying a magnetic field in a direction substantially orthogonal to the direction in which high magnetic permeability is desired, and
A method for producing a soft magnetic alloy film, comprising the step of performing heat treatment in a rotating magnetic field at a temperature range of 30°C. (3) When producing a soft magnetic alloy film having the composition described in claim 1, after film formation, a static magnetic field is applied in a direction substantially perpendicular to the direction in which high magnetic permeability is desired in the temperature range of 350 to 550°C. 1. A method for producing a soft magnetic alloy film, comprising a step of heat treatment in the middle, and a subsequent step of heat treatment in a non-magnetic field in a temperature range of 520 to 730°C. (4) When producing a soft magnetic alloy film having the composition described in claim 1, after film formation, a static magnetic field is applied in a direction substantially perpendicular to the direction in which high magnetic permeability is desired in the temperature range of 350 to 550°C. 1. A method for manufacturing a soft magnetic alloy film, comprising a step of heat treatment in a rotating magnetic field at a temperature range of 520 to 730° C. (5) When producing a soft magnetic alloy film having the composition described in claim 1, after the film is formed, a heat treatment step is performed in a rotating magnetic field at a temperature range of 500 to 730°C, and a subsequent step is performed to obtain a high magnetic permeability. 1. A method for manufacturing a soft magnetic alloy film, comprising the step of performing heat treatment at a temperature range of 350 to 600° C. in a static magnetic field applied in a direction substantially perpendicular to the direction of the magnetic field. (6) For the soft magnetic alloy film having the composition described in claim 1,
The first stage of heat treatment is performed in a temperature range of 350 to 700°C in a static magnetic field in which a magnetic field is applied in a direction substantially perpendicular to the direction in which high magnetic permeability is desired to be obtained, and some microcrystals are precipitated. After inducing uniaxial magnetic anisotropy, a second heat treatment is performed in a static magnetic field in which a magnetic field is applied in the direction in which high magnetic permeability is ultimately desired at a temperature lower than the first heat treatment temperature.
By adjusting at least one of the heat treatment temperature and holding time of the stage and second stage, the structure can basically be adjusted to an average grain size of 0.0.
A method for heat treatment of a soft magnetic alloy film, which comprises controlling the uniaxial magnetic anisotropy of the soft magnetic alloy film, which consists of crystal grains of 5 μm or less and includes a crystal phase of a carbide of element M in a part thereof. (7) For the soft magnetic alloy film having the composition described in claim 1,
The first stage of heat treatment is performed in a temperature range of 350 to 700°C in a static magnetic field with a magnetic field applied in the direction in which high magnetic permeability is ultimately desired, and uniaxial magnetic anisotropy is achieved with some of the microcrystals precipitated. After inducing , a second heat treatment is performed in a static magnetic field in a temperature range of 350 to 700°C in a direction substantially perpendicular to the direction in which high magnetic permeability is desired to be obtained, and
By adjusting at least one of the heat treatment temperature and holding time of the stage and second stage, the structure can basically be adjusted to an average grain size of 0.0.
A method for heat treatment of a soft magnetic alloy film comprising controlling the magnitude of uniaxial magnetic anisotropy of the soft magnetic alloy film consisting of crystal grains of 5 μm or less and containing a crystal phase of a carbide of element M in a part thereof. (8) The compositional formula is shown as Co_xM_zC_w, where M is T
1 among i, Zr, Hf, V, Nb, Ta, Mo, W
A metal element consisting of a species or two or more types, or a mixture thereof, and the composition ratio x, z, w in atomic % satisfies the following relationships: 50≦x≦96 2≦z≦25 0.1≦w≦20 x+z+w=100 At the same time, we want to obtain high magnetic permeability in a method for manufacturing a soft magnetic alloy film whose structure basically consists of crystal grains with an average grain size of 0.05 μm or less and which partially contains a crystal phase of carbide of element M. A soft magnetic alloy film characterized by comprising a step of forming the film while applying a magnetic field in a direction substantially perpendicular to the direction, and a step of performing heat treatment in a temperature range of 520 to 730° C. without a magnetic field after the film formation. Production method. (9) When producing a soft magnetic alloy film having the composition described in claim 8, a step of forming the film while applying a magnetic field in a direction substantially perpendicular to the direction in which high magnetic permeability is desired, and
1. A method for producing a soft magnetic alloy film, comprising the step of performing heat treatment in a rotating magnetic field at a temperature range of 30°C. (10) When producing a soft magnetic alloy film having the composition described in claim 8, after film formation, a static magnetic field is applied in a direction substantially perpendicular to the direction in which high magnetic permeability is desired in the temperature range of 350 to 550°C. 1. A method for producing a soft magnetic alloy film, comprising a step of heat treatment in the middle, and a subsequent step of heat treatment in a non-magnetic field in a temperature range of 520 to 730°C. (11) When manufacturing a soft magnetic alloy film having the composition described in claim 8, after film formation, a static magnetic field is applied in a direction substantially perpendicular to the direction in which high magnetic permeability is desired in the temperature range of 350 to 550°C. 1. A method for manufacturing a soft magnetic alloy film, comprising a step of heat treatment in a rotating magnetic field at a temperature range of 520 to 730° C. (12) When producing a soft magnetic alloy film having the composition described in claim 8, after the film is formed, a step of heat treatment in a rotating magnetic field at a temperature range of 500 to 730°C, and a subsequent step of heat-treating the film in a rotating magnetic field to obtain high magnetic permeability. 1. A method for producing a soft magnetic alloy film, comprising the step of performing heat treatment in a temperature range of 350 to 600° C. in a static magnetic field applied in a direction substantially perpendicular to a direction perpendicular to a width direction. (13) A soft magnetic alloy film having the composition described in claim 8 is subjected to a temperature range of 350 to 700°C in a static magnetic field in which a magnetic field is applied in a direction substantially orthogonal to the direction in which high magnetic permeability is desired to be obtained. After performing the first heat treatment and inducing uniaxial magnetic anisotropy with some of the microcrystals precipitated, a magnetic field is applied in the direction in which you want to ultimately obtain high magnetic permeability at a temperature below the first heat treatment temperature. The second stage of heat treatment is performed in a static magnetic field with a
A method for heat treatment of a soft magnetic alloy film comprising controlling the uniaxial magnetic anisotropy of a soft magnetic alloy film consisting of crystal grains of μm or less and containing a crystal phase of a carbide of element M in a part thereof. (14) A first stage heat treatment of the soft magnetic alloy film having the composition described in claim 8 at a temperature range of 350 to 700°C in a static magnetic field in which a magnetic field is applied in the direction in which high magnetic permeability is desired to be obtained. After inducing uniaxial magnetic anisotropy in a state where some microcrystals are precipitated, a magnetic field is applied at a temperature range of 350 to 700°C in a direction approximately perpendicular to the direction in which high magnetic permeability is ultimately desired. By performing a second heat treatment in an applied static magnetic field and adjusting at least one of the heat treatment temperature and holding time of the first and second stages, the structure basically has an average grain size of 0.05.
A method for heat treatment of a soft magnetic alloy film comprising controlling the magnitude of uniaxial magnetic anisotropy of a soft magnetic alloy film consisting of crystal grains of μm or less in size and containing a crystal phase of a carbide of element M in a part thereof.
JP25140889A 1989-07-05 1989-09-27 Method for producing soft magnetic alloy film and method for heat treatment Expired - Lifetime JP2774611B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP17352389 1989-07-05
JP1-173523 1989-07-05

Publications (2)

Publication Number Publication Date
JPH03136216A true JPH03136216A (en) 1991-06-11
JP2774611B2 JP2774611B2 (en) 1998-07-09

Family

ID=15962104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25140889A Expired - Lifetime JP2774611B2 (en) 1989-07-05 1989-09-27 Method for producing soft magnetic alloy film and method for heat treatment

Country Status (1)

Country Link
JP (1) JP2774611B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5382301A (en) * 1991-10-18 1995-01-17 Fuji Electric Co., Ltd. High permeability thin-film magnetic head and method of manufacture
JP2002252115A (en) * 2001-02-26 2002-09-06 Alps Electric Co Ltd Impedance element and its manufacturing method
CN102305595A (en) * 2011-04-29 2012-01-04 无锡众望四维科技有限公司 Method for automatically detecting spring pitch by using mechanical vision system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5382301A (en) * 1991-10-18 1995-01-17 Fuji Electric Co., Ltd. High permeability thin-film magnetic head and method of manufacture
JP2002252115A (en) * 2001-02-26 2002-09-06 Alps Electric Co Ltd Impedance element and its manufacturing method
CN102305595A (en) * 2011-04-29 2012-01-04 无锡众望四维科技有限公司 Method for automatically detecting spring pitch by using mechanical vision system

Also Published As

Publication number Publication date
JP2774611B2 (en) 1998-07-09

Similar Documents

Publication Publication Date Title
JP3981732B2 (en) FePt magnetic thin film having perpendicular magnetic anisotropy and method for producing the same
JPH03136216A (en) Manufacture of soft magnetic alloy film and heat treatment method
JPH01309305A (en) Amorphous oxide magnetic substance and magnetic core and magnetic recording medium
JPH0738357B2 (en) Method of manufacturing perpendicular magnetic recording medium
JPS59170248A (en) Heat treatment of amorphous alloy
JP3127074B2 (en) Magnetic head
JP2003100515A (en) Soft magnetic thin film for magnetic core with high saturation magnetization
JPH0484403A (en) Soft magnetic thin film
JP3127075B2 (en) Soft magnetic alloy film, magnetic head, and method of adjusting thermal expansion coefficient of soft magnetic alloy film
JPH03265104A (en) Soft magnetic alloy film
JPH03263306A (en) Magnetic film and magnetic head
JPH05114530A (en) Manufacture of soft magnetic alloy film and manufacture of magnetic head
JPH03219058A (en) Hyperfine crystal magnetic alloy and its production
JP3058662B2 (en) Ultra-microcrystalline magnetic alloy
Iitake et al. Magnetic anisotropy and permeability of Fe-Zr-N thin films
JPH031513A (en) Manufacture of soft magnetic thin film
JPH0192359A (en) Manufacture of thin amorphous film
JPH0853739A (en) Soft magnetic alloy
JPH0665662A (en) Soft magnetic alloy
JPH03203308A (en) Thin magnetic film laminate
JPH0354845B2 (en)
JPS63809A (en) Formation of thin film magnetic head core
JPH0694589B2 (en) Heat treatment method for amorphous soft magnetic material
JPH072990B2 (en) Method for producing amorphous thin film
JPH01283908A (en) Co based amorphous magnetic film and magnetic head using the film