JP2774611B2 - Method for producing soft magnetic alloy film and method for heat treatment - Google Patents

Method for producing soft magnetic alloy film and method for heat treatment

Info

Publication number
JP2774611B2
JP2774611B2 JP25140889A JP25140889A JP2774611B2 JP 2774611 B2 JP2774611 B2 JP 2774611B2 JP 25140889 A JP25140889 A JP 25140889A JP 25140889 A JP25140889 A JP 25140889A JP 2774611 B2 JP2774611 B2 JP 2774611B2
Authority
JP
Japan
Prior art keywords
heat treatment
magnetic field
alloy film
soft magnetic
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25140889A
Other languages
Japanese (ja)
Other versions
JPH03136216A (en
Inventor
直也 長谷川
正路 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Publication of JPH03136216A publication Critical patent/JPH03136216A/en
Application granted granted Critical
Publication of JP2774611B2 publication Critical patent/JP2774611B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、磁気ヘッド等に適した軟磁性合金膜の製
造方法に関し、特に誘導磁気異方性を制御してより高い
透磁率とした軟磁性合金膜を得るための方法および熱処
理方法に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a soft magnetic alloy film suitable for a magnetic head or the like, and more particularly, to a method of controlling induced magnetic anisotropy to achieve a higher magnetic permeability. The present invention relates to a method for obtaining a magnetic alloy film and a heat treatment method.

「従来の技術」 近年、磁気記録の分野においては、記録密度を高める
ために磁気記録媒体の高保磁力化が進められているの
で、磁気ヘッドの材料にも飽和磁束密度の高いものが要
求されている。その上、最近の磁気ヘッドにおいては、
磁気特性が優れている上に、耐環境性や耐摩耗性にも優
れ、ガラス溶着工程の高温にも耐えることが要求されて
いる。
"Prior art" In recent years, in the field of magnetic recording, a high coercive force of a magnetic recording medium has been promoted in order to increase a recording density, and therefore a material of a magnetic head having a high saturation magnetic flux density has been required. I have. Moreover, in recent magnetic heads,
In addition to being excellent in magnetic properties, it is required to have excellent environmental resistance and abrasion resistance, and to withstand the high temperature of the glass welding process.

そこで本願発明者らは先に、特願平1−55571号明細
書において、これらの要求に答えることができる軟磁性
合金膜を特許出願している。
Accordingly, the inventors of the present application have previously filed a patent application for a soft magnetic alloy film capable of meeting these requirements in Japanese Patent Application No. 1-55571.

この出願に係る軟磁性合金膜は組成式がCoxTyMzCw
示され、MはTi,Zr,Hf,V,Nb,Ta,Mo,Wのうち1種または
2種以上からなる金属元素またはその混合物、TはFe,N
i,Mnのうち、少なくとも1種または2種以上からなる金
属元素またはその混合物であり、組成比x,y,z,wは原子
%で50≦x≦96、0≦y≦20、2≦z≦25、0.1≦w≦2
0、x+y+z+w=100なる関係を満足させるととも
に、その組織が基本的に平均粒径0.05μm以下の結晶粒
からなり、その一部に元素Mの炭化物の結晶相を含むも
のなどである。この軟磁性合金膜は、センダスト合金を
越える高い飽和磁束密度を示し、優れた軟磁気特性を有
するとともに、ガラス融着工程の熱に耐えるものであ
る。
The soft magnetic alloy film according to this application has a composition formula represented by Co x T y M z C w , where M is one or more of Ti, Zr, Hf, V, Nb, Ta, Mo, and W. Metal element or mixture thereof, T is Fe, N
i, Mn is a metal element or a mixture of at least one or two or more thereof, and the composition ratio x, y, z, w is 50 ≦ x ≦ 96, 0 ≦ y ≦ 20, 2 ≦ z ≦ 25, 0.1 ≦ w ≦ 2
0, x + y + z + w = 100, and the structure thereof is basically composed of crystal grains having an average grain size of 0.05 μm or less, and a part thereof includes a crystal phase of a carbide of the element M. This soft magnetic alloy film exhibits a high saturation magnetic flux density exceeding that of the sendust alloy, has excellent soft magnetic properties, and withstands the heat of the glass fusing step.

「発明が解決しようとする課題」 ところで磁気ヘッド用の軟磁性材料においては、高周
波域(約1MHz以上)において高い透磁率が要求されるよ
うになってきている。そこでこのような高周波域におけ
る透磁率を検討してみると、一軸磁気異方性を有する軟
磁性膜においては、磁壁移動よりも応答速度の速いスピ
ン回転による磁化過程をとった方が有利なので、一般に
磁化困難軸を磁路方向として用いている。ところが、一
軸磁気異方性が強すぎると逆に透磁率は低下してしまう
ので、困難軸方向で磁壁が不安定にならない範囲でなる
べく弱い一軸異方性(異方性磁界Hkにして2〜8Oe)を
誘起することが好ましい。
"Problems to be Solved by the Invention" By the way, soft magnetic materials for magnetic heads are required to have high magnetic permeability in a high frequency range (about 1 MHz or more). Therefore, when examining the magnetic permeability in such a high-frequency region, it is more advantageous to take a magnetization process by spin rotation, which has a higher response speed than domain wall motion, in a soft magnetic film having uniaxial magnetic anisotropy. Generally, the hard axis is used as the direction of the magnetic path. However, if the uniaxial magnetic anisotropy is too strong, the magnetic permeability is conversely reduced, so that the uniaxial anisotropy (as an anisotropic magnetic field Hk of 2 to It is preferable to induce 8Oe).

このような背景から、従来一般的なアモルファス磁性
合金を製造する方法においては、磁場中の熱処理によっ
て誘導磁気異方性を制御することが一般的である。とこ
ろが、本願発明者らが先に提案している前述の軟磁性合
金膜は、成膜したままの状態ではアモルファスを主体と
する状態であるが、熱処理により結晶化が起こって微結
晶が析出し、この微結晶の析出により優れた磁気特性が
得られるようになっている。従って先に特許出願してい
る軟磁性合金膜は、従来一般のアモルファス材料とは異
なり、非可逆的な熱処理挙動を示すので、その熱処理方
法を含めた製造方法において、従来とは異なった処理が
必要である。
From such a background, in a conventional general method of manufacturing an amorphous magnetic alloy, it is general to control induced magnetic anisotropy by heat treatment in a magnetic field. However, the above-described soft magnetic alloy film proposed by the inventors of the present application is mainly in an amorphous state as it is formed, but microcrystals are precipitated due to crystallization due to heat treatment. Excellent magnetic properties can be obtained by the precipitation of the microcrystals. Therefore, the soft magnetic alloy film previously applied for a patent shows an irreversible heat treatment behavior unlike conventional amorphous materials, and therefore, in the manufacturing method including the heat treatment method, a treatment different from the conventional one is performed. is necessary.

本願発明者らはこのような背景のもとで鋭意研究を重
ねた結果、優れた透磁率の得られる製造条件を見出して
本願発明に到達した。
The inventors of the present invention have conducted intensive research on such a background, and as a result, have found manufacturing conditions under which excellent magnetic permeability can be obtained, and reached the present invention.

本願発明は前記課題を解決するためになされたもの
で、本願発明者らが先に特許出願している軟磁性合金膜
であって、磁気特性に優れ、その特性が熱的に安定した
軟磁性合金膜について、誘導磁気異方性を制御してより
高い透磁率を得ることができるようにした製造方法と熱
処理方法を提供することを目的とする。
The present invention has been made in order to solve the above-mentioned problems, and is a soft magnetic alloy film to which the present inventors have previously applied for a patent, which has excellent magnetic properties and whose properties are thermally stable. It is an object of the present invention to provide a manufacturing method and a heat treatment method for controlling an induced magnetic anisotropy to obtain a higher magnetic permeability for an alloy film.

「課題を解決するための手段」 請求項1に記載した発明は前記課題を解決するため
に、組成式がCoxTyMzCwで示され、MはTi,Zr,Hf,V,Nb,T
a,Mo,Wのうち、1種または2種以上からなる金属元素ま
たはその混合物、TはFe,Ni,Mnのうち、少なくとも1種
または2種以上からなる金属元素またはその混合物であ
り、組成比x,y,z,wは原子%で 50≦x≦96 0<y≦20 2≦z≦25 0.1≦w≦20 なる関係を満足させるとともに、その組織が基本的に平
均粒径0.05μm以下の結晶粒からなり、その一部に元素
Mの炭化物の結晶相を含む軟磁性合金膜の製造方法にお
いて、 高い透磁率を得たい方向と略直交する方向に磁場を印
加しつつ成膜する工程と、成膜後に520〜730℃の温度範
囲において無磁場状態で熱処理を行う工程を具備するも
のである。
"Means for solving the problem" In the invention described in claim 1, the composition formula is represented by Co x T y M z C w , and M is Ti, Zr, Hf, V, Nb, T
a, Mo, W, one or more metal elements or a mixture thereof, and T is Fe, Ni, Mn, at least one or two or more metal elements or a mixture thereof. The ratios x, y, z, and w satisfy the relationship of 50 ≦ x ≦ 96 0 <y ≦ 202 2 ≦ z ≦ 25 0.1 ≦ w ≦ 20 in atomic%, and the structure basically has an average particle diameter of 0.05 μm. In a method for manufacturing a soft magnetic alloy film comprising the following crystal grains and partially including a crystal phase of a carbide of element M, a film is formed while applying a magnetic field in a direction substantially orthogonal to a direction in which a high magnetic permeability is desired. And a step of performing a heat treatment in a temperature range of 520 to 730 ° C. without a magnetic field after the film formation.

請求項2に記載した発明は前記課題を解決するため
に、請求項1に記載した組成の軟磁性合金膜を製造する
に際し、高い透磁率を得たい方向と略直交する方向に磁
場を印加しつつ成膜する工程と、成膜後に520〜730℃の
温度範囲で回転磁場中において熱処理を行う工程とを具
備したものである。
According to a second aspect of the present invention, a magnetic field is applied in a direction substantially perpendicular to a direction in which a high magnetic permeability is to be obtained when a soft magnetic alloy film having the composition described in the first aspect is manufactured. And a step of performing a heat treatment in a rotating magnetic field at a temperature of 520 to 730 ° C. after the film formation.

請求項3に記載した発明は前記課題を解決するため
に、請求項1に記載した組成の軟磁性合金膜を製造する
に際し、成膜後、350〜550℃の温度範囲で高い透磁率を
得たい方向と略直交する方向に印加された静磁場中にお
いて熱処理を行う工程と、それに引き続き行なわれる52
0〜730℃の温度範囲での無磁場熱処理工程を具備したも
のである。
According to a third aspect of the present invention, in order to solve the above-mentioned problem, a high magnetic permeability is obtained in a temperature range of 350 to 550 ° C. after the formation of a soft magnetic alloy film having the composition described in the first aspect. Heat treatment in a static magnetic field applied in a direction substantially perpendicular to the desired direction, and
It is provided with a magnetic field-free heat treatment step in a temperature range of 0 to 730 ° C.

請求項4に記載した発明は前記課題を解決するため
に、請求項1に記載した組成の軟磁性合金膜を製造する
に際し、成膜後、350〜550℃の温度範囲で高い透磁率を
得たい方向と略直交する方向に印加された静磁場中にお
いて熱処理を行う工程と、それに引き続き行なわれる52
0〜730℃の温度範囲での回転磁場中における熱処理工程
を具備したものである。
In order to solve the above-mentioned problems, the invention described in claim 4 provides a high magnetic permeability in a temperature range of 350 to 550 ° C. after the film is formed when producing a soft magnetic alloy film having the composition described in claim 1. Heat treatment in a static magnetic field applied in a direction substantially perpendicular to the desired direction, and
It is provided with a heat treatment step in a rotating magnetic field in a temperature range of 0 to 730 ° C.

請求項5に記載した発明は前記課題を解決するため
に、請求項1に記載した組成の軟磁性合金膜を製造する
に際し、成膜後、500〜730℃の温度範囲で回転磁場中に
おいて熱処理する工程と、それに引き続き行われる高い
透磁率を得たい方向と略直交する方向に印加された静磁
場中において350〜600℃の温度範囲で熱処理を行う工程
を具備したものである。
According to a fifth aspect of the present invention, there is provided a soft magnetic alloy film having the composition described in the first aspect, which is heat-treated in a rotating magnetic field at a temperature in the range of 500 to 730 ° C. And a subsequent heat treatment in a temperature range of 350 to 600 ° C. in a static magnetic field applied in a direction substantially perpendicular to a direction in which high magnetic permeability is desired.

請求項6に記載した発明は前記課題を解決するため
に、請求項1に記載した組成の軟磁性合金膜に対し、最
終的に高い透磁率を得たい方向と略直交する方向に磁界
を印加した静磁場中で350〜700℃の温度範囲で第1段の
熱処理を行い、微結晶を一部析出させた状態で一軸磁気
異方性を誘導した後、第1段の熱処理温度と同じかそれ
以下の温度で最終的に高い透磁率を得たい方向に磁界を
印加した静磁場中において第2段の熱処理を行い、第1
段と第2段の熱処理温度と保持時間の少なくとも一方を
調節することで、その組織が、基本的に平均粒径0.05μ
m以下の結晶粒からなり、その一部に元素Mの炭化物の
結晶相を含む軟磁性合金膜の一軸異方性を制御するもの
である。
According to a sixth aspect of the present invention, in order to solve the above problem, a magnetic field is applied to the soft magnetic alloy film having the composition described in the first aspect in a direction substantially orthogonal to a direction in which a high magnetic permeability is ultimately desired to be obtained. Heat treatment in a temperature range of 350 to 700 ° C in a static magnetic field, and induces uniaxial magnetic anisotropy in a state in which microcrystals are partially deposited. The second heat treatment is performed in a static magnetic field in which a magnetic field is applied in a direction in which it is desired to finally obtain a high magnetic permeability at a temperature lower than that,
By adjusting at least one of the heat treatment temperature and the holding time of the stage and the second stage, the structure is basically made to have an average particle size of 0.05 μm.
This is for controlling the uniaxial anisotropy of a soft magnetic alloy film composed of crystal grains of m or less and partially including a crystal phase of a carbide of the element M.

請求項7に記載した発明は前記課題を解決するため
に、請求項1に記載した組成の軟磁性合金膜に対し、最
終的に高い透磁率を得たい方向に磁界を印加した静磁場
中で350〜700℃の温度範囲で第1段の熱処理を行い、微
結晶を一部析出させた状態で一軸磁気異方性を誘導した
後、350〜700℃の温度範囲で、最終的に高い透磁率を得
たい方向と略直交する方向に磁界を印加した静磁場中に
おいて第2段の熱処理を行い、第1段と第2段の熱処理
温度と保持時間の少なくとも一方を調節することで、そ
の組織が、基本的に平均粒径0.05μm以下の結晶粒から
なり、その一部に元素Mの炭化物の結晶相を含む軟磁性
合金膜の一軸磁気異方性の大きさを制御するものであ
る。
According to a seventh aspect of the present invention, there is provided a soft magnetic alloy film having the composition described in the first aspect in a static magnetic field in which a magnetic field is applied in a direction in which a high magnetic permeability is desired to be obtained. The first stage heat treatment is performed in a temperature range of 350 to 700 ° C., and the uniaxial magnetic anisotropy is induced in a state in which a part of microcrystals is precipitated. The second-stage heat treatment is performed in a static magnetic field in which a magnetic field is applied in a direction substantially orthogonal to the direction in which the magnetic susceptibility is to be obtained, and at least one of the first-stage and second-stage heat treatment temperatures and the holding time is adjusted. The structure basically controls the magnitude of uniaxial magnetic anisotropy of the soft magnetic alloy film including crystal grains having an average grain size of 0.05 μm or less and partially including a crystal phase of a carbide of the element M. .

請求項8に記載した発明は前記課題を解決するため
に、組成式がCoxMzCwで示され、MはTi,Zr,Hf,V,Nb,Ta,
Mo,Wのうち、1種または2種以上からなる金属元素また
はその混合物であり、組成比x,z,wは原子%で 50≦x≦96 2≦z≦25 0.1≦w≦20 なる関係を満足させるとともに、その組織が基本的に平
均粒径0.05μm以下の結晶粒からなり、その一部に元素
Mの炭化物の結晶相を含む軟磁性合金膜の製造方法にお
いて、 高い透磁率を得たい方向と略直交する方向に磁場を印
加しつつ成膜する工程と、成膜後に520〜730℃の温度範
囲において無磁場状態で熱処理を行う工程を具備するも
のである。
In order to solve the problem, the invention described in claim 8 has a composition formula represented by Co x M z C w , where M is Ti, Zr, Hf, V, Nb, Ta,
Mo or W is a metal element or a mixture of one or more of Mo and W, and the composition ratio x, z, and w is expressed by the following relationship in atomic%: 50 ≦ x ≦ 962 2 ≦ z ≦ 25 0.1 ≦ w ≦ 20 In the method for producing a soft magnetic alloy film whose structure is basically composed of crystal grains having an average grain size of 0.05 μm or less and partially including a crystal phase of a carbide of the element M, a high magnetic permeability is obtained. The method includes a step of forming a film while applying a magnetic field in a direction substantially perpendicular to a desired direction, and a step of performing a heat treatment in a temperature range of 520 to 730 ° C. without a magnetic field after the film formation.

請求項9に記載した発明は前記課題を解決するため
に、請求項8に記載した組成の軟磁性合金膜を製造する
に際し、高い透磁率を得たい方向と略直交する方向に磁
場を印加しつつ成膜する工程と、成膜後に520〜730℃の
温度範囲で回転磁場中において熱処理を行う工程とを具
備したものである。
According to a ninth aspect of the present invention, there is provided a soft magnetic alloy film having the composition described in the eighth aspect, wherein a magnetic field is applied in a direction substantially orthogonal to a direction in which a high magnetic permeability is desired. And a step of performing a heat treatment in a rotating magnetic field at a temperature of 520 to 730 ° C. after the film formation.

請求項10に記載した発明は前記課題を解決するため
に、請求項8に記載した組成の軟磁性合金膜を製造する
に際し、成膜後、350〜550℃の温度範囲で高い透磁率を
得たい方向と略直交する方向に印加された静磁場中にお
いて熱処理を行う工程と、それに引き続き行なわれる52
0〜730℃の温度範囲での無磁場熱処理工程を具備したも
のである。
According to the invention described in claim 10, in order to solve the above-mentioned problem, in manufacturing a soft magnetic alloy film having the composition described in claim 8, after forming the film, a high magnetic permeability is obtained in a temperature range of 350 to 550 ° C. Heat treatment in a static magnetic field applied in a direction substantially perpendicular to the desired direction, and
It is provided with a magnetic field-free heat treatment step in a temperature range of 0 to 730 ° C.

請求項11に記載した発明は前記課題を解決するため
に、請求項8に記載した組成の軟磁性合金膜を製造する
に際し、成膜後、350〜550℃の温度範囲で高い透磁率を
得たい方向と略直交する方向に印加された静磁場中にお
いて熱処理を行う工程と、それに引き続き行なわれる52
0〜730℃の温度範囲での回転磁場中における熱処理工程
を具備したものである。
In order to solve the above-described problems, the invention described in claim 11 provides a high magnetic permeability in a temperature range of 350 to 550 ° C. after the formation of a soft magnetic alloy film having the composition described in claim 8. Heat treatment in a static magnetic field applied in a direction substantially perpendicular to the desired direction, and
It is provided with a heat treatment step in a rotating magnetic field in a temperature range of 0 to 730 ° C.

請求項12に記載した発明は前記課題を解決するため
に、請求項8に記載した組成の軟磁性合金膜を製造する
に際し、成膜後、500〜730℃の温度範囲で回転磁場中に
おいて熱処理する工程と、それに引き続き行われる高い
透磁率を得たい方向と略直交する方向に印加された静磁
場中において350〜600℃の温度範囲で熱処理を行う工程
を具備したものである。
In order to solve the above-mentioned problem, the invention described in claim 12 is directed to producing a soft magnetic alloy film having the composition described in claim 8, wherein after film formation, heat treatment is performed in a rotating magnetic field at a temperature in the range of 500 to 730 ° C. And a subsequent heat treatment in a temperature range of 350 to 600 ° C. in a static magnetic field applied in a direction substantially perpendicular to a direction in which high magnetic permeability is desired.

請求項13に記載した発明は前記課題を解決するため
に、請求項8に記載した組成の軟磁性合金膜に対し、最
終的に高い透磁率を得たい方向と略直交する方向に磁界
を印加した静磁場中で350〜700℃の温度範囲で第1段の
熱処理を行い、微結晶を一部析出させた状態で一軸磁気
異方性を誘導した後、第1段の熱処理温度と同じかそれ
以下の温度で最終的に高い透磁率を得たい方向に磁界を
印加した静磁場中において第2段の熱処理を行い、第1
段と第2段の熱処理温度と保持時間の少なくとも一方を
調節することでその組織が、基本的に平均粒径0.05μm
以下の結晶粒からなり、その一部に元素Mの炭化物の結
晶相を含む軟磁性合金膜の一軸磁気異方性を制御するも
のである。
In order to solve the above problem, the invention described in claim 13 applies a magnetic field to the soft magnetic alloy film having the composition described in claim 8 in a direction substantially orthogonal to the direction in which a high magnetic permeability is ultimately desired to be obtained. Heat treatment in a temperature range of 350 to 700 ° C in a static magnetic field, and induces uniaxial magnetic anisotropy in a state in which microcrystals are partially deposited. The second heat treatment is performed in a static magnetic field in which a magnetic field is applied in a direction in which it is desired to finally obtain a high magnetic permeability at a temperature lower than that,
By adjusting at least one of the heat treatment temperature and the holding time of the second stage and the second stage, the structure becomes basically an average particle size of 0.05 μm.
It controls the uniaxial magnetic anisotropy of a soft magnetic alloy film comprising the following crystal grains, some of which include a crystal phase of a carbide of the element M.

請求項14に記載した発明は前記課題を解決するため
に、請求項8に記載した組成の軟磁性合金膜に対し、最
終的に高い透磁率を得たい方向に磁界を印加した静磁場
中で350〜700℃の温度範囲で第1段の熱処理を行い、微
結晶を一部析出させた状態で一軸磁気異方性を誘導した
後、350〜700℃の温度範囲で、最終的に高い透磁率を得
たい方向と略直交する方向に磁界を印加した静磁場中に
おいて第2段の熱処理を行い、第1段と第2段の熱処理
温度と保持時間の少なくとも一方を調節することで、そ
の組織が、基本的に平均粒径0.05μm以下の結晶粒から
なり、その一部に元素Mの炭化物の結晶相を含む軟磁性
合金膜の一軸磁気異方性の大きさを制御するものであ
る。
In order to solve the above problem, the invention described in claim 14 applies a soft magnetic alloy film having the composition described in claim 8 in a static magnetic field in which a magnetic field is applied in a direction in which a high magnetic permeability is desired to be finally obtained. The first stage heat treatment is performed in a temperature range of 350 to 700 ° C., and the uniaxial magnetic anisotropy is induced in a state in which a part of microcrystals is precipitated. The second-stage heat treatment is performed in a static magnetic field in which a magnetic field is applied in a direction substantially orthogonal to the direction in which the magnetic susceptibility is to be obtained, and at least one of the first-stage and second-stage heat treatment temperatures and the holding time is adjusted. The structure basically controls the magnitude of uniaxial magnetic anisotropy of the soft magnetic alloy film including crystal grains having an average grain size of 0.05 μm or less and partially including a crystal phase of a carbide of the element M. .

以下に本発明を更に詳細に説明する。 Hereinafter, the present invention will be described in more detail.

請求項1,8に記載した発明においては、スパッタ法な
どの真空薄膜形成技術を用いて成膜し、成膜する場合、
高い透磁率を得たい方向と略直交する方向(好ましくは
直交する方向)に磁場を印加しつつ成膜し、続いて、52
0〜730℃、より好ましくは、600〜700℃の温度範囲で無
磁場熱処理を行う。
In the invention described in claims 1 and 8, the film is formed using a vacuum thin film forming technique such as a sputtering method, and when the film is formed,
A film is formed while applying a magnetic field in a direction substantially perpendicular to the direction in which a high magnetic permeability is desired (preferably in a direction perpendicular to the direction).
The magnetic field-free heat treatment is performed in a temperature range of 0 to 730C, more preferably 600 to 700C.

なお、本願の明細書において略直交する方向とは、正
確に直交する方向に対する角度差にして±10゜程度の差
異まで許容するものとする。
Note that, in the specification of the present application, a direction substantially perpendicular to the direction is allowed to have a difference of about ± 10 ° as an angle difference with respect to the direction perpendicular to exactly.

請求項1,8に記載した組成の軟磁性合金膜において
は、成膜したまま(as deposited)の状態では、アモル
ファスを主体としたものであり、アモルファス構造のも
のは一般的に、短範囲での磁性原子の配列の仕方に自由
度があるため、誘導磁気異方性がつき易い。このため磁
場中で成膜を行うことにより、成膜したままの状態では
強い一軸異方性(異方性磁界Hkにして約20 Oe以上)が
誘起される。
In the soft magnetic alloy film having the composition described in claims 1 and 8, the as-deposited state (as deposited) is mainly composed of amorphous, and the amorphous structure generally has a short range. Since there is a degree of freedom in the arrangement of the magnetic atoms, induced magnetic anisotropy is likely to occur. Therefore, when the film is formed in a magnetic field, strong uniaxial anisotropy (about 20 Oe or more in terms of an anisotropic magnetic field Hk) is induced in a state where the film is formed.

しかし請求項1,8に記載した組成の軟磁性合金膜は、
熱処理により微細な結晶が析出してくるために、結晶化
の進行に伴い、当然ながら異方性磁界は低下する。ま
た、この軟磁性合金膜は、結晶化後においては700〜800
℃程度のキュリー温度を示すが、キュリー温度に近い温
度(520〜730℃、より好ましくは600〜700℃)での熱処
理によって異方性磁界を低下できることになる。
However, the soft magnetic alloy film of the composition described in claims 1 and 8,
Since fine crystals are precipitated by the heat treatment, the anisotropic magnetic field naturally decreases with the progress of crystallization. In addition, this soft magnetic alloy film is 700 to 800 after crystallization.
Although the Curie temperature is on the order of ° C, heat treatment at a temperature close to the Curie temperature (520 to 730 ° C, more preferably 600 to 700 ° C) can lower the anisotropic magnetic field.

これらの効果により、熱処理後において高透磁率に適
した、弱い磁気異方性を得ることができる。
Due to these effects, weak magnetic anisotropy suitable for high magnetic permeability can be obtained after the heat treatment.

この熱処理は、無磁場中で行う。また、熱処理温度
は、520℃以上でないと、異方性磁界が下がらず、高い
透磁率を得ることができない。また、熱処理温度が720
℃を越えると、異方性磁界が低くなりすぎることと、微
結晶の成長が進行して結晶磁気異方性による異方性分散
が顕著になって、軟磁気特性が失われるようになるので
好ましくない。
This heat treatment is performed in the absence of a magnetic field. Further, unless the heat treatment temperature is 520 ° C. or higher, the anisotropic magnetic field does not decrease, and a high magnetic permeability cannot be obtained. The heat treatment temperature is 720
If the temperature exceeds ℃, the anisotropic magnetic field becomes too low, and the growth of microcrystals proceeds, anisotropic dispersion due to crystal magnetic anisotropy becomes remarkable, and soft magnetic characteristics are lost. Not preferred.

以上のような方法を実施することで、誘導磁気異方性
が制御された透磁率の高い軟磁性合金膜が得られる。ま
た、このような方法により得られた軟磁性合金膜は、基
本的に平均粒径0.05μm以下の結晶粒からなり、その一
部に元素Mの炭化物の結晶粒を含むものであり、先に特
願平1−55571号明細書において特許出願している通
り、センダスト合金を越える高い飽和磁束密度と良好な
軟磁気特性を有し、ガラス融着工程において600℃以上
の温度に加熱されても結晶粒が粗大化することがなく、
耐熱性に優れている。
By performing the above-described method, a soft magnetic alloy film having high permeability and controlled induced magnetic anisotropy can be obtained. Further, the soft magnetic alloy film obtained by such a method basically consists of crystal grains having an average grain size of 0.05 μm or less, and includes crystal grains of a carbide of the element M in a part thereof. As has filed a patent application in Japanese Patent Application No. 1-55571, it has a high saturation magnetic flux density exceeding sendust alloy and good soft magnetic properties, and even when heated to a temperature of 600 ° C. or more in the glass fusing step. The crystal grains do not become coarse,
Excellent heat resistance.

請求項2,9に記載した発明においては、成膜後に行う
熱処理を請求項1,8に記載したような無磁場中ではな
く、回転磁場中において行う。ここで回転磁場中の熱処
理とは、例えば、第1図に示すように電磁石のポールピ
ースのN極1とS極2の間に、軟磁性合金膜3が形成さ
れた基板4を配置し、基板4を回転軸Gを中心として矢
印方向に回転させながら熱処理することを示す。熱処理
する際の温度は、請求項1,8に記載の発明と同様に520〜
730℃の範囲とする。
In the inventions described in the second and ninth aspects, the heat treatment performed after the film formation is performed in a rotating magnetic field, not in the absence of a magnetic field as described in the first and eighth aspects. Here, the heat treatment in a rotating magnetic field means, for example, as shown in FIG. 1, disposing a substrate 4 on which a soft magnetic alloy film 3 is formed between an N pole 1 and an S pole 2 of a pole piece of an electromagnet. This shows that the heat treatment is performed while rotating the substrate 4 in the direction of the arrow around the rotation axis G. The temperature at the time of the heat treatment is from 520 to 520 in the same manner as the invention according to claims 1 and 8.
730 ℃ range.

このように回転磁場中の熱処理により、請求項1,8で
行った方法の場合よりも更に高い透磁率を有する軟磁性
合金膜を得ることができる。
Thus, by the heat treatment in the rotating magnetic field, it is possible to obtain a soft magnetic alloy film having a higher magnetic permeability than in the case of the method according to claims 1 and 8.

この理由は、熱処理中の高温状態でも軟磁性合金膜を
常に単磁区の状態として、磁壁が存在しない状態で処理
できるので、磁区の固着化(熱処理中に存在していた磁
壁がその場所で安定化してしまい、動きにくくなるこ
と)が妨げられるからである。このような熱処理を行っ
ても、上記と同様な温度範囲で、適切な弱い異方性磁界
を残すことができる。
The reason is that the soft magnetic alloy film is always in a single magnetic domain state even in the high-temperature state during the heat treatment, and can be processed in the state where no magnetic domain wall exists. Therefore, the magnetic domains are fixed (the magnetic domain wall existing during the heat treatment is stable in the place). Is difficult to move). Even if such heat treatment is performed, an appropriate weak anisotropic magnetic field can be left in the same temperature range as described above.

なお、請求項2,9に記載した発明の方法により得られ
た軟磁性合金膜においては、透磁率以外の磁気特性と耐
熱性において、請求項1,8に記載の方法で得られた軟磁
性合金膜と同等に優れている。
In the soft magnetic alloy film obtained by the method of the invention described in claims 2 and 9, the magnetic properties other than the magnetic permeability and the heat resistance are the same as those of the soft magnetic alloy film obtained by the method of claims 1 and 8. Excellent as alloy film.

請求項3,10に記載した発明においては、無磁場あるい
は磁場中で成膜した後に、高い透磁率を得たに方向と略
直交する方向(好ましくは直交する方向)に印加された
静磁場中で350〜550℃の温度範囲で熱処理し、続いて52
0〜730℃、より好ましくは600〜700℃の温度範囲で無磁
場熱処理を行う。
In the invention described in claims 3 and 10, after forming a film in a non-magnetic field or in a magnetic field, a static magnetic field applied in a direction substantially perpendicular to the direction (preferably a direction perpendicular to) to obtain high magnetic permeability is obtained. Heat treatment at a temperature range of 350 to 550 ° C, followed by 52
The magnetic field-free heat treatment is performed in a temperature range of 0 to 730 ° C, more preferably 600 to 700 ° C.

無磁場中でスパッタ等の成膜を行うと、成膜したまま
の状態では均一な異方性は付与できないが、スパッタ等
の成膜工程は簡略化することができる。また、成膜後の
静磁場中の熱処理によって一軸異方性を付与できるが、
この際の温度が低すぎると十分な異方性がつけられない
ばかりでなく、それに引き続く無磁場熱処理によってこ
の異方性が完全に消滅してしまう。これは、熱処理温度
が低いと、微結晶の析出を伴わないために、誘導磁気異
方性が可逆的に変化し易くなっているためである。従っ
て微結晶の析出が始まる程度まで温度を上げることによ
り、それに引き続く無磁場熱処理後に適度な異方性(弱
い異方性磁界Hk)を残すことができる。
When a film is formed by sputtering or the like in the absence of a magnetic field, uniform anisotropy cannot be imparted as it is, but a film forming process such as sputtering can be simplified. In addition, although uniaxial anisotropy can be imparted by heat treatment in a static magnetic field after film formation,
If the temperature at this time is too low, not only the sufficient anisotropy cannot be provided, but also the subsequent anisotropy heat treatment completely eliminates this anisotropy. This is because if the heat treatment temperature is low, the induced magnetic anisotropy is apt to change reversibly because no microcrystals are precipitated. Therefore, by raising the temperature to such an extent that the precipitation of microcrystals starts, a suitable anisotropy (weak anisotropic magnetic field Hk) can be left after the subsequent non-magnetic field heat treatment.

第2図は、前記組成の軟磁性合金膜において、軟磁性
合金膜の比抵抗が低下し始める熱処理温度、即ち、微結
晶の析出が起こり始める温度を示す。微結晶の析出は35
0℃程度から起こり始めることが明らかである。このた
め第1段目の熱処理温度は最低350℃は必要である。
FIG. 2 shows the heat treatment temperature at which the specific resistance of the soft magnetic alloy film starts to decrease, that is, the temperature at which the precipitation of microcrystals starts, in the soft magnetic alloy film having the above composition. 35 microcrystals precipitated
It is clear that it begins to occur at around 0 ° C. Therefore, the first heat treatment temperature must be at least 350 ° C.

また、この第1段目の熱処理を550℃を越える温度で
行ってしまうと、あまりに安定な強い一軸異方性が付与
されてしまい、第2段目の無磁場熱処理によって適度に
調整し難くなってしまう問題を生じる。よって第2段目
の熱処理は、第1段目の静磁場中熱処理で付与した一軸
異方性を適度に弱めるために、無磁場で行う。熱処理温
度の限定理由は請求項1に記載の方法の場合と同様であ
る。
If the first-stage heat treatment is performed at a temperature exceeding 550 ° C., an extremely stable and strong uniaxial anisotropy is provided, and it becomes difficult to appropriately adjust the second-stage non-magnetic heat treatment. Cause problems. Therefore, the second heat treatment is performed without a magnetic field in order to appropriately weaken the uniaxial anisotropy imparted by the first heat treatment in a static magnetic field. The reason for limiting the heat treatment temperature is the same as in the case of the method described in claim 1.

また、第1段目と第2段目の熱処理は、同一の炉の中
で、温度履歴を第3図に示すように設定して行うことが
できる。
The first and second heat treatments can be performed in the same furnace with the temperature history set as shown in FIG.

請求項4,11に記載した発明においては、請求項3,10に
記載した発明の第2段目の熱処理を回転磁場中で行う。
熱処理温度は、請求項3,10に記載の発明と同様に、第1
段目において350〜550℃、第2段目において520〜730℃
に設定する。以上の熱処理により、請求項3,10に記載し
た方法により得られた軟磁性合金膜よりも更に高い透磁
率を有する軟磁性合金膜を得ることができる。
In the inventions described in claims 4 and 11, the second heat treatment of the inventions described in claims 3 and 10 is performed in a rotating magnetic field.
The heat treatment temperature is the same as the first and third aspects of the present invention.
350-550 ° C in the second stage, 520-730 ° C in the second stage
Set to. By the above heat treatment, a soft magnetic alloy film having a higher magnetic permeability than the soft magnetic alloy film obtained by the method according to claims 3 and 10 can be obtained.

なお、この場合、第4図に示すように2段階の熱処理
を同一の炉の中で行うことができ、第1段目の熱処理時
に磁場中で静止させておいた試料を第2段目の熱処理時
に回転させることで容易に回転磁場中熱処理を実施でき
る。
In this case, as shown in FIG. 4, the two-stage heat treatment can be performed in the same furnace, and the sample kept stationary in the magnetic field during the first heat treatment is replaced with the second-stage heat treatment. By rotating during heat treatment, heat treatment in a rotating magnetic field can be easily performed.

請求項5,12に記載した発明においては、成膜後に行う
第1段目の熱処理をある程度高い温度で回転磁場中で行
うことにより、微結晶化をかなり促進させて安定化させ
てしまう。これに、第2段目の静磁場中の熱処理を行っ
て誘起される異方性磁界を適度に小さいものにする。第
1段目の熱処理は、600℃以上で行わないと第2段目の
熱処理で励起される異方性磁界が大きくなりすぎ、1000
以上の透磁率が得られない。ただし、第2段目の熱処理
温度が350〜450℃と低い場合は第1段目の熱処理を500
〜600℃で行っても良い。
In the fifth and twelfth aspects of the present invention, the first stage heat treatment performed after the film formation is performed in a rotating magnetic field at a relatively high temperature, whereby microcrystallization is considerably promoted and stabilized. In addition, the anisotropic magnetic field induced by performing the heat treatment in the static magnetic field of the second stage is appropriately reduced. If the first heat treatment is not performed at 600 ° C. or higher, the anisotropic magnetic field excited by the second heat treatment becomes too large,
The above magnetic permeability cannot be obtained. However, if the second heat treatment temperature is as low as 350 to 450 ° C., the first heat treatment is performed at 500 ° C.
It may be performed at ~ 600 ° C.

また、第1段目の熱処理温度が730℃を越えると結晶
粒の粗大化による軟磁性の低下を招く。第2段目の熱処
理温度が350℃未満であると、一軸磁気異方性を付与で
きず、また、600℃を越えると誘起される異方性磁界が
大きくなり、高い透磁率を得られなくなる。
On the other hand, if the first heat treatment temperature exceeds 730 ° C., the soft magnetism is reduced due to the coarsening of the crystal grains. If the heat treatment temperature in the second stage is lower than 350 ° C., uniaxial magnetic anisotropy cannot be imparted, and if it exceeds 600 ° C., the induced anisotropic magnetic field becomes large and high magnetic permeability cannot be obtained. .

第1段目と第2段目の熱処理は第5図に示すように同
一の炉内で行うことができる。この場合、回転磁場中の
処理後に静磁場処理を行うには、高透磁率を得たい方向
と略直交する方向となる位置で、試料を回転させるモー
タなどの駆動装置を停止して、試料を所定の方向を向け
て停止し、この状態で第2段目の熱処理を行なえば良
い。
The first and second heat treatments can be performed in the same furnace as shown in FIG. In this case, in order to perform the static magnetic field processing after the processing in the rotating magnetic field, a driving device such as a motor for rotating the sample is stopped at a position substantially orthogonal to the direction in which high magnetic permeability is to be obtained, and the sample is removed. It may be stopped in a predetermined direction and the second stage heat treatment may be performed in this state.

請求項6,13に記載した発明において、成膜したままの
状態の膜は、アモルファスを主体としたものであるが、
第2図に示すように、膜の比抵抗が低下し始める温度以
上で熱処理を行うとCoと元素Mの炭化物を主体とする微
結晶の析出が生じる。(第2図の組成では350℃以上)
このように微結晶状態にすることにより、成膜したまま
の状態より飽和磁束密度が高くなり、軟磁気特性も優れ
ているのがこの膜の特徴である。微結晶を析出させるた
めには、少なくとも350℃以上の熱処理が必要となる。
In the invention according to claims 6 and 13, the film in a state of being formed is mainly composed of amorphous,
As shown in FIG. 2, when heat treatment is performed at a temperature higher than the temperature at which the specific resistance of the film starts decreasing, microcrystals mainly composed of Co and a carbide of the element M are generated. (350 ° C or higher for the composition in Fig. 2)
It is a feature of this film that the saturation magnetic flux density becomes higher and the soft magnetic property is superior to that in the as-deposited state by being made into a microcrystalline state. In order to precipitate microcrystals, a heat treatment of at least 350 ° C. or more is required.

なお、最終的に高い透磁率を得たい方向と略直交する
方向(例えば、第6図に示す試料5のX方向)に磁界を
印加した静磁界中での第1段の熱処理を350℃以下の温
度で行っても一軸磁気異方性を誘起できるが、アモルフ
ァスを主体とする状態であるので、引き続き最終的に高
い透磁率を得たい方向(例えば、第6図に示すY方向あ
るいは鎖線の矢印方向)に磁界を印加した静磁場中での
第2段の熱処理を350℃以上で行うと、第1段の熱処理
で誘起した一軸磁気異方性は90゜回転してしまい、最終
的にY方向が磁化容易軸になってしまうので高い透磁率
が得られない。
Note that the first-stage heat treatment in a static magnetic field in which a magnetic field is applied in a direction substantially perpendicular to a direction in which a high magnetic permeability is finally desired (for example, the X direction of the sample 5 shown in FIG. 6) is performed at 350 ° C. or less. Although it is possible to induce uniaxial magnetic anisotropy even when the temperature is set at the above temperature, since the amorphous state is mainly used, the direction in which a high magnetic permeability is desired to be finally obtained (for example, the Y direction shown in FIG. If the second-stage heat treatment in a static magnetic field in which a magnetic field is applied (in the direction of the arrow) is performed at 350 ° C. or more, the uniaxial magnetic anisotropy induced by the first-stage heat treatment rotates 90 °, and finally Since the Y direction becomes the axis of easy magnetization, a high magnetic permeability cannot be obtained.

また、第1段のX方向の静磁場中熱処理を温度T1(T1
>350℃)で行った後、第2段のY方向の静磁場中熱処
理(温度T2)をT1より高い温度で行うと、最終的にY方
向が磁化容易軸になってしまい、高い透磁率が得られな
い。
In addition, the first stage heat treatment in the static magnetic field in the X direction is performed at the temperature T 1 (T 1
> 350 ° C.), and then performing the second stage heat treatment in a static magnetic field in the Y direction (temperature T 2 ) at a temperature higher than T 1 , the Y direction eventually becomes an easy axis of magnetization, and Magnetic permeability cannot be obtained.

更に、温度T1,T2のどちらか一方でも700℃を越えてし
まうと結晶粒の粗大化により軟磁気特性が劣化してしま
うので熱処理温度の上限は700℃とする。
Further, if either one of the temperatures T 1 and T 2 exceeds 700 ° C., the soft magnetic characteristics deteriorate due to the coarsening of the crystal grains, so the upper limit of the heat treatment temperature is set to 700 ° C.

以上をまとめると、T1とT2の温度は次の関係を満たす
必要がある。350℃≦T1≦700℃、より好ましくは500℃
≦T1≦700℃、T2≦700℃かつT2≦T1となる。
In summary, the temperature of T 1 and T 2 are needs to satisfy the following relationship. 350 ℃ ≦ T 1 ≦ 700 ℃, more preferably 500 ℃
≦ T 1 ≦ 700 ° C., T 2 ≦ 700 ° C. and T 2 ≦ T 1 .

請求項7,14に記載した発明では、最終的に高い透磁率
を得たい方向(例えば、第6図に示すY方向)に磁界を
印加した静磁場中で第1段の熱処理(温度T3)を行い、
X方向を磁化困難軸にしておき、引き続いて第2段の熱
処理をX方向に磁界を印加した静磁場中(温度T4)で行
うことにより磁化困難軸をX方向からY方向に90゜回転
させることにより最終的にY方向に高い透磁率が得られ
る。
In the invention described in claims 7 and 14, the first-stage heat treatment (temperature T 3 ) is performed in a static magnetic field in which a magnetic field is applied in a direction in which a high magnetic permeability is to be finally obtained (for example, the Y direction shown in FIG. 6). ),
The X direction is set as the hard axis, and then the second heat treatment is performed in a static magnetic field (temperature T 4 ) to which a magnetic field is applied in the X direction, thereby rotating the hard axis by 90 ° from the X direction in the Y direction. By doing so, a high magnetic permeability is finally obtained in the Y direction.

温度T3,T4とも上限温度は前記と同じ理由から700℃に
する必要がある。また、T4はT3より低くてもかまわな
い。T3,T4の下限は350℃となる。以上の関係をまとめる
と、次のようになる。350℃≦(T3,T4)≦700℃、より
好ましくは、500℃≦(T3,T4)≦700℃となる。
The upper limit temperature of both the temperatures T 3 and T 4 needs to be 700 ° C. for the same reason as described above. In addition, T 4 is not may be lower than T 3. The lower limit of T 3 and T 4 is 350 ° C. The above relationship can be summarized as follows. 350 ° C. ≦ (T 3 , T 4 ) ≦ 700 ° C., more preferably 500 ° C. ≦ (T 3 , T 4 ) ≦ 700 ° C.

以上のように請求項6,13と請求項7,14に記載した熱処
理方法によれば、磁化困難軸方向で磁壁が不安定になら
ない範囲のなるべく弱い一軸異方性を誘起することによ
り軟磁気特性の優秀な軟磁性合金膜を得ることができ
る。
As described above, according to the heat treatment methods described in claims 6, 13 and 7, 14, soft magnetic anisotropy is induced by inducing the weakest uniaxial anisotropy within the range in which the domain wall does not become unstable in the direction of the hard magnetization axis. A soft magnetic alloy film having excellent characteristics can be obtained.

また、熱処理を行う場合、350〜700℃の広い範囲で熱
処理温度を選定できるので選定の幅が広く、温度設定が
容易にできるとともに、応用上有利な特徴がある。
In the case of performing the heat treatment, the heat treatment temperature can be selected in a wide range of 350 to 700 ° C., so that the selection range is wide, the temperature can be easily set, and there are advantageous characteristics in application.

更に、請求項6,13と請求項7,14に記載の発明では回転
磁場中の熱処理工程を要しないために、軟磁性合金膜を
磁気ヘッド用として用いた場合、ギャップ形成時に伴う
ガラス溶着に必要な装置の構成を簡略化できる効果があ
る。
Furthermore, since the heat treatment step in a rotating magnetic field is not required in the inventions according to Claims 6, 13 and 7, 14, when a soft magnetic alloy film is used for a magnetic head, the glass welding accompanying the gap formation is difficult. There is an effect that the configuration of a necessary device can be simplified.

以下に実施例について説明する。 Examples will be described below.

RF2極スパッタ装置を用い、幅4mm、長さ24mmの矩形状
の結晶化ガラス基板の上に、厚さ約5〜6μmのCo−
(T)−M−C系の軟磁性合金膜を成膜し、得られた複
数の軟磁性合金膜について後記するように種々の測定を
行った。
Using an RF bipolar sputter device, a Co-layer having a thickness of about 5 to 6 μm was formed on a rectangular crystallized glass substrate having a width of 4 mm and a length of 24 mm.
A (T) -MC soft magnetic alloy film was formed, and various measurements were performed on the obtained soft magnetic alloy films as described below.

その際、透磁率の測定は、基板の長手方向の透磁率に
ついて、8の字コイル型のパーミアンス計を用いて行っ
た。
At that time, the magnetic permeability was measured using a figure-eight coil type permeance meter for the magnetic permeability in the longitudinal direction of the substrate.

また、熱処理条件は、下記の通りとした。 The heat treatment conditions were as follows.

・静磁場中熱処理 昇温速度;設定温度まで1時間かけて昇温 降温速度;−1.5℃/分 保持時間;20分(以上、第7図参照) 雰囲気;N2ガス気流 磁場;基板の幅方向に500 Oe印加 ・回転磁場中熱処理 昇温速度と保持時間と降温速度は前記と同じ 雰囲気;真空雰囲気 磁場;2000 Oe 回転数 20rpm なお、以上の処理方法は後述の実施例1〜8について
適用した。
・ Heat treatment in static magnetic field Heating rate; Heating up to set temperature over 1 hour Cooling rate: -1.5 ° C / min Holding time; 20 minutes (above, see FIG. 7) Atmosphere; N 2 gas flow Magnetic field; Substrate width 500 Oe applied in the direction-Heat treatment in a rotating magnetic field Heating rate, holding time, and cooling rate are the same as above Atmosphere; Vacuum atmosphere Magnetic field; 2000 Oe Rotation speed 20 rpm The above processing method is applied to Examples 1 to 8 described later. did.

(実施例1) Coターゲット上にTaのペレットを配置した複合ターゲ
ットを用い、Ar+CH4の混合ガス中で基板の幅方向に20
Oeの磁場を印加しつつスパッタすることにより、Co86.4
Ta4.78.9なる組成の軟磁性合金膜を得た。得られた軟
磁性合金膜について種々の温度で20分間、無磁場熱処理
した後の初透磁率(1MHz)を測定した。第8図にその結
果を示す。
(Example 1) Co using a composite target of arranging the pellets Ta on the target, 20 in the width direction of the substrate in a mixed gas of Ar + CH 4
By sputtering while applying a magnetic field of Oe, Co 86.4
A soft magnetic alloy film having a composition of Ta 4.7 C 8.9 was obtained. The initial magnetic permeability (1 MHz) of the obtained soft magnetic alloy film after subjecting it to a magnetic field-free heat treatment at various temperatures for 20 minutes was measured. FIG. 8 shows the results.

また、前記のように得られた軟磁性合金膜について種
々の温度で20分間、無磁場熱処理した後の異方性磁界
(Hk)を測定した。第9図にその結果を示す。
Further, the anisotropic magnetic field (Hk) of the soft magnetic alloy film obtained as described above was measured after subjecting it to a magnetic field-free heat treatment at various temperatures for 20 minutes. FIG. 9 shows the results.

第8図に示す初透磁率は、500℃を越えて520℃近傍か
ら向上し始め、650℃前後でピークを示し、その後急激
に減少しているが、730℃でもかなり高い値を示してい
る。
The initial magnetic permeability shown in FIG. 8 starts to increase from around 520 ° C. over 500 ° C., shows a peak around 650 ° C., and then decreases sharply, but shows a considerably high value even at 730 ° C. .

第9図に示す異方性磁界は、550℃を越える温度から
急激に低下し始めている。最も好ましいと思われる異方
性磁界2〜8 Oeの範囲あるいはその近傍の範囲には、無
磁場熱処理温度600〜700℃の範囲で到達している。
The anisotropic magnetic field shown in FIG. 9 starts to decrease sharply from a temperature exceeding 550 ° C. The most preferable anisotropic magnetic field range of 2 to 8 Oe or a range in the vicinity thereof is reached in the range of 600 to 700 ° C. in the non-magnetic field heat treatment temperature.

(実施例2) Coターゲット上にNbあるいはZrのペレットを配置した
複合ターゲットを用い、基板の幅方向に20 Oe磁場を印
加しつつAr+CH4の混合ガス中でスパッタすることによ
り、Co85.4Nb5.49.2とCo86.6Zr4.49.0なる組成の各
合金膜を得た。得られた合金膜を各温度で20分間無磁場
熱処理した後の初透磁率を測定した。その結果を第10図
に示す。
Example 2 Using a composite target in which Nb or Zr pellets were arranged on a Co target, sputtering was performed in a mixed gas of Ar + CH 4 while applying a magnetic field of 20 Oe in the width direction of the substrate to obtain Co 85.4 Nb 5.4. Each alloy film having a composition of C 9.2 and Co 86.6 Zr 4.4 C 9.0 was obtained. The initial magnetic permeability after the obtained alloy film was subjected to a magnetic field-free heat treatment at each temperature for 20 minutes was measured. The results are shown in FIG.

第10図に示す初透磁率は、約550〜720℃の範囲で1000
以上の優秀な値を示した。
The initial permeability shown in FIG. 10 is 1000 in the range of about 550-720 ° C.
The above values were excellent.

(実施例3) Coターゲット上にTaおよびFeのペレットを配置した複
合ターゲットを用い、基板の幅方向に20 Oeの磁場を印
加しつつAr+CH4の混合ガス中でスパッタすることによ
り、Co81.8Fe3.4Ta4.610.2なる組成の軟磁性合金膜を
得た。得られた合金膜を各温度で20分間無磁場熱処理し
た後の初透磁率を測定した。その結果を第11図に示す。
(Example 3) using a composite target of arranging the pellets of Ta and Fe on the Co target, by sputtering in a mixed gas of Ar + CH 4 while applying a magnetic field of 20 Oe in the width direction of the substrate, Co 81.8 Fe A soft magnetic alloy film having a composition of 3.4 Ta 4.6 C 10.2 was obtained. The initial magnetic permeability after the obtained alloy film was subjected to a magnetic field-free heat treatment at each temperature for 20 minutes was measured. The results are shown in FIG.

第11図に示す初透磁率は、520℃近傍から向上し始
め、600〜650℃で極大となり、その後減少している。
The initial magnetic permeability shown in FIG. 11 starts to increase near 520 ° C., reaches a maximum at 600 to 650 ° C., and thereafter decreases.

以上のように実施例1〜3から得られた第8図ないし
第11図に示す結果から鑑みて、成膜後に無磁場熱処理を
行う場合の温度は520〜730℃に設定することが好適であ
り、600〜700℃に設定することがより好ましい。
In view of the results shown in FIGS. 8 to 11 obtained from Examples 1 to 3 as described above, it is preferable to set the temperature in the case of performing the magnetic field-free heat treatment after the film formation to 520 to 730 ° C. Yes, it is more preferable to set the temperature to 600 to 700 ° C.

(実施例4) Coターゲット上にTaのペレットを配置した複合ターゲ
ットを用い、基板の幅方向に20 Oeの磁場を印加しつつA
r+CH4ガス中でスパッタすることによりCo81.2Ta5.9
12.9なる組成の軟磁性合金膜を得た。得られた合金膜を
各温度で20分間回転磁場中で熱処理した後の初透磁率を
測定した。その結果を第12図に示す。
(Example 4) Using a composite target in which a Ta pellet is arranged on a Co target, and applying a magnetic field of 20 Oe in the width direction of the substrate, A
Co 81.2 Ta 5.9 C by sputtering in r + CH 4 gas
A soft magnetic alloy film having a composition of 12.9 was obtained. The initial permeability after the heat treatment of the obtained alloy film in a rotating magnetic field at each temperature for 20 minutes was measured. The results are shown in FIG.

第12図に示す初透磁率は熱処理温度550〜700℃で1000
以上の高い値を示し、特に700℃で極大となっている。
また、前記実施例1〜3の合金膜の場合、各合金膜の保
磁力は1〜2 Oeであったのに対し、本実施例の場合、保
磁力は0.6 Oe以下にまで低下し、更に優れた軟磁性が得
られた。
The initial permeability shown in Fig. 12 is 1000 at the heat treatment temperature of 550-700 ° C.
It shows the above high values, and reaches a maximum particularly at 700 ° C.
In the case of the alloy films of Examples 1 to 3, the coercive force of each alloy film was 1 to 2 Oe, whereas in the case of this example, the coercive force was reduced to 0.6 Oe or less. Excellent soft magnetism was obtained.

(実施例5) Co85.9Ta8.0Hf6.1なる組成の合金ターゲットを用い、
無磁場の状態でAr+CH4混合ガス中でスパッタすること
によりCo79.8Ta7.3Hf5.07.9なる組成の軟磁性合金膜
を得た。得られた合金膜を400〜550℃の各温度で20分
間、静磁場中で熱処理した後の初透磁率を測定した。そ
の結果を第13図に●印で示す。この段階ではいずれの熱
処理温度でも初透磁率が200〜500程度の低い値しか得ら
れなかった。
(Example 5) Using an alloy target having a composition of Co 85.9 Ta 8.0 Hf 6.1 ,
A soft magnetic alloy film having a composition of Co 79.8 Ta 7.3 Hf 5.0 C 7.9 was obtained by sputtering in an Ar + CH 4 mixed gas in the absence of a magnetic field. The initial permeability after the heat treatment of the obtained alloy film in a static magnetic field at each temperature of 400 to 550 ° C. for 20 minutes was measured. The results are shown by a circle in FIG. At this stage, the initial magnetic permeability was as low as about 200 to 500 at any heat treatment temperature.

この合金膜を引き続き、第2段目の熱処理として650
℃で回転磁場中で熱処理し、熱処理後の初透磁率の第13
図に○印で示した。この合金膜はいずれの熱処理温度で
も2000以上の高い値が得られた。
This alloy film is subsequently subjected to a second heat treatment of 650
Heat treatment in a rotating magnetic field at a temperature of 13 ° C.
It is shown by a circle in the figure. This alloy film obtained a high value of 2000 or more at any heat treatment temperature.

また、比較のために、前記合金膜と同一組成の合金膜
を前記と同一方法で製造し、この合金膜について第1段
目の静磁場中熱処理を省略し、直接650℃の回転磁場中
で熱処理を行って合金膜を得た。この合金膜の初透磁率
は1050を示した。従って前記方法により得られた合金膜
の方が優れた特性を示した。
For comparison, an alloy film having the same composition as that of the alloy film was manufactured by the same method as described above, and the first-stage heat treatment in a static magnetic field was omitted, and the alloy film was directly heated in a rotating magnetic field of 650 ° C. Heat treatment was performed to obtain an alloy film. The initial permeability of this alloy film was 1050. Therefore, the alloy film obtained by the above method exhibited more excellent characteristics.

(実施例6) Co88.3Fe3.1Ta8.6なる組成の合金にグラファイトペレ
ットを配置した複合ターゲットを用い、無磁場状態で純
Arガス中でスパッタすることによりCo81.2Fe3.5Ta7.7
7.6なる組成の軟磁性合金膜を得た。得られた合金膜を4
00〜550℃の各温度で20分間、静磁場中で熱処理した後
の初透磁率を測定した。その結果を第14図に●印で示
す。この段階ではいずれの温度で熱処理しても200〜400
程度の低い初透磁率しか得られなかった。
(Example 6) A composite target in which graphite pellets were arranged on an alloy having a composition of Co 88.3 Fe 3.1 Ta 8.6 was used, and pure under no magnetic field.
Co 81.2 Fe 3.5 Ta 7.7 C by sputtering in Ar gas
A soft magnetic alloy film having a composition of 7.6 was obtained. 4
The initial magnetic permeability after heat treatment in a static magnetic field at each temperature of 00 to 550 ° C. for 20 minutes was measured. The results are shown by a circle in FIG. At this stage, 200-400
Only a low initial permeability was obtained.

この合金膜を引き続き第2段目の熱処理として、550
℃で回転磁場中で熱処理した後の初透磁率を測定した。
その結果を第14図に○印で示す。この合金膜はいずれも
1000以上の高い初透磁率が得られた。
This alloy film is subsequently subjected to a second heat treatment at 550
The initial magnetic permeability after heat treatment in a rotating magnetic field at ℃ was measured.
The results are shown by circles in FIG. Each of these alloy films
High initial permeability of more than 1000 was obtained.

また、比較のために、前記組成と同一組成の合金膜を
用い、第1段目の静磁場中での熱処理を省略し、成膜後
に直接550℃の回転磁場中熱処理を行って合金膜を得
た。この合金膜においては、初透磁率が78となり、前記
した本願発明方法により得られた合金膜の方が優れた特
性を示すことが明らかになった。
For comparison, an alloy film having the same composition as that described above was used, the first-stage heat treatment in a static magnetic field was omitted, and the film was directly subjected to a heat treatment in a rotating magnetic field at 550 ° C. to form an alloy film. Obtained. In this alloy film, the initial magnetic permeability was 78, and it was clarified that the alloy film obtained by the method of the present invention described above exhibited better characteristics.

(実施例7) Co88.3Fe3.1Ta8.6なる組成の合金にグラファイトのペ
レットを配置した複合ターゲットを用い、無磁場状態
で、純Arガス中でスパッタすることによりCo81.2Fe3.5T
a7.77.6なる組成の軟磁性合金膜を得た。得られた合
金膜を550〜750℃の各温度で回転磁場中熱処理した後の
初透磁率を測定し、その結果を第15図に●印で示す。こ
の段階では、650〜700℃で初透磁率が極大になっている
ものの、最大でも300程度の初透磁率しか得られていな
い。
Example 7 Co 81.2 Fe 3.5 T was sputtered in a pure Ar gas without a magnetic field using a composite target in which graphite pellets were arranged on an alloy having a composition of Co 88.3 Fe 3.1 Ta 8.6.
a A soft magnetic alloy film having a composition of 7.7 C7.6 was obtained. The initial permeability after the heat treatment of the obtained alloy film in a rotating magnetic field at each temperature of 550 to 750 ° C. was measured, and the result is indicated by a black circle in FIG. At this stage, the initial magnetic permeability is maximum at 650 to 700 ° C., but only the initial magnetic permeability of about 300 is obtained at the maximum.

この合金膜を第2段目の熱処理として引き続き550℃
で静磁場中熱処理した後の初透磁率を測定した。その結
果を第15図に○印で示す。
This alloy film is continuously heated to 550 ° C as the second heat treatment.
The initial magnetic permeability after heat treatment in a static magnetic field was measured. The results are shown by a circle in FIG.

第1段目の回転磁場中熱処理温度が約630〜720℃の時
に1000以上の高い初透磁率が得られた。
When the heat treatment temperature in the rotating magnetic field of the first stage was about 630 to 720 ° C., a high initial magnetic permeability of 1000 or more was obtained.

また、比較例として、前記と同一組成の合金膜を用
い、第1段目の回転磁場中熱処理を省略し、直接550℃
の静磁場中熱処理して合金膜を得た。
As a comparative example, an alloy film having the same composition as that described above was used, and the first stage heat treatment in a rotating magnetic field was omitted.
Was heat-treated in a static magnetic field to obtain an alloy film.

この合金膜においては、初透磁率が400となり、前記
した本願発明方法により得られた合金膜の方が優れた特
性を示すことが明らかになった。
In this alloy film, the initial magnetic permeability was 400, and it was clarified that the alloy film obtained by the method of the present invention described above exhibited better characteristics.

(実施例8) 実施例7と同等の条件でCo81.2Fe3.5Ta7.77.6なる
組成の合金膜を成膜し、この合金膜を550℃で回転磁場
中熱処理した後、400℃で静磁場中で熱処理して軟磁性
合金膜を得た。この合金膜の初透磁率を測定したとこ
ろ、950となり、優れた値を示した。
Example 8 An alloy film having a composition of Co 81.2 Fe 3.5 Ta 7.7 C 7.6 was formed under the same conditions as in Example 7, and this alloy film was heat-treated in a rotating magnetic field at 550 ° C., and then subjected to a static magnetic field at 400 ° C. Heat treatment was performed in the solution to obtain a soft magnetic alloy film. The initial permeability of this alloy film was measured, and was 950, showing an excellent value.

(実施例9) 第16図に示すように、幅4mm、長さ24mmの矩形状の結
晶化ガラス基板上に、Co88.3Fe3.1Ta8.6なる組成の合金
にグラファイトのペレットを配置した複合ターゲットを
用い、無磁場状態で純Arガス中でスパッタすることでCo
81.2Fe3.5Ta7.77.6なる組成の軟磁性合金膜を得、第1
6図に示すX方向に500 Oeの磁界を印加した状態で550℃
20分保持の条件で第1段目の熱処理を行った後、第16図
のY方向に、2000 Oeの磁界を印加した状態で400℃20分
保持、450℃20分保持、475℃20分保持、500℃20分保
持、550℃20分保持および350℃180分保持の各条件で第
2段目の熱処理を行った後のY方向の1MHzの透磁率と異
方性磁界(Hk)を測定した。その結果を第17図と第18図
に示す。
Example 9 As shown in FIG. 16, a composite target in which graphite pellets were arranged on an alloy having a composition of Co 88.3 Fe 3.1 Ta 8.6 on a 4 mm-wide, 24 mm-long rectangular crystallized glass substrate was used. Used, and sputtered in pure Ar gas in the absence of a magnetic field.
81.2 Fe 3.5 Ta 7.7 C 7.6
550 ° C with a magnetic field of 500 Oe applied in the X direction shown in Fig. 6.
After performing the first stage heat treatment under the condition of holding for 20 minutes, hold at 400 ° C. for 20 minutes, hold at 450 ° C. for 20 minutes, hold at 475 ° C. for 20 minutes while applying a magnetic field of 2000 Oe in the Y direction in FIG. After performing the second-stage heat treatment under the conditions of holding, holding at 500 ° C. for 20 minutes, holding at 550 ° C. for 20 minutes, and holding at 350 ° C. for 180 minutes, the magnetic permeability and anisotropic magnetic field (Hk) of 1 MHz in the Y direction after Y-direction It was measured. The results are shown in FIG. 17 and FIG.

第16図のY方向に磁界を印加して測定したB−Hルー
プから求めたY方向の異方性磁界は、第18図に示す如く
第1段の熱処理後は約49.0 Oeと強く、1MHzの初透磁率
も第17図に示す如く450までしか上がらないが、第2段
目の熱処理後の異方性磁界は、400℃20分保持、450℃20
分保持、475℃20分保持、350℃180分保持の場合、いず
れも約3.2〜16.9 Oeに制御でき、1MHzの初透磁率も1050
〜2130の高い値を示す。
The anisotropic magnetic field in the Y direction obtained from the BH loop measured by applying a magnetic field in the Y direction in FIG. 16 is as strong as about 49.0 Oe after the first heat treatment as shown in FIG. Although the initial magnetic permeability of the steel sheet only rises to 450 as shown in FIG. 17, the anisotropic magnetic field after the second heat treatment is maintained at 400 ° C. for 20 minutes and at 450 ° C. for 20 minutes.
In the case of minute holding, 475 ° C 20 minutes holding, 350 ° C 180 minutes holding, all can be controlled to about 3.2 to 16.9 Oe, and the initial permeability of 1MHz is 1050
High values of ~ 2130.

第2段目の熱処理を500℃20分保持、550℃20分保持で
行った場合、第16図のY方向が磁化容易軸になってしま
い、1MHzの初透磁率も80,60と劣化する。ただし、500
℃,550℃の場合も保持時間を短くすることによりY方向
を磁化困難軸のままにしておくことは可能になる。
If the second-stage heat treatment is performed at 500 ° C. for 20 minutes and at 550 ° C. for 20 minutes, the Y direction in FIG. 16 becomes the easy axis of magnetization, and the initial permeability at 1 MHz also deteriorates to 80,60. . However, 500
In the case of ° C and 550 ° C, it is possible to keep the Y direction as the hard magnetization axis by shortening the holding time.

(実施例10) 前記実施例9と同じ組成の合金試料を得、この試料に
ついて第16図のY方向に2000 Oeの磁界を印加した状態
で500℃20分保持、550℃20分保持、600℃20分保持の各
条件で第1段目の熱処理を行った後、第16図のX方向に
500 Oeの磁界を印加した状態で550℃、20分保持の条件
で第2段目の熱処理を行った後のY方向の1MHzの透磁率
と異方性磁界を測定した。その結果を第19図と第20図に
示す。
(Example 10) An alloy sample having the same composition as that of Example 9 was obtained, and the sample was held at 500 ° C for 20 minutes, 550 ° C for 20 minutes, and 600 ° C in a state where a magnetic field of 2000 Oe was applied in the Y direction in FIG. After performing the first stage heat treatment under the conditions of holding at 20 ° C. for 20 minutes, in the X direction of FIG.
After performing the second-stage heat treatment at 550 ° C. for 20 minutes while applying a magnetic field of 500 Oe, the magnetic permeability and anisotropic magnetic field at 1 MHz in the Y direction were measured. The results are shown in FIGS. 19 and 20.

Y方向の熱処理後では3者ともY方向が磁化容易軸に
なっていて、Y方向の1MHzの初透磁率も100以下である
が、X方向に第2段の熱処理を行ったものは、磁化容易
軸がY方向からX方向へ90゜回転し、Y方向が磁化困難
軸になるとともに、Y方向の異方性磁界もそれぞれ約3
3.4 Oe、16.9 Oe、1.7 Oeに制御され、1MHzの初透磁率
も640、1240、1910と向上している。
After the heat treatment in the Y direction, the three directions have the easy axis of magnetization in the Y direction, and the initial permeability at 1 MHz in the Y direction is also 100 or less. The easy axis rotates 90 ° from the Y direction to the X direction, the Y direction becomes the hard magnetization axis, and the anisotropic magnetic field in the Y direction is about 3
It is controlled to 3.4 Oe, 16.9 Oe, and 1.7 Oe, and the initial permeability at 1 MHz is improved to 640, 1240, and 1910.

「発明の効果」 以上説明したように請求項1,8に記載の方法によれ
ば、特別な組成の軟磁性合金膜について、磁場中成膜し
た後に520〜730℃で無磁場熱処理するので、熱処理後に
おいて、弱い異方性磁界を得ることができ、高い透磁率
の軟磁性合金膜を得ることができる。また、得られた軟
磁性合金膜のセンダスト以上の高い飽和磁束密度を有
し、ガラス融着工程の熱にも耐えるような耐熱性に優れ
ている。
`` Effects of the Invention '' As described above, according to the method according to claims 1 and 8, a soft magnetic alloy film having a special composition is subjected to a non-magnetic heat treatment at 520 to 730 ° C. after being formed in a magnetic field. After the heat treatment, a weak anisotropic magnetic field can be obtained, and a soft magnetic alloy film having high magnetic permeability can be obtained. Further, the obtained soft magnetic alloy film has a high saturation magnetic flux density higher than Sendust, and has excellent heat resistance to withstand the heat of the glass fusing step.

請求項2,9に記載の発明の方法によれば、特別な組成
の軟磁性合金膜について、磁場中成膜した後、回転磁場
中で520〜730℃で熱処理するので、高い透磁率を有し、
センダスト以上の高い飽和磁束密度と良好な耐熱性を有
する軟磁性合金膜を得ることができる。また、回転磁場
中で熱処理することで、請求項1,8に記載の方法で得ら
れた軟磁性合金膜よりも更に保磁力の低い軟磁性合金膜
を得ることができる。
According to the method of the present invention, a soft magnetic alloy film having a special composition is heat-treated at 520 to 730 ° C. in a rotating magnetic field after being formed in a magnetic field, and thus has a high magnetic permeability. And
A soft magnetic alloy film having a high saturation magnetic flux density higher than Sendust and good heat resistance can be obtained. Further, by performing the heat treatment in a rotating magnetic field, a soft magnetic alloy film having a lower coercive force than the soft magnetic alloy film obtained by the method according to claim 1 or 8 can be obtained.

請求項3,10に記載の発明の方法によれば、特別な組成
の軟磁性合金膜について、成膜後に、静磁場中で350〜5
50で熱処理し、更に無磁場中で520〜730℃で熱処理する
ので、高い透磁率を有し、センダスト以上の高い飽和磁
束密度と良好な耐熱性を有する軟磁性合金膜を得ること
ができる。
According to the method of the invention as set forth in claims 3 and 10, for a soft magnetic alloy film having a special composition, after film formation, 350 to 5 in a static magnetic field.
Since the heat treatment is performed at 50 and further at 520 to 730 ° C. in the absence of a magnetic field, a soft magnetic alloy film having high magnetic permeability, high saturation magnetic flux density higher than Sendust and good heat resistance can be obtained.

請求項4,11に記載の発明の方法によれば、特別な組成
の軟磁性合金膜について、成膜後に、静磁場中で350〜5
50で熱処理し、更に回転磁場中で520〜730℃で熱処理す
るので、静磁場中熱処理温度が400〜550℃のいずれの温
度であっても2000以上の高い透磁率を有し、高い飽和磁
束密度と良好な耐熱性を有する軟磁性合金膜を得ること
ができる。
According to the method of the invention according to claims 4 and 11, for the soft magnetic alloy film of a special composition, after film formation, 350 to 5 in a static magnetic field.
Heat treatment at 50, and further heat treatment at 520-730 ° C in a rotating magnetic field, so it has a high magnetic permeability of 2000 or more, regardless of the heat treatment temperature of 400-550 ° C in the static magnetic field, and high saturation magnetic flux. A soft magnetic alloy film having a density and good heat resistance can be obtained.

請求項5,12に記載の発明の方法によれば、特別な組成
の軟磁性合金膜について、成膜後に、回転磁場中で500
〜730℃で熱処理し、更に静磁場中で350〜600℃で熱処
理するので、1000前後の高い透磁率を有し、センダスト
以上の高い飽和磁束密度と良好な耐熱性を有する軟磁性
合金膜を得ることができる。
According to the method of the invention as set forth in claims 5 and 12, for a soft magnetic alloy film having a special composition, after the film is formed, the soft magnetic alloy film is subjected to 500 rpm in a rotating magnetic field.
Since it is heat-treated at ~ 730 ° C and furthermore at 350-600 ° C in a static magnetic field, a soft magnetic alloy film with high magnetic permeability of around 1000, high saturation magnetic flux density higher than Sendust and good heat resistance is obtained. Obtainable.

請求項6,13に記載の発明の方法によれば、特別な組成
の軟磁性合金膜について、高い透磁率を得たい方向と略
直交する方向に磁界を印加して350〜700℃で静磁場中熱
処理した後に前記方向に磁界を印加して前記温度以下で
静磁場中熱処理するので、異方性磁界をある程度抑えた
上で透磁率の高い、軟磁気特性の優れた合金膜を得るこ
とができる。また、この発明の方法によれば、回転磁場
中の熱処理を行わないために、ヘッド製造工程時のギャ
ップ形成時に伴うガラス溶着工程に要する装置が単純な
装置で済む利点がある。更に、熱処理温度を350〜700℃
の広い範囲で選定できるので、熱処理条件の選択幅が広
がる特徴がある。
According to the method of the invention as set forth in claims 6 and 13, a soft magnetic alloy film having a special composition is applied with a magnetic field in a direction substantially orthogonal to a direction in which a high magnetic permeability is desired to be obtained, and a static magnetic field is applied at 350 to 700 ° C. Since the magnetic field is applied in the above-mentioned direction after the middle heat treatment and the heat treatment is performed in the static magnetic field at the temperature or lower, it is possible to obtain an alloy film having high permeability and high soft magnetic properties while suppressing the anisotropic magnetic field to some extent. it can. Further, according to the method of the present invention, since the heat treatment in the rotating magnetic field is not performed, there is an advantage that the apparatus required for the glass welding step involved in forming the gap in the head manufacturing step can be a simple apparatus. Furthermore, the heat treatment temperature is 350-700 ° C
The characteristic feature is that the range of heat treatment conditions can be widened.

請求項7,14に記載の発明の方法によれば、特別な組成
の軟磁性合金膜について、高い透磁率を得たい方向に磁
界を印加した350〜700℃の静磁場中熱処理後に、前記方
向と略直交する方向に磁界を印加する静磁場中熱処理を
行うので、異方性磁界をある程度抑えた上で透磁率の高
い、軟磁気特性の優れた合金膜を得ることができる。ま
た、この発明の方法によれば、回転磁場中の熱処理を行
わないために、ヘッド製造工程時のギャップ形成時に伴
うガラス溶着工程に要する装置が単純な装置で済む利点
がある。更に、熱処理温度を350〜700℃の広い範囲で選
定できるので、熱処理条件の選択幅が広がる特徴があ
る。
According to the method of the invention according to claim 7, 14, the soft magnetic alloy film of a special composition, after heat treatment in a static magnetic field of 350 to 700 ° C. in which a magnetic field is applied in a direction to obtain high magnetic permeability, Since the heat treatment in a static magnetic field in which a magnetic field is applied in a direction substantially perpendicular to the above is performed, an alloy film having high magnetic permeability and excellent soft magnetic properties can be obtained while suppressing anisotropic magnetic field to some extent. Further, according to the method of the present invention, since the heat treatment in the rotating magnetic field is not performed, there is an advantage that the apparatus required for the glass welding step involved in forming the gap in the head manufacturing step can be a simple apparatus. Furthermore, since the heat treatment temperature can be selected in a wide range of 350 to 700 ° C., there is a feature that the selection range of heat treatment conditions is widened.

【図面の簡単な説明】[Brief description of the drawings]

第1図は回転磁場中において行う熱処理方法の一例を示
す説明図、第2図は比抵抗と熱処理温度の関係を示すグ
ラフ、第3図は請求項3,8に記載した発明の熱処理過程
を示すグラフ、第4図は請求項4,9に記載した発明の熱
処理過程を示すグラフ、第5図は請求項5,10に記載した
発明の熱処理過程を示すグラフ、第6図は試料に対して
加える磁界の方向を説明するための図、第7図は実施例
で行った加熱冷却過程を示すグラフ、第8図は実施例1
の合金膜の初透磁率と無磁場熱処理温度の関係を示すグ
ラフ、第9図は実施例1の合金膜の異方性磁界と無磁場
熱処理温度の関係を示すグラフ、第10図は実施例2の合
金膜の初透磁率と無磁場熱処理温度の関係を示すグラ
フ、第11図は実施例3の合金膜の初透磁率と無磁場熱処
理温度の関係を示すグラフ、第12図は実施例4の合金膜
の初透磁率と回転磁場中熱処理温度の関係を示すグラ
フ、第13図は実施例5の合金膜の初透磁率と静磁場中熱
処理温度の関係を示すグラフ、第14図は実施例6の合金
膜の初透磁率と静磁場中熱処理温度の関係を示すグラ
フ、第15図は実施例7の合金膜の初透磁率と回転磁場中
熱処理温度の関係を示すグラフ、第16図は実施例におい
て試料に対して加える磁界の方向を説明するための図、
第17図と第18図は実施例9で得られたデータを示すもの
で、第17図は初透磁率と熱処理温度の関係を示すグラ
フ、第18図は異方性磁界と熱処理温度の関係を示すグラ
フ、第19図と第20図は実施例10で得られたデータを示す
もので、第19図は初透磁率と熱処理温度の関係を示すグ
ラフ、第20図は異方性磁界と熱処理温度の関係を示すグ
ラフである。 1……N極、2……S極、3……軟磁性合金膜、4……
基板、5,6……試料。
FIG. 1 is an explanatory diagram showing an example of a heat treatment method performed in a rotating magnetic field, FIG. 2 is a graph showing a relationship between specific resistance and heat treatment temperature, and FIG. 3 is a diagram showing a heat treatment process of the invention described in claims 3 and 8. FIG. 4 is a graph showing the heat treatment process of the invention described in claims 4 and 9, FIG. 5 is a graph showing the heat treatment process of the invention described in claims 5 and 10, and FIG. FIG. 7 is a graph for explaining the direction of the applied magnetic field, FIG. 7 is a graph showing the heating / cooling process performed in the embodiment, and FIG.
FIG. 9 is a graph showing the relationship between the initial magnetic permeability of the alloy film of Example 1 and the magnetic field-free heat treatment temperature, FIG. 9 is a graph showing the relationship between the anisotropic magnetic field of the alloy film of Example 1 and the temperature of the magnetic field-free heat treatment, and FIG. FIG. 11 is a graph showing the relationship between the initial magnetic permeability of the alloy film of No. 2 and the heat treatment temperature without magnetic field, FIG. 11 is a graph showing the relationship between the initial magnetic permeability of the alloy film of Example 3 and the heat treatment temperature without magnetic field, and FIG. FIG. 13 is a graph showing the relationship between the initial magnetic permeability of the alloy film of Example 4 and the heat treatment temperature in a rotating magnetic field. FIG. 13 is a graph showing the relationship between the initial magnetic permeability of the alloy film of Example 5 and the heat treatment temperature in a static magnetic field. FIG. 15 is a graph showing the relationship between the initial magnetic permeability of the alloy film of Example 6 and the heat treatment temperature in a static magnetic field; FIG. 15 is a graph showing the relationship between the initial magnetic permeability of the alloy film of Example 7 and the heat treatment temperature in a rotating magnetic field; The figure is a diagram for explaining the direction of the magnetic field applied to the sample in the embodiment,
17 and 18 show data obtained in Example 9. FIG. 17 is a graph showing a relationship between initial magnetic permeability and heat treatment temperature. FIG. 18 is a graph showing a relationship between anisotropic magnetic field and heat treatment temperature. 19 and 20 show data obtained in Example 10, FIG. 19 is a graph showing the relationship between initial magnetic permeability and heat treatment temperature, and FIG. 20 is an anisotropic magnetic field. It is a graph which shows the relationship of a heat processing temperature. 1 ... N pole, 2 ... S pole, 3 ... Soft magnetic alloy film, 4 ...
Substrate, 5,6 ... sample.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01F 10/16 H01F 41/18──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) H01F 10/16 H01F 41/18

Claims (14)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】組成式がCoxTyMzCwで示され、MはTi,Zr,H
f,V,Nb,Ta,Mo,Wのうち、1種または2種以上からなる金
属元素またはその混合物、TはFe,Ni,Mnのうち、少なく
とも1種または2種以上からなる金属元素またはその混
合物であり、組成比x,y,z,wは原子%で 50≦x≦96 0<y≦20 2≦z≦25 0.1≦w≦20 なる関係を満足させるとともに、その組織が基本的に平
均結晶粒径0.05μm以下の結晶粒からなり、その一部に
元素Mの炭化物の結晶相を含む軟磁性合金膜の製造方法
において、 高い透磁率を得たい方向と略直交する方向に磁場を印加
しつつ成膜する工程と、成膜後に520〜730℃の温度範囲
において無磁場状態で熱処理を行う工程を具備すること
を特徴とする軟磁性合金膜の製造方法。
The composition formula is represented by Co x T y M z C w , where M is Ti, Zr, H
f, V, Nb, Ta, Mo, W, one or more metal elements or a mixture thereof, T is Fe, Ni, Mn, at least one or two or more metal elements or It is a mixture, and the composition ratio x, y, z, w satisfies the relationship of 50 ≦ x ≦ 960 <y ≦ 20 2 ≦ z ≦ 25 0.1 ≦ w ≦ 20 in atomic%, and its structure is basically In a method of manufacturing a soft magnetic alloy film comprising crystal grains having an average crystal grain size of 0.05 μm or less and partially including a crystal phase of a carbide of the element M, a magnetic field is applied in a direction substantially orthogonal to a direction in which a high magnetic permeability is desired. And applying a heat treatment in a temperature range of 520 to 730 ° C. without a magnetic field after the film formation.
【請求項2】請求項1に記載した組成の軟磁性合金膜を
製造するに際し、高い透磁率を得たい方向と略直交する
方向に磁場を印加しつつ成膜する工程と、成膜後に520
〜730℃の温度範囲で回転磁場中において熱処理を行う
工程を具備することを特徴とする軟磁性合金膜の製造方
法。
2. A process for producing a soft magnetic alloy film having the composition described in claim 1, wherein a film is formed while applying a magnetic field in a direction substantially perpendicular to a direction in which a high magnetic permeability is desired, and 520 after the film formation.
A method for producing a soft magnetic alloy film, comprising a step of performing a heat treatment in a rotating magnetic field at a temperature in the range of -730 ° C.
【請求項3】請求項1に記載した組成の軟磁性合金膜を
製造するに際し、成膜後、350〜550℃の温度範囲で高い
透磁率を得たい方向と略直交する方向に印加された静磁
場中において熱処理を行う工程と、それに引き続き行な
われる520〜730℃の温度範囲での無磁場熱処理工程を具
備することを特徴とする軟磁性合金膜の製造方法。
3. In producing a soft magnetic alloy film having the composition described in claim 1, after the film is formed, the film is applied in a temperature range of 350 to 550 ° C. in a direction substantially orthogonal to a direction in which a high magnetic permeability is desired to be obtained. A method for producing a soft magnetic alloy film, comprising: a step of performing a heat treatment in a static magnetic field; and a subsequent non-magnetic field heat treatment step in a temperature range of 520 to 730 ° C.
【請求項4】請求項1に記載した組成の軟磁性合金膜を
製造するに際し、成膜後、350〜550℃の温度範囲で高い
透磁率を得たい方向と略直交する方向に印加された静磁
場中において熱処理を行う工程と、それに引き続き行な
われる520〜730℃の温度範囲での回転磁場中における熱
処理工程を具備することを特徴とする軟磁性合金膜の製
造方法。
4. In producing a soft magnetic alloy film having the composition described in claim 1, after the film is formed, it is applied in a temperature range of 350 to 550 ° C. in a direction substantially orthogonal to a direction in which a high magnetic permeability is desired to be obtained. A method for producing a soft magnetic alloy film, comprising: performing a heat treatment in a static magnetic field; and a subsequent heat treatment in a rotating magnetic field in a temperature range of 520 to 730 ° C.
【請求項5】請求項1に記載した組成の軟磁性合金膜を
製造するに際し、成膜後、500〜730℃の温度範囲で回転
磁場中において熱処理する工程と、それに引き続き行わ
れる高い透磁率を得たい方向と略直交する方向に印加さ
れた静磁場中において350〜600℃の温度範囲で熱処理を
行う工程を具備することを特徴とする軟磁性合金膜の製
造方法。
5. A process for producing a soft magnetic alloy film having the composition according to claim 1, wherein the film is subjected to a heat treatment in a rotating magnetic field at a temperature in the range of 500 to 730 ° C. after the film is formed, and a high magnetic permeability subsequently performed. A method for producing a soft magnetic alloy film, comprising a step of performing a heat treatment in a temperature range of 350 to 600 ° C. in a static magnetic field applied in a direction substantially orthogonal to a direction in which a magnetic field is desired to be obtained.
【請求項6】請求項1に記載した組成の軟磁性合金膜に
対し、最終的に高い透磁率を得たい方向と略直交する方
向に磁界を印加した静磁場中で350〜700℃の温度範囲で
第1段の熱処理を行い、微結晶を一部析出させた状態で
一軸磁気異方性を誘導した後、第1段の熱処理温度以下
の温度で最終的に高い透磁率を得たい方向に磁界を印加
した静磁場中において第2段の熱処理を行い、前記第1
段と第2段の熱処理温度と保持時間の少なくとも一方を
調節することで、その組織が、基本的に平均結晶粒径0.
05μm以下の結晶粒からなり、その一部に元素Mの炭化
物の結晶相を含む軟磁性合金膜の一軸異方性を制御する
ことを特徴とする軟磁性合金膜の熱処理方法。
6. A temperature of 350 to 700 ° C. in a static magnetic field in which a magnetic field is applied to the soft magnetic alloy film having the composition described in claim 1 in a direction substantially perpendicular to a direction in which a high magnetic permeability is finally required. After conducting the first-stage heat treatment within the range and inducing uniaxial magnetic anisotropy in a state where microcrystals are partially precipitated, a direction in which it is desired to finally obtain a high magnetic permeability at a temperature lower than the first-stage heat treatment temperature The second stage heat treatment is performed in a static magnetic field in which a magnetic field is applied to the first
By adjusting at least one of the heat treatment temperature and the holding time of the stage and the second stage, the structure is basically adjusted to have an average crystal grain size of 0.
A heat treatment method for a soft magnetic alloy film, comprising: controlling the uniaxial anisotropy of a soft magnetic alloy film including crystal grains of not more than 05 μm and partially including a crystal phase of a carbide of an element M.
【請求項7】請求項1に記載した組成の軟磁性合金膜に
対し、最終的に高い透磁率を得たい方向に磁界を印加し
た静磁場中で350〜700℃の温度範囲で第1段の熱処理を
行い、微結晶を一部析出させた状態で一軸磁気異方性を
誘導した後、350〜700℃の温度範囲で、最終的に高い透
磁率を得たい方向に略直交する方向に磁界を印加した静
磁場中において第2段の熱処理を行い、前記第1段と第
2段の熱処理温度と保持時間の少なくとも一方を調節す
ることで、その組織が、基本的に平均結晶粒径0.05μm
以下の結晶粒からなり、その一部に元素Mの炭化物の結
晶相を含む軟磁性合金膜の一軸異方性の大きさを制御す
ることを特徴とする軟磁性合金膜の熱処理方法。
7. The first step in a temperature range of 350 to 700 ° C. in a static magnetic field in which a magnetic field is applied in a direction in which a high magnetic permeability is to be finally obtained with respect to the soft magnetic alloy film having the composition described in claim 1. After conducting a heat treatment and inducing uniaxial magnetic anisotropy in a state in which microcrystals are partially precipitated, in a temperature range of 350 to 700 ° C., in a direction substantially orthogonal to a direction in which ultimately high magnetic permeability is to be obtained. The second stage heat treatment is performed in a static magnetic field to which a magnetic field is applied, and at least one of the first stage heat treatment temperature and the second stage heat treatment temperature and / or the holding time is adjusted, so that the structure is basically an average crystal grain size. 0.05μm
A heat treatment method for a soft magnetic alloy film, comprising: controlling the magnitude of uniaxial anisotropy of a soft magnetic alloy film including the following crystal grains and partially including a crystal phase of a carbide of an element M.
【請求項8】組成式がCoxMzCwで示され、MはTi,Zr,Hf,
V,Nb,Ta,Mo,Wのうち、1種または2種以上からなる金属
元素またはその混合物であり、組成比x,z,wは原子%で 50≦x≦96 2≦z≦25 0.1≦w≦20 なる関係を満足させるとともに、その組織が基本的に平
均結晶粒径0.05μm以下の結晶粒からなり、その一部に
元素Mの炭化物の結晶相を含む軟磁性合金膜の製造方法
において、 高い透磁率を得たい方向と略直交する方向に磁場を印加
しつつ成膜する工程と、成膜後に520〜730℃の温度範囲
において無磁場状態で熱処理を行う工程を具備すること
を特徴とする軟磁性合金膜の製造方法。
8. The composition formula is represented by Co x M z C w , wherein M is Ti, Zr, Hf,
Among V, Nb, Ta, Mo, and W, one or more metal elements or a mixture thereof, and the composition ratio x, z, and w is 50 ≦ x ≦ 96 2 ≦ z ≦ 25 0.1 in atomic%. ≦ w ≦ 20 and a method for producing a soft magnetic alloy film whose structure is basically composed of crystal grains having an average crystal grain size of 0.05 μm or less and partially including a crystal phase of a carbide of the element M. A step of applying a magnetic field in a direction substantially orthogonal to a direction in which a high magnetic permeability is desired to be formed, and a step of performing a heat treatment in a temperature range of 520 to 730 ° C. without a magnetic field after the film formation. Characteristic method for producing a soft magnetic alloy film.
【請求項9】請求項8に記載した組成の軟磁性合金膜を
製造するに際し、高い透磁率を得たい方向と略直交する
方向に磁場を印加しつつ成膜する工程と、成膜後に520
〜730℃の温度範囲で回転磁場中において熱処理を行う
工程を具備することを特徴とする軟磁性合金膜の製造方
法。
9. A process for producing a soft magnetic alloy film having the composition described in claim 8 by applying a magnetic field in a direction substantially orthogonal to a direction in which a high magnetic permeability is desired, and 520
A method for producing a soft magnetic alloy film, comprising a step of performing a heat treatment in a rotating magnetic field at a temperature in the range of -730 ° C.
【請求項10】請求項8に記載した組成の軟磁性合金膜
を製造するに際し、成膜後、350〜550℃の温度範囲で高
い透磁率を得たい方向と略直交する方向に印加された静
磁場中において熱処理を行う工程と、それに引き続き行
なわれる520〜730℃の温度範囲での無磁場熱処理工程を
具備することを特徴とする軟磁性合金膜の製造方法。
10. A soft magnetic alloy film having the composition described in claim 8 is applied in a direction substantially perpendicular to a direction in which a high magnetic permeability is desired in a temperature range of 350 to 550 ° C. after the film is formed. A method for producing a soft magnetic alloy film, comprising: a step of performing a heat treatment in a static magnetic field; and a subsequent non-magnetic field heat treatment step in a temperature range of 520 to 730 ° C.
【請求項11】請求項8に記載した組成の軟磁性合金膜
を製造するに際し、成膜後、350〜550℃の温度範囲で高
い透磁率を得たい方向と略直交する方向に印加された静
磁場中において熱処理を行う工程と、それに引き続き行
なわれる520〜730℃の温度範囲での回転磁場中における
熱処理工程を具備することを特徴とする軟磁性合金膜の
製造方法。
11. A soft magnetic alloy film having the composition described in claim 8 is applied in a direction substantially perpendicular to a direction in which a high magnetic permeability is desired in a temperature range of 350 to 550 ° C. after the film is formed. A method for producing a soft magnetic alloy film, comprising: performing a heat treatment in a static magnetic field; and a subsequent heat treatment in a rotating magnetic field in a temperature range of 520 to 730 ° C.
【請求項12】請求項8に記載した組成の軟磁性合金膜
を製造するに際し、成膜後、500〜730℃の温度範囲で回
転磁場中において熱処理する工程と、それに引き続き行
われる高い透磁率を得たい方向と略直交する方向に印加
された静磁場中において350〜600℃の温度範囲で熱処理
を行う工程を具備することを特徴とする軟磁性合金膜の
製造方法。
12. A process for producing a soft magnetic alloy film having the composition described in claim 8, wherein the film is heat-treated in a rotating magnetic field at a temperature in the range of 500 to 730 ° C. after the film is formed, and a high magnetic permeability is subsequently performed. A method for producing a soft magnetic alloy film, comprising a step of performing a heat treatment in a temperature range of 350 to 600 ° C. in a static magnetic field applied in a direction substantially orthogonal to a direction in which a magnetic field is desired to be obtained.
【請求項13】請求項8に記載した組成の軟磁性合金膜
に対し、最終的に高い透磁率を得たい方向と略直交する
方向に磁界を印加した静磁場中で350〜700℃の温度範囲
で第1段の熱処理を行い、微結晶を一部析出させた状態
で一軸磁気異方性を誘導した後、第1段の熱処理温度以
下の温度で最終的に高い透磁率を得たい方向に磁界を印
加した静磁場中において第2段の熱処理を行い、第1段
と第2段の熱処理温度と保持時間の少なくとも一方を調
節することで、その組織が、基本的に平均結晶粒径0.05
μm以下の結晶粒からなり、その一部に元素Mの炭化物
の結晶相を含む軟磁性合金膜の一軸異方性を制御するこ
とを特徴とする軟磁性合金膜の熱処理方法。
13. A temperature of 350 to 700 ° C. in a static magnetic field in which a magnetic field is applied to a soft magnetic alloy film having the composition described in claim 8 in a direction substantially orthogonal to a direction in which a high magnetic permeability is finally required. After conducting the first-stage heat treatment within the range and inducing uniaxial magnetic anisotropy in a state where microcrystals are partially precipitated, a direction in which it is desired to finally obtain a high magnetic permeability at a temperature lower than the first-stage heat treatment temperature The second stage heat treatment is performed in a static magnetic field in which a magnetic field is applied, and at least one of the first stage heat treatment temperature and the second stage heat treatment temperature and the holding time are adjusted, so that the structure is basically an average crystal grain size. 0.05
A heat treatment method for a soft magnetic alloy film, comprising: controlling the uniaxial anisotropy of a soft magnetic alloy film including crystal grains of μm or less and partially including a crystal phase of a carbide of an element M.
【請求項14】請求項8に記載した組成の軟磁性合金膜
に対し、最終的に高い透磁率を得たい方向に磁界を印加
した静磁場中で350〜700℃の温度範囲で第1段の熱処理
を行い、微結晶を一部析出させた状態で一軸磁気異方性
を誘導した後、350〜700℃の温度範囲で、最終的に高い
透磁率を得たい方向と略直交する方向に磁界を印加した
静磁場中において第2段の熱処理を行い、前記第1段と
第2段の熱処理温度と保持時間の少なくとも一方を調節
することで、その組織が、基本的に平均結晶粒径0.05μ
m以下の結晶粒からなり、その一部に元素Mの炭化物の
結晶相を含む軟磁性合金膜の一軸異方性の大きさを制御
することを特徴とする軟磁性合金膜の熱処理方法。
14. The first step in a temperature range of 350 to 700 ° C. in a static magnetic field in which a magnetic field is applied in a direction in which a high magnetic permeability is to be finally obtained with respect to the soft magnetic alloy film having the composition described in claim 8. After conducting a heat treatment and inducing uniaxial magnetic anisotropy in a state in which microcrystals are partially deposited, in a temperature range of 350 to 700 ° C., in a direction substantially orthogonal to a direction in which ultimately high magnetic permeability is desired to be obtained. The second stage heat treatment is performed in a static magnetic field to which a magnetic field is applied, and at least one of the first stage heat treatment temperature and the second stage heat treatment temperature and / or the holding time is adjusted, so that the structure is basically an average crystal grain size. 0.05μ
A heat treatment method for a soft magnetic alloy film, comprising: controlling the magnitude of uniaxial anisotropy of a soft magnetic alloy film including crystal grains of m or less and partially including a crystal phase of a carbide of an element M.
JP25140889A 1989-07-05 1989-09-27 Method for producing soft magnetic alloy film and method for heat treatment Expired - Lifetime JP2774611B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP17352389 1989-07-05
JP1-173523 1989-07-05

Publications (2)

Publication Number Publication Date
JPH03136216A JPH03136216A (en) 1991-06-11
JP2774611B2 true JP2774611B2 (en) 1998-07-09

Family

ID=15962104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25140889A Expired - Lifetime JP2774611B2 (en) 1989-07-05 1989-09-27 Method for producing soft magnetic alloy film and method for heat treatment

Country Status (1)

Country Link
JP (1) JP2774611B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05109022A (en) * 1991-10-18 1993-04-30 Fuji Electric Co Ltd Thin-film magnetic head and its manufacture
JP2002252115A (en) * 2001-02-26 2002-09-06 Alps Electric Co Ltd Impedance element and its manufacturing method
CN102305595A (en) * 2011-04-29 2012-01-04 无锡众望四维科技有限公司 Method for automatically detecting spring pitch by using mechanical vision system

Also Published As

Publication number Publication date
JPH03136216A (en) 1991-06-11

Similar Documents

Publication Publication Date Title
US6410170B1 (en) High resistivity FeXN sputtered films for magnetic storage devices and method of fabrication
US4918555A (en) Magnetic head containing an Fe-base soft magnetic alloy layer
Suzuki Magnetic and magneto‐optic properties of rapid thermally crystallized garnet films
JP2004311925A (en) FePt MAGNETIC THIN-FILM HAVING PERPENDICULAR MAGNETIC ANISOTROPY AND ITS MANUFACTURING METHOD
JP2635402B2 (en) Soft magnetic alloy film
KR100252495B1 (en) Process for preparing fe- based soft magnetic alloy
JP2774611B2 (en) Method for producing soft magnetic alloy film and method for heat treatment
JPH0744108B2 (en) Soft magnetic thin film
JPH07116563B2 (en) Fe-based soft magnetic alloy
JP3108637B2 (en) Method for manufacturing soft magnetic thin film
JP2950917B2 (en) Soft magnetic thin film
KR0177922B1 (en) Soft magnetic thin film
JPH0484403A (en) Soft magnetic thin film
JP3127074B2 (en) Magnetic head
JP2003100515A (en) Soft magnetic thin film for magnetic core with high saturation magnetization
KR960012245B1 (en) Soft magnetic alloy coating
JP3058675B2 (en) Ultra-microcrystalline magnetic alloy
JPH03265104A (en) Soft magnetic alloy film
JP3058662B2 (en) Ultra-microcrystalline magnetic alloy
JP2771674B2 (en) Soft magnetic alloy film
JP2893706B2 (en) Iron-based soft magnetic film
JP2584687B2 (en) Method for manufacturing soft magnetic thin film
JP3850623B2 (en) Method for producing soft magnetic alloy having fine crystal structure
JPH0744123B2 (en) Method for manufacturing soft magnetic thin film
Iitake et al. Magnetic anisotropy and permeability of Fe-Zr-N thin films