JPH0738357B2 - Method of manufacturing perpendicular magnetic recording medium - Google Patents

Method of manufacturing perpendicular magnetic recording medium

Info

Publication number
JPH0738357B2
JPH0738357B2 JP5021629A JP2162993A JPH0738357B2 JP H0738357 B2 JPH0738357 B2 JP H0738357B2 JP 5021629 A JP5021629 A JP 5021629A JP 2162993 A JP2162993 A JP 2162993A JP H0738357 B2 JPH0738357 B2 JP H0738357B2
Authority
JP
Japan
Prior art keywords
temperature
perpendicular magnetic
thin film
recording medium
tcry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5021629A
Other languages
Japanese (ja)
Other versions
JPH0645176A (en
Inventor
孝雄 鈴木
眞人 佐川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP59236661A priority Critical patent/JPH0670924B2/en
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP5021629A priority patent/JPH0738357B2/en
Publication of JPH0645176A publication Critical patent/JPH0645176A/en
Publication of JPH0738357B2 publication Critical patent/JPH0738357B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は垂直磁気記録方式におい
て使用する磁気記録媒体(特に磁気光記録媒体)の製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a magnetic recording medium (particularly a magneto-optical recording medium) used in a perpendicular magnetic recording system.

【0002】[0002]

【従来の技術及び発明が解決すべき課題】従来、薄膜面
と垂直な方向に磁化容易軸を有する強磁性薄膜としてM
nBi、MnCuBi、CoCrなどの多結晶金属薄
膜、GIGに代表される化合物単結晶薄膜、Gd−C
o、Gd−Fe、Tb−Fe、Dy−Feなどの希土類
遷移金属非晶質薄膜などが知られている。
2. Description of the Related Art Conventionally, M has been used as a ferromagnetic thin film having an easy axis of magnetization in a direction perpendicular to the thin film surface.
Polycrystalline metal thin films such as nBi, MnCuBi, and CoCr, compound single crystal thin films represented by GIG, Gd-C
Known are rare-earth transition metal amorphous thin films such as o, Gd-Fe, Tb-Fe, and Dy-Fe.

【0003】本発明はこれら以外の特に希土類遷移金属
微細結晶合金薄膜に関するものである。非晶質膜は、多
結晶薄膜のようにノイズの原因となるような結晶粒界が
存在しない、広い膜を容易に製作できるなどの特長を有
し、光磁気記録材料として好都合である。
The present invention relates to a rare-earth transition metal fine crystal alloy thin film other than the above. The amorphous film is advantageous as a magneto-optical recording material because it has features such as the absence of crystal grain boundaries that cause noise unlike a polycrystalline thin film, and that a wide film can be easily manufactured.

【0004】希土類遷移金属非晶質合金が光磁気記録媒
体として使用される為には、磁化容易方向が膜面に対し
て垂直方向に向いていることが要求される。垂直磁気異
方性は、いかなる場合にも誘起できるものではなく、む
しろ、磁性薄膜の反磁界の発生により膜面に平行な方向
へ配向する傾向を示す。垂直磁化膜を得るためには、こ
の反磁界に打ち勝つだけの異方性エネルギーを付与する
ことが必要である。
In order to use a rare-earth transition metal amorphous alloy as a magneto-optical recording medium, it is required that the easy magnetization direction be perpendicular to the film surface. Perpendicular magnetic anisotropy cannot be induced in any case, but rather tends to be oriented in a direction parallel to the film surface due to the generation of a demagnetizing field of the magnetic thin film. In order to obtain a perpendicularly magnetized film, it is necessary to give anisotropic energy sufficient to overcome this demagnetizing field.

【0005】得られる薄膜の垂直磁気異方性の程度は、
一軸異方性定数Kuの大きさによって表現でき、垂直磁
化膜となるためには、このKuと飽和磁化Msとの間に
Ku>2πMs2の関係を満足しなければならないとさ
れている。本発明において「垂直磁気異方性」とはかか
る条件を充足するものを少なくとも包含する。
The degree of perpendicular magnetic anisotropy of the obtained thin film is
It can be expressed by the magnitude of the uniaxial anisotropy constant Ku, and it is said that the relationship of Ku> 2πMs 2 must be satisfied between this Ku and the saturation magnetization Ms in order to form a perpendicular magnetization film. In the present invention, “perpendicular magnetic anisotropy” includes at least those satisfying such conditions.

【0006】垂直磁気記録媒体では一般に高い記録密度
が要求され、微小な磁区が安定して保持されるためには
Msが大きく、かつ上記の関係を満足する十分に大きな
Kuが得られることが大へん重要である。また、光磁気
ディスクではレーザ光を書込みパワーとして用いるが、
これを可能とするためには100〜200℃程度の十分
に低いキュリー温度Tcとそれよりも十分に高い結晶化
温度Tcryを有し少なくともこの温度差は50℃好ま
しくは100℃以上であることが要求される。
A perpendicular magnetic recording medium is generally required to have a high recording density, and in order to stably hold a minute magnetic domain, a large Ms and a sufficiently large Ku satisfying the above relationship are often obtained. Very important. Further, in the magneto-optical disk, laser light is used as the writing power,
In order to make this possible, it has a sufficiently low Curie temperature Tc of about 100 to 200 ° C. and a crystallization temperature Tcry sufficiently higher than that, and at least this temperature difference is 50 ° C., preferably 100 ° C. or more. Required.

【0007】垂直磁化膜として最も良く知られている希
土類−遷移金属の組合せは重希土類元素と鉄である。代
表的なものにTbFe、GdFe、DyFe、GdTb
Fe、TbDyFeなどがある。例えばTbFeはキュ
リー温度Tc=140〜250℃、カー回転角θk約0.3
°、飽和磁化Ms=50〜100emu/cc、垂直磁
気異方性定数Ku=105〜106erg/ccなどの特
性を有する。
The rare earth-transition metal combination best known as a perpendicular magnetization film is heavy rare earth element and iron. Typical ones are TbFe, GdFe, DyFe, GdTb
There are Fe, TbDyFe, and the like. For example, TbFe has a Curie temperature Tc of 140 to 250 ° C. and a Kerr rotation angle θ k of about 0.3.
And the saturation magnetization Ms = 50 to 100 emu / cc, the perpendicular magnetic anisotropy constant Ku = 10 5 to 10 6 erg / cc, and the like.

【0008】しかしこれらに用いられるTb、Dy、G
dなどの重希土類元素は地殻中にわずかしか存在せず希
少資源であり、また複雑な分離工程を必要とし、大へん
高価である。
However, Tb, Dy and G used for these
Heavy rare earth elements such as d are scarce resources because they are scarcely present in the crust, and require a complicated separation process, which is very expensive.

【0009】また重希土類元素と鉄の原子磁気モーメン
トは反平行に結合しているので飽和磁化Msやキュリー
温度Tcの組成依存性が大きく均質な製品を数多く生産
することが困難である。
Further, since the heavy rare earth elements and the atomic magnetic moments of iron are coupled antiparallel to each other, it is difficult to produce many homogeneous products because the composition of saturation magnetization Ms and Curie temperature Tc is large.

【0010】一方Nd、Prなどの軽希土類元素は地殻
中に重希土類元素よりもはるかに多く存在している。こ
のような希土類−鉄垂直磁化膜がNd、Prなどの軽希
土類元素を用いて作製することができれば、資源的な問
題は一掃されるのである。
On the other hand, light rare earth elements such as Nd and Pr are present in the crust much more than heavy rare earth elements. If such a rare earth-iron perpendicular magnetization film can be produced using a light rare earth element such as Nd or Pr, the resource problem will be eliminated.

【0011】これまで軽希土類・鉄の非晶質合金の検討
は例えばJ.J.CroatがFe0.60Nd0.40やFe0.60Pr
0.40付近の組成で液体急冷法を用いてリボン合金を作製
し、高い保磁力が得られることから永久磁石としての可
能性を論じている(Appl.Phys.Lett.39(4).15.August.19
81)。しかしこのような方法で得られるリボンは合金全
体にわたって均質なものは得られず、実質的に等方性の
ものしか得られていない。またリボンの厚さは33〜2
08μmであって記録媒体として用いられるものではな
い。
Up to now, in the study of amorphous alloys of light rare earth / iron, for example, JJCroat showed that Fe 0.60 Nd 0.40 and Fe 0.60 Pr.
Ribbon alloys were prepared using a liquid quenching method with a composition near 0.40 , and the possibility as a permanent magnet was discussed because a high coercive force was obtained (Appl.Phys.Lett.39 (4) .15.August). .19
81). However, the ribbon obtained by such a method cannot obtain a homogeneous ribbon throughout the alloy, but only a substantially isotropic ribbon. The ribbon thickness is 33-2.
It is 08 μm and is not used as a recording medium.

【0012】また最近では、K.Tsutsumi等がFe61.5
Nd34−Ti4.5のスパッタ薄膜が垂直磁気異方性を有
することを報告している(Jpn.J.Appl.Phys.23(1984).L1
69〜L171頁)。しかしその特性はMs=430emu/
cc、Ku=2×106erg/ccであった。またT
iを含まないFeNdスパッタ薄膜については作製条件
は明らかでないが、薄膜の面内に異方性があるものしか
報告されていない。
[0012] In recent years, K.Tsutsumi, etc. Fe 61.5 -
Sputtered film of Nd 34 -Ti 4.5 is reported to have a perpendicular magnetic anisotropy (Jpn.J.Appl.Phys.23 (1984) .L1
69-L p. 171). However, the characteristic is Ms = 430 emu /
It was cc and Ku = 2 × 10 6 erg / cc. See also T
Although the manufacturing conditions of the FeNd sputtered thin film not containing i are not clear, only those having in-plane anisotropy of the thin film have been reported.

【0013】軽希土類元素及び鉄の非晶質薄膜は高い飽
和磁化を有するがそのために薄膜の反磁界による作用に
打ち勝つための垂直磁気異方性エネルギーを付与するこ
とはほとんど不可能とされてきた。
Although amorphous thin films of light rare earth elements and iron have high saturation magnetization, it has been almost impossible to impart perpendicular magnetic anisotropy energy for overcoming the action due to the demagnetizing field of the thin films. .

【0014】[0014]

【目的】本発明は、軽希土類及び鉄を中心とする新規な
垂直磁気記録媒体(特に光磁気記録媒体)の製造方法を
提供することを基本的目的とする。本発明はさらに上述
の従来法に比し優れた特性を有する垂直磁気記録媒体の
製造方法を提供することをも目的とする。
An object of the present invention is to provide a novel method of manufacturing a perpendicular magnetic recording medium (particularly a magneto-optical recording medium) centered on light rare earth and iron. Another object of the present invention is to provide a method of manufacturing a perpendicular magnetic recording medium having excellent characteristics as compared with the above-mentioned conventional method.

【0015】[0015]

【課題を解決するための手段】[Means for Solving the Problems]

【概要】すなわち、本発明は軽希土類及び鉄を中心とす
るまつたく新しい磁気記録媒体の製造方法を提供するも
のである。本発明における磁気記録媒体は鉄及び希土類
元素、又はこれらとCo、を中心とし、希土類元素とし
てNd、Prを主体とする軽希土類元素を用い、薄膜内
の非晶質マトリックスに数Å〜数100Åの微細結晶を
含む垂直磁化薄膜である。
[Outline] That is, the present invention provides a new method for manufacturing a magnetic recording medium comprising a rare rare earth element and iron. The magnetic recording medium in the present invention uses a light rare earth element mainly composed of iron and a rare earth element, or these and Co and mainly containing Nd and Pr as a rare earth element, and
Is a perpendicularly magnetized thin film containing several Å to several hundred Å fine crystals in the amorphous matrix of .

【0016】本発明による垂直磁気記録媒体の製造方法
の第1の態様(請求の範囲第1項)は、基板上に金属ガ
ス凝集法により薄膜を形成する垂直磁気記録媒体の製造
方法において、基板上に金属ガス凝集法により薄膜を形
成する垂直磁気記録媒体の製造方法において、基板温度
を180℃〜合金の結晶化温度以下の温度に保持して、
式RFeにより本質上表わされ、希土類元素R25〜6
0原子%、残部Feから成り、Rの内70原子%以上が
Nd及びPrの1種又は2種、なおRの残部はY、L
a、Ce、Sm、Gd、Tb、Dy、Ho、Er及びY
bの一種以上とする組成から成り、膜厚を0.3〜3μ
mとし、かつ薄膜の非晶質マトリックスに数Å〜数10
0Åの微細結晶相少なくともを含むと共に垂直磁気異
方性定数Kuが反磁界エネルギー2πMs (Msは飽
和磁化)より大きな垂直磁気異方性を有し、さらに結晶
化温度Tcryとキュリー温度Tcとの温度差Tcry
−Tcが100℃以上である薄膜を形成することを特徴
とする。
A first aspect (claim 1) of the method for manufacturing a perpendicular magnetic recording medium according to the present invention is the method for manufacturing a perpendicular magnetic recording medium, wherein a thin film is formed on a substrate by a metal gas aggregation method. In a method of manufacturing a perpendicular magnetic recording medium in which a thin film is formed on the upper surface by a metal gas aggregation method, the substrate temperature is maintained at 180 ° C. to a temperature equal to or lower than the crystallization temperature of the alloy,
Represented essentially by the formula RFe, rare earth elements R 25 to 6
0 atomic% and balance Fe, 70 atomic% or more of R is 1 or 2 kinds of Nd and Pr, and the balance of R is Y, L
a, Ce, Sm, Gd, Tb, Dy, Ho, Er and Y
The composition is one or more of b and the film thickness is 0.3 to 3 μm.
m, and several Å to several tens in the amorphous matrix of the thin film.
The perpendicular magnetic anisotropy constant Ku includes at least a fine crystal phase of 0Å, and the perpendicular magnetic anisotropy constant Ku has a demagnetizing field energy of 2πMs 2 (Ms is
Has a larger perpendicular magnetic anisotropy than the sum magnetization) and further has a temperature difference Tcry between the crystallization temperature Tcry and the Curie temperature Tc.
It is characterized by forming a thin film having -Tc of 100 ° C or higher.

【0017】本発明による垂直磁気記録媒体の製造方法
の第2の態様(請求の範囲第2項)として、前記Fe3
0原子%未満(全組成に対する)をCoにて置換した垂
直記録媒体が提供される(即ち全組成中Co30原子%
未満となる)。
As a second aspect (claim 2) of the method for manufacturing a perpendicular magnetic recording medium according to the present invention, the Fe 3
Provided is a perpendicular recording medium in which less than 0 atomic% (relative to the total composition) is replaced with Co (that is, 30 atomic% Co in the total composition).
Less than).

【0018】さらに本発明による垂直磁気記録媒体の製
造方法の別の態様(請求の範囲第3〜4項)として、C
oを含まない場合は所定量以外の他の元素M10原子%
以下(但しMはNi、V、Ta、Cr、Mo、W、M
n、Bi、Al、Si、Pb、Sn及びSbの一種以
上)を含むこともでき、30原子%未満のCoを含む場
合はさらにZrを含むことができる。
As another aspect (claims 3 to 4) of the method for manufacturing a perpendicular magnetic recording medium according to the present invention, C
When o is not included, other elements other than the specified amount M10 atom%
Below (however, M is Ni, V, Ta, Cr, Mo, W, M
One or more of n, Bi, Al, Si, Pb, Sn and Sb) may be contained, and when containing less than 30 atomic% Co, Zr may be further contained.

【0019】以上は、式R(Fe、Co)Mで表わさ
れ、R25〜60原子%、M0〜10原子%、Co30
原子%未満及び残部Feから成る組成を成す。
The above is represented by the formula R (Fe, Co) M, R 25 to 60 atom%, M 0 to 10 atom%, Co 30
It has a composition of less than atomic% and the balance Fe.

【0020】[0020]

【作用効果概要】本発明者らは前述のような事情から微
細結晶質薄膜の作製条件を詳細に検討した。その結果資
源が豊富で安価なNd、Prなどの軽希土類元素及び鉄
を用いてキュリー温度Tc=70〜250℃、飽和磁化
Ms約450emu/cc以上、垂直磁気異方性定数K
u少くとも1.5×106erg/cc以上、さらに2.5〜
7×106erg/cc以上、カー回転角θk約0.3°以
上の特性、即ち前述の重希土類−鉄非晶質薄膜と同等ま
たはそれ以上の特性を有する垂直磁化膜が得られた。
[Summary of Actions and Effects] The present inventors have studied in detail the conditions for producing a fine crystalline thin film from the above-mentioned circumstances. As a result, Curie temperature Tc = 70 to 250 ° C., saturation magnetization Ms of about 450 emu / cc or more, and perpendicular magnetic anisotropy constant K are obtained by using light rare earth elements such as Nd and Pr, which are rich in resources, and iron, and iron.
u At least 1.5 × 10 6 erg / cc or more, further 2.5-
A perpendicular magnetization film having the characteristics of 7 × 10 6 erg / cc or more and the Kerr rotation angle θ k of about 0.3 ° or more, that is, the characteristics equal to or more than the above-mentioned heavy rare earth-iron amorphous thin film was obtained.

【0021】既述の通り、垂直磁化膜となるためにはK
u>2πMs2の関係が成立つことが必要とされてい
る。しかし本発明においては磁区が小さく分かれており
その場合には反磁界が見かけのそれよりも小さく、必ず
しも上記の条件を満足しなくとも垂直磁化膜となるが、
安定した垂直磁化膜を得るためには1.5×106erg/
cc以上とすることが必要である(大略、Ku≧0.6×
2πMs2)。
As described above, in order to form a perpendicular magnetization film, K
It is necessary that the relationship of u> 2πMs 2 is established. However, in the present invention, the magnetic domains are divided into small regions, and in that case, the demagnetizing field is smaller than that apparently, and even if the above conditions are not always satisfied, a perpendicularly magnetized film is formed.
To obtain a stable perpendicular magnetic film, 1.5 × 10 6 erg /
It is necessary to be cc or more (generally, Ku ≧ 0.6 ×
2πMs 2 ).

【0022】垂直磁化膜かどうかは図3のように、膜に
平行方向(//)と垂直方向(⊥)の磁化曲線を測定する
ことによって知ることができる。
Whether the film is a perpendicular magnetization film can be known by measuring the magnetization curves in the direction parallel (//) and the direction perpendicular to the film (⊥) as shown in FIG.

【0023】本発明において、NdやPrと鉄との組合
せは各々の原子の磁気モーメントが平行に結合した場
合、重希土類元素・鉄の場合よりも高い飽和磁化が得ら
れ、記録の読み出し精度が向上する。熱磁気書込みを行
なう場合は、高い飽和磁化はもれ磁束が利用できて外部
から加えなければならない磁場が小さくても良い。さら
にFeの一部をCoで置換することはキュリー温度Tc
を上昇させさらにカー回転角θkを大きくし、θk約0.5
°以上のものが得られ、耐食性を改善する。
In the present invention, when Nd or Pr and iron are combined in combination, when the magnetic moments of the respective atoms are coupled in parallel, higher saturation magnetization is obtained than in the case of heavy rare earth element / iron, and the reading accuracy of recording is improved. improves. In the case of performing thermomagnetic writing, high saturation magnetization and leakage magnetic flux can be used, and the magnetic field that must be applied from the outside may be small. Further, substituting a part of Fe with Co means that the Curie temperature is Tc.
To increase the Kerr rotation angle θ k , and θ k is about 0.5.
More than ° can be obtained to improve corrosion resistance.

【0024】[0024]

【好適な実施の態様】本発明に用いる希土類元素Rとし
て、Rの内70%以上はNdとPrを用い特にNdが望
ましい。Rの残部は入手上の事情などからCe、Y、S
m、Dy、Tb、Ho、Gd、La、Er、Ybなどそ
の他の希土類元素を含んだものを用いても良い。
BEST MODE FOR CARRYING OUT THE INVENTION As the rare earth element R used in the present invention, Nd and Pr are used for 70% or more of R, and Nd is particularly desirable. The rest of R is Ce, Y, S due to availability reasons.
Those containing other rare earth elements such as m, Dy, Tb, Ho, Gd, La, Er, and Yb may be used.

【0025】Rは全体組成中25原子%以上含まれる
と、Ku≧1.5X10erg/ccかつTcry−
Tcの温度差が約100℃以上の垂直磁化膜となる。
When R is 25 atomic% or more in the entire composition, Ku ≧ 1.5 × 10 6 erg / cc and Tcry−
The perpendicular magnetization film has a Tc temperature difference of about 100 ° C. or more.

【0026】Rは全体の組成の31原子%(at%)以
上で薄膜面に垂直な磁気異方性定数Kuが2.5×106
rg/cc以上となり十分に安定な垂直磁化膜となる。
R is 31 atomic% (at%) or more of the total composition, and the magnetic anisotropy constant Ku perpendicular to the thin film surface is 2.5 × 10 6 e.
The perpendicular magnetization film becomes rg / cc or more and is sufficiently stable.

【0027】Rが60at%以上では活性な希土類元素
を多く含むため薄膜作成後の安定性に欠ける。従ってR
の範囲は25〜60原子%(好ましくは31〜60原子
%)とする。Rが33〜50at%はKu=3×10
erg/cc以上のさらに好ましい範囲であり、特に好
ましくは35〜45at%である(図8参照)。
When R is 60 at% or more, a large amount of active rare earth elements are contained, and thus stability after forming a thin film is insufficient. Therefore R
The range is 25 to 60 atom% (preferably 31 to 60 atom%). When R is 33 to 50 at%, Ku = 3 × 10 6
The range is more preferably erg / cc or more, and particularly preferably 35 to 45 at% (see FIG. 8).

【0028】図2は飽和磁化Ms及びキュリー温度Tc
の組成(Nd量)依存性を示す図であるが広い組成(N
d量)範囲にわたって飽和磁化Ms及びキュリー温度T
cの変化の割合が小さく、重希土類元素鉄の場合と較べ
て遥かに安定した品質の製品を容易に作製できる様子が
わかる。
FIG. 2 shows the saturation magnetization Ms and the Curie temperature Tc.
It is a diagram showing the composition (Nd amount) dependence of the
d amount) saturation magnetization Ms and Curie temperature T over the range
It can be seen that the rate of change in c is small and that a product with much more stable quality can be easily produced as compared with the case of heavy rare earth element iron.

【0029】Rの残りは鉄を主体とするがFeを全組成
中の30%未満Coで置換することは磁気光記録媒体又
は垂直磁化膜としての特性を損なうことなく飽和磁化M
s、キュリー温度Tcの上昇、カー回転角の増加や薄膜
の耐食性を向上する効果がある。CoをFeの50%以
上置換することは結晶化温度Tcryとキュリー温度T
cの差が小さくなり、またカー回転角も小さくなる。さ
らにターゲットがもろくなり製作が困難となるため、C
oの上限は全組成中30原子%未満とする。全Feに対
するCo置換量は好ましくは、約8〜30原子%未満
(θk0.45°以上)、最も好ましくは約12〜約27原
子%(θk0.5°以上)である。
The rest of R mainly consists of iron, but substituting Fe by less than 30% of the total composition makes saturation magnetization M without impairing the characteristics as a magneto-optical recording medium or a perpendicular magnetization film.
s, the Curie temperature Tc is increased, the Kerr rotation angle is increased, and the corrosion resistance of the thin film is improved. Replacing Co by 50% or more of Fe means that crystallization temperature Tcry and Curie temperature T
The difference in c becomes smaller and the Kerr rotation angle also becomes smaller. Furthermore, the target becomes brittle and difficult to manufacture, so C
The upper limit of o is less than 30 atom% in the entire composition. The amount of Co substitution with respect to total Fe is preferably about 8 to less than 30 atom% (θ k 0.45 ° or more), and most preferably about 12 to about 27 atom% (θ k 0.5 ° or more).

【0030】全体の組成の10at%未満の元素M即
ち、Ni、V、Ta、Cr、Mo、W、Mn、Bi、A
l、Pb、Sn、Sbなどの添加も垂直磁化膜としての
特性を損なわない。前記所定量のCoを含有する場合に
は、さらにZrの添加によっても、その特性を損なわな
い。
Element M less than 10 at% of the total composition, ie, Ni, V, Ta, Cr, Mo, W, Mn, Bi, A
The addition of 1, Pb, Sn, Sb, etc. does not impair the characteristics of the perpendicular magnetization film. When the predetermined amount of Co is contained, further addition of Zr does not impair the characteristics.

【0031】さらに、本発明の組成には全体の組成の1
0at%未満のTiを含有させることもでき、本発明の
方法に従えばKu3×106erg/ccのものを得る
ことができる。
Further, the composition of the present invention has one of the entire compositions.
Ti of less than 0 at% can be contained, and Ku3 × 10 6 erg / cc can be obtained according to the method of the present invention.

【0032】また本発明による薄膜は飽和磁化Msが高
いため、垂直磁気異方性定数が1.5×106erg/cc
より大きいことが必要である。一般に非晶質膜を作成す
るための基板を構成する基板材料は通常ガラス、Al、
ポリイミド系樹脂材、ポリエステル系樹脂材などを用い
るが、本発明の場合は垂直磁化膜を得るために基板の温
度を180℃以上、該合金組成の結晶化温度以下に保た
なければならないのでこの温度に耐えるものを用いる。
基板温度200〜300℃はKu=3×106erg/
cc以上が得られる好ましい範囲である(図4)。
Since the thin film according to the present invention has a high saturation magnetization Ms, the perpendicular magnetic anisotropy constant is 1.5 × 10 6 erg / cc.
It needs to be larger. Generally, the substrate material constituting the substrate for forming the amorphous film is usually glass, Al,
A polyimide resin material, a polyester resin material, or the like is used, but in the case of the present invention, the temperature of the substrate must be kept at 180 ° C. or higher and below the crystallization temperature of the alloy composition in order to obtain the perpendicular magnetization film. Use one that can withstand temperature.
When the substrate temperature is 200 to 300 ° C., Ku = 3 × 10 6 erg /
It is a preferable range where cc or more is obtained (FIG. 4).

【0033】薄膜の厚さは厚くなるに従ってKuが大き
くなり、垂直磁化膜を得るためには0.3μm以上必要で
あるが、3μmをこえると均一な層が得難く、生産上好
ましくない(図6)。
Ku increases as the thickness of the thin film increases, and 0.3 μm or more is required to obtain a perpendicularly magnetized film, but if it exceeds 3 μm, it is difficult to obtain a uniform layer, which is not preferable in production (FIG. 6). ).

【0034】本発明による薄膜は金属ガス凝集法(いわ
ゆる気相析着法)により形成され、真空蒸着法、物理的
析着法(スパッタ法、イオンプレーティング法等)、C
VD法等いずれの方法においても作製できるが、スパッ
タ法の場合アルゴンの圧力は2×10-1Torr付近が
望ましい(図7)。
The thin film according to the present invention is formed by a metal gas agglomeration method (so-called vapor deposition method), and is formed by vacuum vapor deposition method, physical deposition method (sputtering method, ion plating method, etc.), C
It can be formed by any method such as the VD method, but in the case of the sputtering method, the pressure of argon is preferably around 2 × 10 −1 Torr (FIG. 7).

【0035】スパッタの際に基板には基板と垂直方向に
数〜数十Oeの磁界が加わっていることが望ましい。こ
の磁界は基板下にとりつけた加熱用のシース線をソレノ
イド状に巻きつけ、加熱電流として直流を用いることに
よって容易に得ることができる。
It is desirable that a magnetic field of several to several tens Oe is applied to the substrate in the direction perpendicular to the substrate during sputtering. This magnetic field can be easily obtained by winding a sheathing wire for heating attached under the substrate in a solenoid shape and using direct current as a heating current.

【0036】本発明による薄膜の状態は薄膜の非晶質マ
トリックスに約数Å〜約100Åの大きさの微細結晶相
を含むことが望ましい(図5)。
The state of the thin film according to the present invention depends on the amorphous film of the thin film.
Fine crystalline phase with a size of about several Å to about 100 Å
Should be included (FIG. 5).

【0037】また大きな飽和磁化を有することに基づ
き、光磁気ディスクとして熱磁気書込みを行う場合は囲
りの部分からのもれ磁束が利用できるため外部から加え
る磁場が小さくても良い。
Further, since the leakage magnetic flux from the surrounding portion can be utilized when thermomagnetic writing is performed as a magneto-optical disk due to having a large saturation magnetization, a magnetic field applied from the outside may be small.

【0038】[0038]

【実施例】以下に実施例を用いて詳細に説明する。薄膜
は高周波スパッタ法を用いてAr雰囲気中でガラス基板
上に作成した。
Embodiments will be described in detail below with reference to embodiments. The thin film was formed on a glass substrate in an Ar atmosphere by using the high frequency sputtering method.

【0039】Arガスを導入する前にスパッタ容器内を
5×10-7Torr以上の真空にした。スパッタの速度
は約2μm/hrであった。スパッタ作成中は基板には
バイアス電圧を加えていない。
Before introducing Ar gas, the inside of the sputtering container was evacuated to 5 × 10 −7 Torr or more. The sputter rate was about 2 μm / hr. No bias voltage is applied to the substrate during sputtering production.

【0040】基板の加熱は基板の下にとりつけた円筒状
の銅製ボビンの外周に巻回したシース線の電流を調整す
ることにより行った。
The substrate was heated by adjusting the electric current of the sheath wire wound around the outer periphery of the cylindrical copper bobbin attached below the substrate.

【0041】電流は直流を用いたため、基板上には数十
Oeの磁界が発生している。試料の磁気特性は最大磁場
強さが20kOeのトルク磁力計及び振動試料型磁力計
(VSM)を用いた。薄膜の構造解析はCu−Kα線を
用いたX線回折と、透過式電子顕微鏡によった。
Since a direct current is used as the current, a magnetic field of several tens Oe is generated on the substrate. As the magnetic characteristics of the sample, a torque magnetometer having a maximum magnetic field strength of 20 kOe and a vibrating sample magnetometer (VSM) were used. The structure of the thin film was analyzed by X-ray diffraction using Cu-Kα ray and a transmission electron microscope.

【0042】[0042]

【実施例1】図1にFe100-xNdx、x=18、30、
35、38、40の組成でAr圧が1〜2×10-1To
rr、基板温度220〜290℃、膜厚5000Å〜1.
2μmの条件で作成した薄膜の磁化の温度依存性を示
す。
Example 1 In FIG. 1, Fe 100-x Nd x , x = 18, 30,
The composition of 35, 38 and 40 has an Ar pressure of 1 to 2 × 10 −1 To.
rr, substrate temperature 220 to 290 ° C., film thickness 5000Å to 1.
The temperature dependence of the magnetization of the thin film formed under the condition of 2 μm is shown.

【0043】ここで磁化は容易磁化軸方向に飽和磁化さ
せた後、VSMで10kOeの磁場中で測定を行った。
Here, the magnetization was subjected to saturation magnetization in the easy magnetization axis direction, and then measured with VSM in a magnetic field of 10 kOe.

【0044】キュリー温度TcはM2/T(M:磁化、
T:温度)曲線の外挿線が温度軸と交錯する点より求め
た。
The Curie temperature Tc is M 2 / T (M: magnetization,
It was determined from the point where the extrapolation line of the (T: temperature) curve intersects the temperature axis.

【0045】図1中Tcryは結晶化温度を示す。In FIG. 1, Tcry represents the crystallization temperature.

【0046】キュリー温度は350〜400K(77〜
127℃)でDyFe(Tc約70℃)、TbFe(T
c約140℃)とほぼ同等であった。
The Curie temperature is 350 to 400 K (77 to
DyFe (Tc about 70 ° C) at 127 ° C, TbFe (T
c about 140 ° C.).

【0047】またキュリー温度(Tc)と結晶化温度
(Tcry)の差がNd≧30原子%で約200℃ある
ことからレーザ光による熱電気書込みが十分行えること
が判る。
Further, since the difference between the Curie temperature (Tc) and the crystallization temperature (Tcry) is about 200 ° C. when Nd ≧ 30 atomic%, it can be understood that thermoelectric writing by laser light can be sufficiently performed.

【0048】図2は図1のキュリー温度及び結晶化温度
を組成(Fe100−xNd)と対比させたものであ
る。キュリー温度又はMsは広い組成範囲にわたってほ
とんど変化しないことが判る。Nd≧21at%で温度
差(Tcry−Tc)が約50℃以上となり、Nd≧2
5at%で差≧100℃となり、Nd≧30at%で差
≧200℃となる。
[0048] FIG. 2 is obtained by comparing the Curie temperature and crystallization temperature of the 1 composition as (Fe 100-x Nd x) . It can be seen that the Curie temperature or Ms changes little over a wide composition range. When Nd ≧ 21 at%, the temperature difference (Tcry−Tc) becomes about 50 ° C. or higher, and Nd ≧ 2
The difference is ≧ 100 ° C. at 5 at%, and the difference is ≧ 200 ° C. at Nd ≧ 30 at%.

【0049】また図2にはまた77K及び300Kでの
飽和磁化のFe−Nd組成依存性を示す。
FIG. 2 also shows the Fe-Nd composition dependence of the saturation magnetization at 77K and 300K.

【0050】[0050]

【実施例2】Fe65Nd35及びFe60Nd40の組成で基
板温度が240〜290℃、Ar圧が1〜2×10-1
orrの条件で作成したスパッタ薄膜を77K及び30
0Kで磁気特性を測定した。その結果を図3に示す。薄
膜の垂直方向(⊥)及び水平方向(//)の測定から77
Kおよび300Kにおいてこれらの薄膜が垂直磁化まく
である様子がわかる。
Example 2 A composition of Fe 65 Nd 35 and Fe 60 Nd 40 having a substrate temperature of 240 to 290 ° C. and an Ar pressure of 1 to 2 × 10 −1 T
The sputtered thin film formed under the condition of orr is 77K and 30
The magnetic properties were measured at 0K. The result is shown in FIG. 77 from thin film vertical (⊥) and horizontal (//) measurements
It can be seen that at K and 300 K these films are vertically magnetized.

【0051】これらの薄膜のカー回転各θkを求めたと
ころ、θk=0.3°が得られた。これは前述の重希土類元
素−鉄非晶質垂直磁化膜と同等以上であった。
When the Kerr rotations θ k of these thin films were determined, θ k = 0.3 ° was obtained. This was equal to or higher than that of the above-mentioned heavy rare earth element-iron amorphous perpendicular magnetization film.

【0052】[0052]

【実施例3】Fe65Nd35の組成でAr圧1〜2×10
-1Torr、厚さ6000〜12650Åの薄膜を作成
し、トルクメータで垂直磁気異方性定数Kuを求めた。
スパッタ中の基板温度は70〜330℃の間で変化させ
た。その結果を図4に示す。
Example 3 A composition of Fe 65 Nd 35 and an Ar pressure of 1 to 2 × 10
A thin film of -1 Torr and a thickness of 6000 to 12650Å was prepared, and the perpendicular magnetic anisotropy constant Ku was determined with a torque meter.
The substrate temperature during sputtering was changed between 70 and 330 ° C. The result is shown in FIG.

【0053】Kuの値は基板温度が260〜290℃で
最大値を示す。図中黒丸は垂直磁化膜であることを示
し、白丸はそうでないことを表わす。基板温度Tsが結
晶化温度Tcry(≒320℃)よりも高い場合はもは
や垂直磁化膜の性質を示さない。(Ku≒0)
The value of Ku shows the maximum value when the substrate temperature is 260 to 290 ° C. In the figure, a black circle indicates that it is a perpendicular magnetization film, and a white circle indicates that it is not. When the substrate temperature Ts is higher than the crystallization temperature Tcry (≈320 ° C.), the property of the perpendicular magnetization film is no longer exhibited. (Ku≈0)

【0054】基板温度Tsが212℃、287℃、33
5℃の場合のスパッタ薄膜のX線回折パターンを図5に
示す。Ts=335℃及び287℃の場合には、Nd2
17やNdに相当すると考えられる鋭いピークが現われ
ている。
The substrate temperature Ts is 212 ° C., 287 ° C., 33
The X-ray diffraction pattern of the sputtered thin film at 5 ° C. is shown in FIG. When Ts = 335 ° C and 287 ° C, Nd 2 F
Sharp peaks that are considered to correspond to e 17 and Nd appear.

【0055】電子顕微鏡の観察からもTs=212℃、
287℃の場合には微細結晶の粒子が存在し、Ts=3
35℃の場合には結晶かがかなり進んでいることが判っ
た。これらのことから垂直磁気異方性を有するためには
結晶粒径約数Å〜数100Åの微細結晶相が不可欠であ
ることがわかる。
From observation with an electron microscope, Ts = 212 ° C.,
In the case of 287 ° C., fine crystal grains are present, and Ts = 3
It was found that the crystallinity was considerably advanced at 35 ° C. From these facts, it is understood that a fine crystal phase having a crystal grain size of about several Å to several hundred Å is indispensable to have perpendicular magnetic anisotropy.

【0056】[0056]

【実施例4】Fe65Nd35の組成のスパッタ膜を基板温
度210〜290℃、Ar圧力1〜2×10-1Torr
の条件で膜厚を変化させて作成し、トルクメータで磁気
異方性定数Kuを求めた結果を図6に示す。
Example 4 A sputtered film having a composition of Fe 65 Nd 35 was formed at a substrate temperature of 210 to 290 ° C. and an Ar pressure of 1 to 2 × 10 -1 Torr.
FIG. 6 shows the results of obtaining the magnetic anisotropy constant Ku with the torque meter, which was prepared by changing the film thickness under the condition of.

【0057】図6中黒丸は垂直磁化膜を示し、白丸は薄
膜の膜面内の異方性を有する場合である。図6中の添数
は基板の温度を示す。前述の条件Ku≧1.5×106er
g/ccを満たすためには、D0.3μm以上、さらにK
u≧2.5×106erg/ccを満足させるためには、膜
厚D約0.7μm以上が必要であることが判る。
In FIG. 6, black circles indicate perpendicularly magnetized films, and white circles indicate anisotropy in the film plane of the thin film. The index number in FIG. 6 indicates the temperature of the substrate. The above condition Ku ≧ 1.5 × 10 6 er
To satisfy g / cc, D 0.3 μm or more, and further K
It can be seen that a film thickness D of about 0.7 μm or more is necessary to satisfy u ≧ 2.5 × 10 6 erg / cc.

【0058】[0058]

【実施例5】Fe65Nd35を基板温度210〜290
℃、膜厚6140〜12650Åの条件でAr圧を変化
させて作成したスパッタ膜の磁気異方性定数KuのAr
圧依存性を図7に示す。
[Embodiment 5] Fe 65 Nd 35 was used at a substrate temperature of 210 to 290.
Ar of the magnetic anisotropy constant Ku of the sputtered film formed by changing the Ar pressure under the conditions of ℃ and film thickness of 6140 to 12650Å
The pressure dependence is shown in FIG.

【0059】Ar圧は2×10-1TorrあたりでKu
は鈍いピークを示すが、相対的にAr圧力依存性は他の
要因、すなわち基板温度や膜厚ほど顕著ではない。
The Ar pressure is Ku around 2 × 10 −1 Torr.
Shows a dull peak, but the relative Ar pressure dependency is not so remarkable as other factors, that is, the substrate temperature and the film thickness.

【0060】[0060]

【実施例6】Fe100-xNdxにおいて、x=18〜50
の広い組成範囲において基板温度が250〜280℃、
Ar圧1〜3×10-1Torr、膜厚6000〜130
00Åのスパッタ薄膜を作成し、垂直磁気異方性定数K
uを求めた結果を図8に示す。Kuの最大値はNd40
原子%辺りで得られ、1〜2×107erg/ccにも
達する高い値を示す。
Example 6 In Fe 100-x Nd x , x = 18 to 50
Substrate temperature of 250 to 280 ° C. in a wide composition range of
Ar pressure 1 to 3 × 10 −1 Torr, film thickness 6000 to 130
Create a 00 Å sputtered thin film and set the perpendicular magnetic anisotropy constant K
The result of obtaining u is shown in FIG. The maximum value of Ku is Nd40
It is obtained at around atomic% and shows a high value as high as 1-2 × 10 7 erg / cc.

【0061】Nd量がこれより減少する場合、Kuは急
激に低下し、31原子%未満では2.5×10erg
/cc未満になるがNd≧25at%では製造条件に注
意すればKu>反磁界エネルギー2πMs を満足し、
十分安定な垂直磁化膜となる。
When the amount of Nd is smaller than this, Ku decreases sharply, and when it is less than 31 atomic%, 2.5 × 10 6 erg.
/ Cc but less than Nd ≧ 25at%
If desired, Ku> demagnetizing field energy 2πMs 2 is satisfied,
It becomes a sufficiently stable perpendicular magnetic film.

【0062】[0062]

【実施例7】Fe60Nd355の組成でMとしてZr、
Hf、Bi、V、Nb、Ta、Cr、Mo、W、Mn、
Al、Sb、Ge、Sn、Si、Pb、NiをTs=2
20〜290℃、Ar圧1〜2×10-1Torr、膜厚
6300〜11000Åを作成し磁気特性を測定する。
Example 7 A composition of Fe 60 Nd 35 M 5 is Zr as M,
Hf, Bi, V, Nb, Ta, Cr, Mo, W, Mn,
Al, Sb, Ge, Sn, Si, Pb, Ni for Ts = 2
20 to 290 ° C., Ar pressure of 1 to 2 × 10 −1 Torr, and film thickness of 6300 to 11000Å are prepared and magnetic properties are measured.

【0063】いずれもKu≧2.5×106erg/cc、
カー回転角0.3°以上の垂直磁化膜が得られる。
In all cases, Ku ≧ 2.5 × 10 6 erg / cc,
A perpendicular magnetic film with a Kerr rotation angle of 0.3 ° or more can be obtained.

【0064】[0064]

【実施例8】Fe40Co25Nd35の組成で、Ts=24
0℃、Ar圧2×10-1Torr、膜厚7400Åを作
成し、磁気特性を測定した。
Example 8 A composition of Fe 40 Co 25 Nd 35 and Ts = 24
A magnetic property was measured at 0 ° C., an Ar pressure of 2 × 10 −1 Torr, and a film thickness of 7400 Å.

【0065】いずれもKu≧2.5×106erg/cc以
上の垂直磁化膜が得られた。
In all cases, a perpendicular magnetization film having a value of Ku ≧ 2.5 × 10 6 erg / cc or more was obtained.

【0066】[0066]

【実施例9】Fe60Nd25Pr15の組成でTs=260
℃、Ar圧1.5〜2×10-1Torr、膜厚7900Å
のスパッタ薄膜を作成しKu2.5×106erg/cc以
上の垂直磁化膜が得られた。
Example 9 Composition of Fe 60 Nd 25 Pr 15 and Ts = 260
℃, Ar pressure 1.5 to 2 × 10 -1 Torr, film thickness 7900Å
A sputtered thin film was prepared to obtain a perpendicular magnetization film of Ku2.5 × 10 6 erg / cc or more.

【0067】[0067]

【実施例10】Fe60Nd32Dy8、Fe58Nd32Ce
10、Fe57Nd30Ce103の組成でTs=240〜2
90℃、Ar圧1〜2×10-1Torr、膜厚7300
〜11000Åのスパッタ薄膜を作成し、Ku2.5×1
6erg/cc以上の垂直磁化膜が得られた。
Example 10 Fe 60 Nd 32 Dy 8 and Fe 58 Nd 32 Ce
10 , Fe 57 Nd 30 Ce 10 V 3 and Ts = 240-2
90 ° C., Ar pressure 1-2 × 10 −1 Torr, film thickness 7300
Create a sputtered thin film of ~ 11000Å, Ku2.5 × 1
A perpendicularly magnetized film of 0 6 erg / cc or more was obtained.

【0068】[0068]

【実施例11】Fe65Nd35及びFe60Nd40の組成
で、基板温度Tsが各々290℃、250℃、Ar圧2
×10-1Torr、膜厚が各々12650Å、4860
Åのスパッタ膜を作成した。Fe60Nd40において4.2
〜300Kで求めたトルク曲線を図9、図10及び図1
1に示す。
[Embodiment 11] Fe 65 Nd 35 and Fe 60 Nd 40 having a substrate temperature Ts of 290 ° C. and 250 ° C. and an Ar pressure of 2 respectively.
× 10 -1 Torr, film thickness 12650Å, 4860 respectively
A sputtered film of Å was created. 4.2 in Fe 60 Nd 40
The torque curves obtained at ˜300 K are shown in FIGS. 9, 10 and 1.
Shown in 1.

【0069】また、15kOe磁界中での回転ヒステリ
シス損Wの低温での温度変化を図11に示す。
FIG. 11 shows the temperature change of the rotation hysteresis loss W at a low temperature in a magnetic field of 15 kOe.

【0070】[0070]

【実施例12】(Fe1-yCoy60Nd40、y=0、0.
075、0.15、0.25の組成でAr圧が1〜2×10-1To
rr基板温度230〜290℃、膜厚7700Å〜1.1
μmの条件で作成した薄膜の結晶化温度Tcry、キュ
リー温度Tc、垂直磁気異方性定数Kuが最大値をとる
温度T1、及び保磁力Hcの変化を図12に示す。
Example 12 (Fe 1-y Co y ) 60 Nd 40 , y = 0, 0.
075, 0.15, 0.25 composition with Ar pressure of 1-2 × 10 -1 To
rr substrate temperature 230 ~ 290 ℃, film thickness 7700Å ~ 1.1
FIG. 12 shows changes in the crystallization temperature Tcry, the Curie temperature Tc, the temperature T 1 at which the perpendicular magnetic anisotropy constant Ku takes the maximum value, and the coercive force Hc of the thin film formed under the condition of μm.

【0071】Coの増加はTcryを変化させないでT
c、Hc、及びT1の増加をもたらす。
Increasing Co does not change Tcry but changes T
It results in an increase in c, Hc, and T 1 .

【0072】[0072]

【実施例13】実施例1で得られたNd35Fe65及び実
施例12で得られた(Fe1-yCoy60Nd40の薄膜
に、入射角80°の直線偏光した光(水銀ランプ光源、
波長λ=230〜830nm、ハーフミラーは用いず)
を用いて、測定は薄膜表面側より行なった。測定装置は
日本分光株式会社製「磁気−光学測定装置J−250」
を用いてカー回転角θkの波長λ依存性を求めた(図1
3)。図中Co5、Co10、Co15は夫々y=5/
60(=0.083)、10/60(=0.17)、15/60
(=0.25)に対応する。
Example 13 A thin film of Nd 35 Fe 65 obtained in Example 1 and (Fe 1-y Co y ) 60 Nd 40 obtained in Example 12 was linearly polarized with an incident angle of 80 ° (mercury). Lamp light source,
(Wavelength λ = 230-830 nm, half mirror not used)
Was measured from the thin film surface side. The measuring device is JASCO Corporation "Magnetic-optical measuring device J-250".
Was used to determine the wavelength λ dependence of the Kerr rotation angle θ k (Fig. 1
3). In the figure, Co5, Co10, and Co15 are y = 5 /, respectively.
60 (= 0.083), 10/60 (= 0.17), 15/60
Corresponds to (= 0.25).

【0073】低波長側で回転角は正、λ=340nm付
近でθkはほぼ0、それ以上の波長領域では|θk|は急
に増加し、λ>500nmではほぼ一定となるがすべて
の組成についてλ=400〜500nmで最大値をとっ
ている。λ=500及び633nmにおける|θk|の
組成依存性を図14に示す。Co組成yの増加と共に|
θk|は増加しy=0.25付近でほぼピークを示してい
る。λ=500及び633nmでの値はy=0.25で0.55
°及び0.45°である。これらの値は従来のGd−Fe−
Co系統の値よりはるかに大きいものである。
The rotation angle is positive on the low wavelength side, θ k is almost 0 in the vicinity of λ = 340 nm, and | θ k | increases sharply in the wavelength region above λ> 500 nm, but becomes almost constant at all λ> 500 nm. The maximum value of the composition is taken at λ = 400 to 500 nm. FIG. 14 shows the composition dependence of | θ k | at λ = 500 and 633 nm. With increase in Co composition y |
θ k | increases and almost peaks near y = 0.25. The values at λ = 500 and 633 nm are 0.55 at y = 0.25.
And 0.45 °. These values are conventional Gd-Fe-
It is much larger than that of the Co system.

【0074】[0074]

【実施例14】実施例13で用いたのと同じサンプルで
300Kでの飽和磁化Ms及び垂直磁気異方性エネルギ
ー定数Kuを求めた結果を図15に示す。Feの一部に
対するCoによる置換量の増大と共に飽和磁化Ms及び
磁気異方性エネルギー定数Kuを徐々に下げる。
[Embodiment 14] FIG. 15 shows the results of determining the saturation magnetization Ms and the perpendicular magnetic anisotropy energy constant Ku at 300 K in the same sample used in Embodiment 13. The saturation magnetization Ms and the magnetic anisotropy energy constant Ku are gradually lowered with the increase of the substitution amount of Co for a part of Fe.

【0075】[0075]

【実施例15】実施例1と同じ条件で作成したFe
100-xNdxの組成の薄膜のカー回転角θk及び保磁力H
cを求め図16に示す。
Example 15 Fe prepared under the same conditions as in Example 1
Kerr rotation angle θ k and coercive force H of a thin film having a composition of 100-x Nd x
c is calculated and shown in FIG.

【0076】Nd35及び50at%膜(膜作製直後に
厚さ約100〜300Å、表面を酸化させた膜)のカー
回転角は図16の矢印で示すように増加することがわか
った。例えばNd50at%の場合θkは0.3°から約0.
6°(λ=633nm)であり2倍近い増加を示してい
る。このことは表面を酸化させることにより多重干渉法
によりカー及びファラデー効果の両方の寄与を得て実効
的カー回転角が増加した為である。本方法は従来の重希
土類−鉄族垂直磁化膜ではSiO等の膜を表面上コーテ
ィングして回転角を増加させていた方法と異なり磁性膜
の表面をそのまま酸化させ回転角を増加することができ
る方法である。このことは本垂直磁化膜の特徴である。
It was found that the Kerr rotation angle of the Nd35 and 50 at% film (a film having a thickness of about 100 to 300 Å immediately after film formation and having its surface oxidized) increased as shown by the arrow in FIG. For example, when Nd is 50 at%, θ k is 0.3 ° to about 0.
The angle is 6 ° (λ = 633 nm), which is an almost double increase. This is because by oxidizing the surface, the contribution of both Kerr and Faraday effect is obtained by the multiple interference method, and the effective Kerr rotation angle is increased. This method can increase the rotation angle by oxidizing the surface of the magnetic film as it is, unlike the method of coating the surface of the conventional heavy rare earth-iron group perpendicular magnetization film with SiO or the like to increase the rotation angle. Is the way. This is a characteristic of this perpendicular magnetization film.

【0077】薄膜表面の酸化皮膜はスパッタ後そのまま
装置内にて100〜150℃で凡そ30分〜1時間保持
することによって得られる。
The oxide film on the surface of the thin film can be obtained by holding it in the apparatus at 100 to 150 ° C. for about 30 minutes to 1 hour after sputtering.

【0078】SiOコーティングもx=35原子%の同
様なサンプルの表面に施した。その結果を図16に示
す。SiOコーティングもカー回転角を増大させる。酸
化皮膜上にさらにSiOコーティングを施すことによ
り、さらにθk、保護効果を増大できる。
A SiO coating was also applied to the surface of a similar sample with x = 35 atomic%. The result is shown in FIG. The SiO coating also increases the Kerr rotation angle. By further applying SiO coating on the oxide film, θ k and the protective effect can be further increased.

【0079】[0079]

【実施例16】実施例15と同じ試料を用いて垂直磁気
異方性定数Kuの温度依存性を求めた。(図17)
Example 16 The same sample as in Example 15 was used to determine the temperature dependence of the perpendicular magnetic anisotropy constant Ku. (Figure 17)

【0080】Kuは低温で増加し、ある温度T1で最大
値をとった後、さらに低下する。
Ku increases at a low temperature, reaches a maximum value at a certain temperature T 1 , and then further decreases.

【0081】[0081]

【実施例17】レーザ光による書き込み実験 実施例1と同じ方法で得られた厚さ約4000ÅのNd
38Fe62膜についてレーザ光による書き込み実験を行な
った。
Example 17 Writing Experiment by Laser Light Nd having a thickness of about 4000Å obtained by the same method as in Example 1
A writing experiment using a laser beam was performed on the 38 Fe 62 film.

【0082】レーザ:半導体レーザ(パワー20mW)
バイアス磁界〜100Oe 線書込み方式 この結果幅約2〜10μmのビットが書き込めているこ
とがカー効果を利用した偏光顕微鏡により確認された。
Laser: Semiconductor laser (power 20 mW)
Bias magnetic field to 100 Oe line writing system As a result, it was confirmed by a polarization microscope using the Kerr effect that bits having a width of about 2 to 10 μm could be written.

【0083】[0083]

【実施例18】図18に本発明により220℃で作った
150Å厚のFe60Nd40垂直磁化膜の微細結晶構造の
透過電子顕微鏡写真を矢印部分の領域の回折パターンと
共に示す。スペーシング0.2nm、クラスタ径2〜10
nm、平均3〜5nmを示す。
EXAMPLE 18 FIG. 18 shows a transmission electron micrograph of a fine crystal structure of a 150Å-thick Fe 60 Nd 40 perpendicularly magnetized film produced at 220 ° C. according to the present invention, together with a diffraction pattern in a region indicated by an arrow. Spacing 0.2 nm, cluster diameter 2-10
nm, showing an average of 3 to 5 nm.

【0084】[0084]

【実施例19】Fe45Co15Nd355の組成でMとし
てZr、Hf、V、Nb、Ta、Cr、Mo、Al、T
iをTs=210〜285℃、Ar圧1〜2×10-1
orr、膜厚5300〜12000Åの膜を作成し、磁
気特性を測定した。
EXAMPLE 19 Zr, Hf, V, Nb, Ta, Cr, Mo, Al, and T are used as M in the composition of Fe 45 Co 15 Nd 35 M 5.
i is Ts = 210 to 285 ° C., Ar pressure is 1 to 2 × 10 −1 T
A film having an orr and a film thickness of 5300 to 12000Å was formed, and the magnetic characteristics were measured.

【0085】いずれもKu≧2.5×106erg/cc以
上、カー回転角θkが0.4°以上の垂直磁化膜が得られ
た。
In all cases, a perpendicular magnetic film having a value of Ku ≧ 2.5 × 10 6 erg / cc or more and a Kerr rotation angle θ k of 0.4 ° or more was obtained.

【0086】[0086]

【実施例20】実施例1、7、12、18と同様にして
得られたFe65Nd35、Fe60Nd355、(M=Z
r、Hf、V、Nb、Ta、Cr、Mo、Al、Bi、
Mn、Sb、Ge、Sn、Ni、Si)、Fe45Co15
Nd40、Fe45Co15Nd355(M=Zr、Hf、
V、Nb、Ta、Cr、Mo、Al、Ti、Ni、S
i)の各薄膜を1規定食塩水中に20分間浸漬後、85
℃85%RH(相対湿度)で2時間時効処理を行ない、
光学顕微鏡を用いて孔食の観察を行なった。孔食に対す
る耐食性はFeCoNdMが最も優れており、次ぎにF
eCoNd、FeNdM(M=Zr、Hf、V、Nb、
Ta、Cr、Mo、Al、Ni、Si)が良く、FeN
d及びFeNdM(M=Bi、Mn、Sb、Ge、S
n)は孔食が比較上最も進行していた。
Example 20 Fe 65 Nd 35 , Fe 60 Nd 35 M 5 and (M = Z obtained in the same manner as in Examples 1, 7, 12, and 18)
r, Hf, V, Nb, Ta, Cr, Mo, Al, Bi,
Mn, Sb, Ge, Sn, Ni, Si), Fe 45 Co 15
Nd 40 , Fe 45 Co 15 Nd 35 M 5 (M = Zr, Hf,
V, Nb, Ta, Cr, Mo, Al, Ti, Ni, S
After dipping each thin film of i) in 1N saline for 20 minutes, 85
Aged at 85 ° C RH (relative humidity) for 2 hours,
The pitting corrosion was observed using an optical microscope. FeCoNdM has the best corrosion resistance against pitting corrosion, and then F
eCoNd, FeNdM (M = Zr, Hf, V, Nb,
Ta, Cr, Mo, Al, Ni, Si) is good, and FeN
d and FeNdM (M = Bi, Mn, Sb, Ge, S
In n), pitting corrosion was the most advanced in comparison.

【0087】[0087]

【実施例21】Fe100-xPrx(x=20、30、4
0、50原子%)の組成の薄膜を次の条件で作成した。
Ar圧2×10-1Torr、Tsは各々290℃と27
0℃、Dは各々8200Å(0.82μm)と9400Å
(0.94μm)であった。
Example 21 Fe 100-x Pr x (x = 20, 30, 4
A thin film having a composition of 0, 50 atomic% was prepared under the following conditions.
Ar pressure 2 × 10 −1 Torr and Ts are 290 ° C. and 27, respectively.
0 ℃, D is 8200Å (0.82μm) and 9400Å respectively
(0.94 μm).

【0088】この2種類の薄膜について、実施例12と
同様の方法で入射光線の波長λを変えた場合のカー回転
角θkを調べた。その結果を図19に示す。Fe70Pr
30ではλ=500nm付近でカー回転角θkは最大値0.3
5°を示す。
With respect to these two kinds of thin films, the Kerr rotation angle θ k when the wavelength λ of the incident light beam was changed was examined by the same method as in Example 12. The result is shown in FIG. Fe 70 Pr
At 30 , the maximum Kerr rotation angle θ k is 0.3 near λ = 500 nm.
Indicates 5 °.

【0089】さらにPr濃度x(原子%)に対するカー
回転角の関係を入射光線λ=500、633nmで測定
した結果を図20に示す。カー回転角θkはPr30原
子%付近で最大値をとる。
FIG. 20 shows the result of measurement of the relationship between the Kerr rotation angle and the Pr concentration x (atomic%) with the incident light beam λ = 500 and 633 nm. The Kerr rotation angle θ k takes a maximum value in the vicinity of Pr30 atomic%.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例、Fe100-xNdxスパッタ薄
膜の磁化温度特性を示すグラフ。
FIG. 1 is a graph showing a magnetization temperature characteristic of a Fe 100-x Nd x sputtered thin film according to an example of the present invention.

【図2】Fe100-xNdx薄膜のキュリー温度Tc、結晶
化温度Tcry、及び飽和磁化Ms(77K及び300
K)を示すグラフ。
FIG. 2 shows the Curie temperature Tc, crystallization temperature Tcry, and saturation magnetization Ms (77 K and 300) of the Fe 100-x Nd x thin film.
Graph showing K).

【図3】(a)〜(b)は、Fe100-xNdx(x=3
5、40)スパッタ薄膜の77K及び300Kでの各磁
化曲線を示すグラフ。
3 (a) and (b) are Fe 100-x Nd x (x = 3).
5, 40) Graphs showing the respective magnetization curves of the sputtered thin film at 77K and 300K.

【図4】Fe65Nd35スパッタ薄膜の基板温度と垂直磁
気異方性定数Kuの関係を示すグラフ。
FIG. 4 is a graph showing the relationship between the substrate temperature of an Fe 65 Nd 35 sputtered thin film and the perpendicular magnetic anisotropy constant Ku.

【図5】Fe65Nd35スパッタ薄膜の各基板温度による
X線回折パターンを示すグラフ。
FIG. 5 is a graph showing an X-ray diffraction pattern of a Fe 65 Nd 35 sputtered thin film at each substrate temperature.

【図6】Fe65Nd35スパッタ薄膜の厚さとKuの関係
を示すグラフ。
FIG. 6 is a graph showing the relationship between the thickness of an Fe 65 Nd 35 sputtered thin film and Ku.

【図7】Fe65Nd35スパッタ薄膜のAr圧とKuの関
係を示すグラフ。
FIG. 7 is a graph showing the relationship between Ar pressure and Ku of a Fe 65 Nd 35 sputtered thin film.

【図8】Fe100-xNdxスパッタ薄膜のNd量とKuの
関係を示すグラフ。
FIG. 8 is a graph showing the relationship between Nd amount and Ku of a Fe 100-x Nd x sputtered thin film.

【図9】Fe60Nd40において4.2〜300Kで求めた
トルク曲線を示すグラフ。
FIG. 9 is a graph showing a torque curve obtained at 4.2 to 300 K in Fe 60 Nd 40 .

【図10】Fe60Nd40において4.2〜300Kで求め
たトルク曲線を示すグラフ。
FIG. 10 is a graph showing a torque curve obtained at 4.2 to 300 K in Fe 60 Nd 40 .

【図11】Fe100-xNdx(x=35、40)スパッタ
薄膜のヒステリシス損Wの温度変化を示すグラフ。
FIG. 11 is a graph showing a temperature change of hysteresis loss W of a Fe 100-x Nd x (x = 35, 40) sputtered thin film.

【図12】(Fe1-yCoy60Nd40について、Co濃
度yと結晶化温度Tcry、キュリー温度Tc、Kuが
最大値をとる温度T1、及び保磁力Hcの関係を示すグ
ラフ(実施例12)。
FIG. 12 is a graph showing the relationship between Co concentration y, crystallization temperature Tcry, Curie temperature Tc, temperature T 1 at which Ku takes the maximum value, and coercive force Hc for (Fe 1-y Co y ) 60 Nd 40 ( Example 12).

【図13】(Fe1-yCoy60Nd40について、各Co
濃度yにおける入射光線の波長λ(nm)カー回転角θ
k(度)の関係を示すグラフ(実施例13)。
FIG. 13 is a graph of (Fe 1-y Co y ) 60 Nd 40 for each Co.
Wavelength λ (nm) of incident light at density y Kerr rotation angle θ
The graph which shows the relationship of k (degree) (Example 13).

【図14】λ=500及び633nmにおけるカー回転
角|θk|のCo量(y)に対する関係を示すグラフ
(実施例13)。
FIG. 14 is a graph showing the relationship between the Kerr rotation angle | θ k | and the Co amount (y) at λ = 500 and 633 nm (Example 13).

【図15】実施例13のCo濃度yと、飽和磁化Ms及
び垂直磁気異方性定数Kuの関係を示すグラフ(実施例
14)。
FIG. 15 is a graph showing the relationship between Co concentration y in Example 13, saturation magnetization Ms, and perpendicular magnetic anisotropy constant Ku (Example 14).

【図16】Fe100-xNdxについて、xとカー回転角|
θk|(度)及び保磁力Hcの関係を示すグラフ(実施
例15)。
FIG. 16: x and Kerr rotation angle for Fe 100-x Nd x |
The graph which shows the relationship of (theta) k | (degree) and coercive force Hc (Example 15).

【図17】実施例15と同じ試料についてのKuの温度
依存性を示すグラフ(実施例16)。
FIG. 17 is a graph showing the temperature dependence of Ku for the same sample as in Example 15 (Example 16).

【図18】本発明の一実施例の結晶構造を示す透過電子
顕微鏡写真。
FIG. 18 is a transmission electron micrograph showing a crystal structure of an example of the present invention.

【図19】Fe100-xPrxの各x(20、30、40、
50原子%)について、入射光線のλとカー回転角θk
(度)との関係を示すグラフ(実施例21)。
FIG. 19: Fe 100-x Pr x x (20, 30, 40,
50 atom%), the incident light λ and the Kerr rotation angle θ k
The graph which shows the relationship with (degree) (Example 21).

【図20】図18と同じ系について、Pr濃度xとカー
回転角θkの関係を示すグラフ。
20 is a graph showing the relationship between Pr concentration x and Kerr rotation angle θ k for the same system as FIG. 18.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G11B 11/10 501 A 9075−5D G11C 13/06 A H01F 10/14 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location G11B 11/10 501 A 9075-5D G11C 13/06 A H01F 10/14

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】基板上に金属ガス凝集法により薄膜を形成
する垂直磁気記録媒体の製造方法において、基板温度を
180℃〜合金の結晶化温度以下の温度に保持して、式
RFeにより本質上表わされ、希土類元素R25〜60
原子%、残部Feから成り、Rの内70原子%以上がN
d及びPrの1種又は2種、なおRの残部はY、La、
Ce、Sm、Gd、Tb、Dy、Ho、Er及びYbの
一種以上とする組成から成り、膜厚を0.3〜3μmと
し、かつ薄膜の非晶質マトリックスに数Å〜数100Å
の微細結晶相を少なくとも含むと共に垂直磁気異方性定
数Kuが反磁界エネルギー2πMs (Msは飽和磁
化)より大きな垂直磁気異方性を有し、さらに結晶化温
度Tcryとキュリー温度Tcとの温度差Tcry−T
cが100℃以上である薄膜を形成することを特徴とす
る垂直磁気記録媒体の製造方法。
1. A method of manufacturing a perpendicular magnetic recording medium in which a thin film is formed on a substrate by a metal gas agglomeration method, the substrate temperature is kept at 180 ° C. to a temperature equal to or lower than the crystallization temperature of the alloy, and the formula RFe is used. represented, rare earth elements R 25 ~60
Atomic%, balance Fe, 70% or more of R is N
one or two of d and Pr, the remainder of R is Y, La,
Ce, Sm, Gd, Tb, Dy, Ho, Er, and Yb, which have a composition of one or more, and have a film thickness of 0.3 to 3 μm, and a thin film amorphous matrix of several Å to several hundred Å.
Of the diamagnetic field energy of 2πMs 2 (Ms is a saturation magnetic field).
Has a larger perpendicular magnetic anisotropy, and a temperature difference Tcry-T between the crystallization temperature Tcry and the Curie temperature Tc.
A method of manufacturing a perpendicular magnetic recording medium, which comprises forming a thin film having c of 100 ° C. or higher.
【請求項2】基板上に金属ガス凝集法により薄膜を形成
する垂直磁気記録媒体の製造方法において、基板温度を
180℃〜合金の結晶化温度以下の温度に保持して、式
R(Fe、Co)により本質上表わされ、希土類元素R
25〜60原子%、30原子%未満のCo及び残部Fe
から成り、Rの内70原子%以上がNd及びPrの1種
又は2種、なおRの残部はY、La、Ce、Sm、G
d、Tb、Dy、Ho、Er及びYbの一種以上とする
組成から成り、膜厚を0.3〜3μmとし、かつ薄膜の
非昌質マトリックスに数Å〜数100Åの微細結晶相を
少なくとも含むと共に垂直磁気異方性定数Kuが反磁界
エネルギー2πMs (Msは飽和磁化)より大きな
直磁気異方性を有し、さらに結晶化温度Tcryとキュ
リー温度Tcとの温度差Tcry−Tcが100℃以上
である薄膜を形成することを特徴とする垂直磁気記録媒
体の製造方法。
2. A method of manufacturing a perpendicular magnetic recording medium in which a thin film is formed on a substrate by a metal gas agglomeration method, the substrate temperature is maintained at 180 ° C. to a temperature not higher than the crystallization temperature of the alloy, and the formula R (Fe, Co), essentially represented by the rare earth element R
25-60 atomic%, less than 30 atomic% Co and the balance Fe
70% by atom or more of R is one or two of Nd and Pr, and the balance of R is Y, La, Ce, Sm, G
d, Tb, Dy, Ho, Er, and Yb, and the composition is one or more, and the film thickness is 0.3 to 3 μm.
The non-matrix matrix contains at least a few Å to several hundred Å of a fine crystalline phase, and the perpendicular magnetic anisotropy constant Ku is a demagnetizing field.
A thin film having a perpendicular magnetic anisotropy larger than an energy of 2πMs 2 (Ms is a saturation magnetization) and a temperature difference Tcry-Tc between the crystallization temperature Tcry and the Curie temperature Tc of 100 ° C. or more is formed. A method of manufacturing a perpendicular magnetic recording medium, comprising:
【請求項3】基板上に金属ガス凝集法により薄膜を形成
する垂直磁気記録媒体の製造方法において、基板温度を
180℃〜合金の結晶化温度以下の温度に保持して、式
RFeMにより本質上表わされ、希土類元素R25〜6
0原子%、MO〜10原子%、及び残部Feから成り、
Rの内70原子%以上がNd及びPrの1種又は2種、
なおRの残部はY、La、Ce、Sm、Gd、Tb、D
y、Ho、Er及びYbの一種以上、MはNi、V、T
a、Cr、Mo、W、Mn、Bi、Al、Si、Pb、
Sn及びSbの少なくとも一種以上とする組成から成
り、膜厚を0.3μ〜3μmとし、かつ薄膜の非晶質マ
トリックスに数Å〜数100Åの微細結晶相を少なくと
も含むと共に垂直磁気異方性定数Kuが反磁界エネルギ
ー2πMs (Msは飽和磁化)より大きな垂直磁気異
方性を有し、さらに結晶化温度Tcryとキュリー温度
Tcとの温度差Tcry−Tcが100℃以上である薄
膜を形成することを特徴とする垂直磁気記録媒体の製造
方法。
3. A method of manufacturing a perpendicular magnetic recording medium in which a thin film is formed on a substrate by a metal gas agglomeration method, the substrate temperature is maintained at 180 ° C. to a temperature equal to or lower than the crystallization temperature of the alloy, and is essentially expressed by the formula RFeM. represented, rare earth elements R 25 ~6
0 atomic%, MO-10 atomic%, and the balance Fe,
70% by atom or more of R is one or two of Nd and Pr,
The rest of R is Y, La, Ce, Sm, Gd, Tb, D.
One or more of y, Ho, Er and Yb, M is Ni, V, T
a, Cr, Mo, W, Mn, Bi, Al, Si, Pb,
It has a composition of at least one of Sn and Sb, a film thickness of 0.3 μm to 3 μm, and a thin film amorphous matrix.
The trick contains at least several Å to several hundred Å of a fine crystalline phase, and the perpendicular magnetic anisotropy constant Ku is demagnetizing field energy.
-2πMs 2 (Ms is a saturation magnetization) , which has a larger perpendicular magnetic anisotropy, and further forms a thin film having a temperature difference Tcry-Tc of 100 ° C. or more between the crystallization temperature Tcry and the Curie temperature Tc. Method for manufacturing perpendicular magnetic recording medium.
【請求項4】基板上に金属ガス凝集法により薄膜を形成
する垂直磁気記録媒体の製造方法において、基板温度を
180℃〜合金の結晶化温度以下の温度に保持して、式
R(Fe、Co)Mにより本質的に表わされ、希土類元
素R25〜60原子%、M0〜10原子%、Co30原
子%未満、及び残部Feから成り、Rの内70原子%以
上がNd及びPrの1種又は2種、なおRの残部はY、
La、Ce、Sm、Gd、Tb、Dy、Ho、Er及び
Ybの一種以上、MはNi、Zr、V、Ta、Cr、M
o、W、Mn、Bi、Al、Si、Pb、Sn及びSb
の少なくとも一種以上とする組成から成り、膜厚を0.
3μ〜3μmとし、かつ薄膜の非晶質マトリックスに
Å〜数100Åの微細結晶相を少なくとも含むと共に垂
直磁気異方性定数Kuが反磁界エネルギー2πMs
(Msは飽和磁化)より大きな垂直磁気異方性を有
し、さらに結晶化温度Tcryとキュリー温度Tcとの
温度差Tcry−Tcが100℃以上である薄膜を形成
することを特徴とする垂直磁気記録媒体の製造方法。
4. A thin film is formed on a substrate by a metal gas aggregation method.
In the method of manufacturing the perpendicular magnetic recording medium,
Hold at a temperature of 180 ° C to the crystallization temperature of the alloy or lower,
Essentially represented by R (Fe, Co) M, a rare earth element
Elementary R25~ 60 atom%, M0-10 atom%, Co30 raw
Less than%, and the balance Fe, and 70% by atom or more of R
The top is one or two of Nd and Pr, and the rest of R is Y,
La, Ce, Sm, Gd, Tb, Dy, Ho, Er and
One or more types of Yb, M is Ni, Zr, V, Ta, Cr, M
o, W, Mn, Bi, Al, Si, Pb, Sn and Sb
Of at least one type and having a film thickness of 0.
3 μm to 3 μm, andFor thin film amorphous matrixnumber
Å to several hundred Å containing at least a fine crystalline phase
Direct magnetic anisotropy constant KuIs demagnetizing field energy 2πMs
Two (Ms is saturation magnetization)With perpendicular magnetic anisotropy
Of the crystallization temperature Tcry and the Curie temperature Tc
The temperature difference Tcry-Tc is100Form a thin film above ℃
A method of manufacturing a perpendicular magnetic recording medium, comprising:
JP5021629A 1984-11-12 1993-01-18 Method of manufacturing perpendicular magnetic recording medium Expired - Lifetime JPH0738357B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59236661A JPH0670924B2 (en) 1984-11-12 1984-11-12 Perpendicular magnetic recording medium
JP5021629A JPH0738357B2 (en) 1984-11-12 1993-01-18 Method of manufacturing perpendicular magnetic recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP59236661A JPH0670924B2 (en) 1984-11-12 1984-11-12 Perpendicular magnetic recording medium
JP5021629A JPH0738357B2 (en) 1984-11-12 1993-01-18 Method of manufacturing perpendicular magnetic recording medium

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP59236661A Division JPH0670924B2 (en) 1984-11-12 1984-11-12 Perpendicular magnetic recording medium

Publications (2)

Publication Number Publication Date
JPH0645176A JPH0645176A (en) 1994-02-18
JPH0738357B2 true JPH0738357B2 (en) 1995-04-26

Family

ID=26358722

Family Applications (2)

Application Number Title Priority Date Filing Date
JP59236661A Expired - Lifetime JPH0670924B2 (en) 1984-11-12 1984-11-12 Perpendicular magnetic recording medium
JP5021629A Expired - Lifetime JPH0738357B2 (en) 1984-11-12 1993-01-18 Method of manufacturing perpendicular magnetic recording medium

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP59236661A Expired - Lifetime JPH0670924B2 (en) 1984-11-12 1984-11-12 Perpendicular magnetic recording medium

Country Status (1)

Country Link
JP (2) JPH0670924B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2601796B2 (en) * 1985-12-05 1997-04-16 日立マクセル株式会社 Magneto-optical recording medium
JP2587408B2 (en) * 1985-12-27 1997-03-05 日立マクセル株式会社 Magneto-optical recording medium
JPS6212941A (en) * 1985-07-09 1987-01-21 Seiko Epson Corp Photomagnetic recording medium
JPH0782671B2 (en) * 1985-08-26 1995-09-06 セイコーエプソン株式会社 Magneto-optical recording medium
JPS63214940A (en) * 1987-03-04 1988-09-07 Daicel Chem Ind Ltd Magneto-optical recording medium
JPS63237240A (en) * 1987-03-26 1988-10-03 Daicel Chem Ind Ltd Improvement of magneto-optical recording medium
JP2707796B2 (en) * 1990-05-17 1998-02-04 松下電器産業株式会社 Magneto-optical recording medium
JP2629505B2 (en) * 1991-11-14 1997-07-09 日本ビクター株式会社 Perpendicular magnetic recording medium and method of manufacturing the same
JPH11110838A (en) * 1997-09-30 1999-04-23 Toyota Motor Corp Magneto-optical recording medium and its manufacture
JP2006519927A (en) * 2003-02-14 2006-08-31 ザ・ナノスティール・カンパニー Method for modifying iron-based glass to increase crystallization temperature without changing melting temperature

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58165306A (en) * 1982-03-26 1983-09-30 Hitachi Ltd Vertical magnetic recording medium
JPS59103314A (en) * 1982-12-03 1984-06-14 Seiko Instr & Electronics Ltd Photomagnetic recording medium
JPS59108304A (en) * 1982-12-14 1984-06-22 Seiko Instr & Electronics Ltd Optical magnetic recording medium
JPS60117436A (en) * 1983-11-29 1985-06-24 Sharp Corp Magnetooptic storage element
JPS60128606A (en) * 1983-12-15 1985-07-09 Seiko Instr & Electronics Ltd Photo-magnetic recording medium
JPS60173810A (en) * 1984-02-20 1985-09-07 Seiko Instr & Electronics Ltd Photomagnetic recording medium
JPS60187008A (en) * 1984-03-07 1985-09-24 Sumitomo Metal Mining Co Ltd Vertically magnetized magnetic thin-film
JPS60193125A (en) * 1984-03-13 1985-10-01 Mitsubishi Electric Corp Vertical magnetic recording medium

Also Published As

Publication number Publication date
JPH0670924B2 (en) 1994-09-07
JPS61222104A (en) 1986-10-02
JPH0645176A (en) 1994-02-18

Similar Documents

Publication Publication Date Title
US5587026A (en) Ferromagnetic film
US5660929A (en) Perpendicular magnetic recording medium and method of producing same
CA1315612C (en) Perpendicular magnetic storage medium
JPH0738357B2 (en) Method of manufacturing perpendicular magnetic recording medium
JPS6115308A (en) Photomagnetic recording material
JPS6134744A (en) Photoelectromagnetic recording medium
EP0253282B1 (en) Thin-film having large kerr rotation angle and production process thereof
US5053287A (en) Magnetooptical recording media and processes for production thereof
JP3150401B2 (en) Perpendicular magnetization film and magnetic recording medium
EP0418804B1 (en) Soft magnetic thin film
JP2680586B2 (en) Magneto-optical storage medium
US6324127B1 (en) Magneto-optical recording layer having double-layer structure and magneto-optical disk adopting the same
JP2000307170A (en) Magnetoresistive device and magnetoresistive memory device
JPH07235034A (en) Perpendicular magnetic recording medium and magnetic recording-reproducing device
JPH0513323B2 (en)
JPH05242537A (en) Magneto-optical recording medium
JPH0470705B2 (en)
JP2635421B2 (en) Soft magnetic alloy film
KR100306975B1 (en) Magnetic material containing metastable alloy and its manufacturing method
JP2853664B2 (en) Magnetoresistance effect film and magnetoresistance effect element using the same
JPH0614488B2 (en) Magneto-optical recording medium
Yamasaki et al. Magnetic properties of sputtered Co-Pt alloy films
Iitake et al. Magnetic anisotropy and permeability of Fe-Zr-N thin films
JPS63164049A (en) Magneto-optical recording medium and its production
JP2727274B2 (en) Soft magnetic thin film

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19951114