JP3391274B2 - Air supply / exhaust method for vehicle body tilt control by air spring in railway vehicle - Google Patents

Air supply / exhaust method for vehicle body tilt control by air spring in railway vehicle

Info

Publication number
JP3391274B2
JP3391274B2 JP25818898A JP25818898A JP3391274B2 JP 3391274 B2 JP3391274 B2 JP 3391274B2 JP 25818898 A JP25818898 A JP 25818898A JP 25818898 A JP25818898 A JP 25818898A JP 3391274 B2 JP3391274 B2 JP 3391274B2
Authority
JP
Japan
Prior art keywords
exhaust
air
air spring
gain
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25818898A
Other languages
Japanese (ja)
Other versions
JP2000085577A (en
Inventor
士人 玉生
智志 小泉
敏明 松井
潤 小坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP25818898A priority Critical patent/JP3391274B2/en
Publication of JP2000085577A publication Critical patent/JP2000085577A/en
Application granted granted Critical
Publication of JP3391274B2 publication Critical patent/JP3391274B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Vehicle Body Suspensions (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、鉄道車両の乗り心
地が曲線走行時の遠心力で悪化することを防止すると共
に、曲線出入り口での制御の応答遅れを改善し、更なる
乗り心地の改善を実現するための、空気ばねに空気を給
排気することによる車体傾斜制御時の給排気方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention prevents the ride comfort of a railroad vehicle from being deteriorated by centrifugal force when traveling on a curve, improves the response delay of control at the entrance and exit of a curve, and further improves the ride comfort. The present invention relates to a supply / exhaust method for controlling the leaning of a vehicle body by supplying / exhausting air to / from an air spring.

【0002】[0002]

【従来の技術】曲線路を走行する鉄道車両は、カント量
に釣り合う速度で走行しないと乗客に横方向の加速度が
作用して乗り心地を悪くする。しかしながら、設けるカ
ント量の大きさには限度が有るため、曲線路を走行する
列車の速度は、主に乗客の乗り心地を悪くしない程度の
速度に制限されている。
2. Description of the Related Art A railroad vehicle traveling on a curved road, if it is not traveling at a speed commensurate with the cant amount, will have a lateral acceleration acting on passengers to make it uncomfortable to ride. However, since there is a limit to the amount of cant to be provided, the speed of a train traveling on a curved road is limited to a speed that does not make passengers' riding comfort worse.

【0003】曲線路で乗り心地を低下させずに走行速度
を向上させるには、乗客に作用する横方向の加速度を相
殺するように車体を傾斜させてやれば良い。そして、そ
の傾斜方法に関しては、従来からいろいろな方法が提案
されている。
In order to improve the traveling speed without reducing the riding comfort on a curved road, the vehicle body may be tilted so as to cancel the lateral acceleration acting on the passenger. Various methods have been conventionally proposed for the tilting method.

【0004】その一つの方法として、車体を支持してい
る空気ばねを強制的に給排気して車体を傾斜させる方法
が有る。この制御方法は、車体に設けた横方向加速度計
により車体の横方向加速度を検出し、これをフィードバ
ックして空気ばねの空気量を電磁弁の開閉により調節
し、車体の傾斜角をフィードバック制御するものであ
り、空気ばねへの給排気は段階的に変化して行われる。
As one of the methods, there is a method of inclining the vehicle body by forcibly supplying / exhausting an air spring supporting the vehicle body. In this control method, the lateral acceleration of the vehicle body is detected by a lateral accelerometer provided on the vehicle body, and this is fed back to adjust the amount of air in an air spring by opening and closing a solenoid valve to feedback control the inclination angle of the vehicle body. The air supply / exhaust to the air spring is performed in a stepwise manner.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、例えば
乗車率が変化すると、空気ばねの内圧が変化してしま
い、空気ばねの内圧と大気間の差圧、及び、空気源元圧
と空気ばね間の差圧が異なるために、給気時と排気時の
応答性が異なることになる。従って、上記した傾斜制御
方法のように、給気時、排気時に関わらず、偏差に比例
した出力を出すだけでは、復原時の排気の応答が遅れた
りして、乗り心地が悪化することが有る。
However, for example, when the boarding rate changes, the internal pressure of the air spring changes, resulting in a pressure difference between the internal pressure of the air spring and the atmosphere and between the air source pressure and the air spring. Since the differential pressure is different, the responsiveness at the time of air supply is different from that at the time of exhaust. Therefore, as in the above-described tilt control method, if the output is proportional to the deviation regardless of whether air is being supplied or exhausted, the response of the exhaust gas at the time of restoration may be delayed and the riding comfort may be deteriorated. .

【0006】本発明は、上記した従来の問題点に鑑みて
なされたものであり、排気時の復原遅れを可及的に抑制
し、給排気時の応答性を良くすることができる、鉄道車
両における空気ばねによる車体傾斜制御時の給排気方法
を提供することを目的としている。
The present invention has been made in view of the above-mentioned conventional problems, and it is possible to suppress the delay in restoration during exhaust as much as possible and improve the responsiveness during air supply and exhaust. It is an object of the present invention to provide a method for supplying and exhausting air when controlling a vehicle body inclination by means of an air spring.

【0007】[0007]

【課題を解決するための手段】上記した目的を達成する
ために、本発明に係る鉄道車両における空気ばねによる
車体傾斜制御時の給排気方法は、各給気弁及び各排気弁
のON/OFF信号jp(i)を下記数式3により求め
る際に、排気時のゲインGexh を給気時のゲインGsup
よりも大きくしたり、また、排気用電磁弁の口径を給気
用電磁弁の口径より大きくしたり、また、空気ばね内圧
を常に監視実際の空気ばねの内圧Pが基準となる
空気ばねの内圧P 0 よりも大きい場合(P 0 −P<0の
場合)には下記数式3における排気時のゲインGexh を
下げて給気時のゲインGsup を上げ、基準となる空気ば
ねの内圧P 0 が実際の空気ばねの内圧P以上である場合
(P 0 −P≧0の場合)には下記数式3における排気時
のゲインGexh を上げて給気時ゲインGsup を下げる
ととしている。そして、このようにすることで、排気時
の復原遅れを可及的に抑制することができ、給排気時の
応答性が良くなる。
In order to achieve the above-mentioned object, a supply / exhaust method at the time of leaning control of a vehicle body by an air spring in a railroad vehicle according to the present invention is provided for each intake valve and each exhaust valve.
ON / OFF signal jp (i) of
The exhaust gas gain Gexh to the air supply gain Gsup
, The diameter of the exhaust solenoid valve is larger than that of the air supply solenoid valve, and the air spring internal pressure is
P is constantly monitored, and the actual internal pressure P of the air spring is used as a reference.
When it is larger than the internal pressure P 0 of the air spring (P 0 −P <0
In the case of), the gain Gexh at the time of exhaust in Equation 3 below is
Lower the air supply gain Gsup to increase the air supply
When the internal pressure P 0 of the bed is more than the actual internal pressure P of the air spring
(When P 0 −P ≧ 0), when exhausted in the following Equation 3
It has been with this <br/> that by increasing the gain Gexh lower the air supply when the gain Gsup with. By doing so, the delay in restoration during exhaust can be suppressed as much as possible, and the responsiveness during supply and exhaust can be improved.

【0008】[0008]

【発明の実施の形態】本発明に係る鉄道車両における空
気ばねによる車体傾斜制御時の給排気方法は、複数の給
気弁と複数の排気弁を備えた空気ばねに空気を給排気す
ることで車体を傾斜制御する際の給排気方法であって、
各給気弁及び各排気弁のON/OFF信号jp(i)を
下記数式3により求める際に、排気時のゲインGexh を
給気時のゲインGsup よりも大きくしたり、また、排気
用電磁弁の口径を給気用電磁弁の口径より大きくした
り、また、空気ばね内圧を常に監視実際の空気ば
ねの内圧Pが基準となる空気ばねの内圧P 0 よりも大き
い場合(P 0 −P<0の場合)には下記数式3における
排気時のゲインGexh を下げて給気時のゲインGsup を
上げ、基準となる空気ばねの内圧P 0 が実際の空気ばね
の内圧P以上である場合(P 0 −P≧0の場合)には下
記数式3における排気時のゲインGexh を上げて給気時
ゲインGsup を下げたりする。
BEST MODE FOR CARRYING OUT THE INVENTION A supply / exhaust method for controlling a vehicle body inclination by an air spring in a railroad vehicle according to the present invention includes a plurality of supply / exhaust systems.
A supply / exhaust method for tilt control of a vehicle body by supplying / exhausting air to / from an air spring having an air valve and a plurality of exhaust valves ,
ON / OFF signal jp (i) of each air supply valve and each exhaust valve
When calculating by the following formula 3, the gain Gexh at exhaust is calculated.
It is made larger than the gain Gsup at the time of air supply, the diameter of the exhaust solenoid valve is made larger than that of the air supply solenoid valve, and the air spring internal pressure P is constantly monitored to determine the actual air pressure.
The internal pressure P of the bed is larger than the internal pressure P 0 of the air spring, which is the reference.
In case of P 0 −P <0,
Lower the gain Gexh at the time of exhaust and reduce the gain Gsup at the time of air supply
Raise the internal pressure P 0 of the reference air spring to the actual air spring
If the internal pressure is P or more (when P 0 −P ≧ 0),
When air is supplied by increasing the gain Gexh at exhaust in Equation 3
Decrease the gain Gsup .

【0009】本発明に係る鉄道車両における空気ばねに
よる車体傾斜制御時の給排気方法では、上記のように
ることで、給気時と排気時の応答性を可及的に等しくで
きるので、排気時の復原遅れが抑制でき、給排気時の応
答性が良くなる。
[0009] In the air supply and exhaust method at the time of vehicle body tilt control of the air spring in the railway vehicle according to the present invention, in to <br/> Rukoto as described above, as much as possible the responsiveness during the exhaust at the time of supply air Since they can be made equal, the delay in restoration at the time of exhaust can be suppressed, and the responsiveness at the time of supply and exhaust can be improved.

【0010】[0010]

【実施例】以下、本発明に係る鉄道車両における空気ば
ねによる車体傾斜制御時の給排気方法を添付図面に示す
実施例に基づいて説明する。図1は請求項1の本発明に
係る鉄道車両における空気ばねによる車体傾斜制御時の
給排気方法のアルゴリズムを示すフロー図、図2は請求
項1の本発明に係る鉄道車両における空気ばねによる車
体傾斜制御時の給排気方法を実施する装置構成の一例を
示す説明図、図3は請求項2の本発明に係る鉄道車両に
おける空気ばねによる車体傾斜制御時の給排気方法を実
施する装置構成の一例を示す説明図、図4は請求項3の
本発明に係る鉄道車両における空気ばねによる車体傾斜
制御時の給排気方法を実施する装置構成の一例を示す説
明図、図5は本発明に係る鉄道車両における空気ばねの
給排気方法に適用する車体傾斜制御のブロック図であ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method of supplying and exhausting air when a vehicle body tilt control is performed by an air spring in a railway vehicle according to the present invention will be described below with reference to the embodiments shown in the accompanying drawings. FIG. 1 is a flow chart showing an algorithm of a supply / exhaust method at the time of leaning control of a vehicle body by an air spring in a railway vehicle according to the present invention of claim 1, and FIG. 2 is a vehicle body by an air spring in a railway vehicle according to the present invention of claim 1. FIG. 3 is an explanatory view showing an example of a device configuration for carrying out the air supply / exhaust method during tilt control, and FIG. 3 shows a device configuration for carrying out the air supply / exhaust method during vehicle body tilt control by an air spring in a railway vehicle according to the present invention. FIG. 4 is an explanatory view showing an example, FIG. 4 is an explanatory view showing an example of a device configuration for carrying out a supply / exhaust method during vehicle body tilt control by an air spring in a railway vehicle according to the present invention of claim 3, and FIG. FIG. 4 is a block diagram of vehicle body tilt control applied to an air spring supply / exhaust method in a railway vehicle.

【0011】先ず、本発明に係る鉄道車両における空気
ばねへの給排気方法に適用する車体傾斜制御方法を図5
に示すブロック図に基づいて説明する。車体傾斜制御
は、予め入力されている曲線データと、車輪の回転数よ
り求めた走行地点から曲線を検知し、その時の車両の走
行速度V(m/s)と、曲線データ(予想走行地点にお
けるカントC(mm)、予想走行地点における曲線半径
R(m))より、下記の数式1によって、車体の目標傾
斜角θa(rad)(最大傾斜角θmax )を演算し、車
体の傾斜を制御するプログラム制御である。
First, a vehicle body inclination control method applied to a method for supplying and exhausting air to a spring in a railway vehicle according to the present invention will be described with reference to FIG.
A description will be given based on the block diagram shown in FIG. The vehicle body tilt control detects a curve from the curve data that is input in advance and the traveling point obtained from the rotational speed of the wheels, and the traveling speed V (m / s) of the vehicle at that time and the curve data (at the estimated traveling point). From the cant C (mm) and the curve radius R (m) at the predicted traveling point, the target inclination angle θa (rad) (maximum inclination angle θmax) of the vehicle body is calculated by the following mathematical formula 1 to control the vehicle body inclination. It is program controlled.

【0012】[0012]

【数1】θa=(V2 /gR)−C/G 但し、θa≦θmax G:軌間(mm)## EQU1 ## θa = (V 2 / gR) -C / G where θa ≦ θmax G: gauge (mm)

【0013】しかし、実際には、上記したようにして求
めた車体の目標傾斜角θaから、各部位の目標空気ばね
高さHaを求め、この目標空気ばね高さHaに実際の空
気ばねの高さHを追従させることによって、傾斜角を発
生させている。なお、実際の空気ばねの高さHは、図2
〜図4に示すように、夫々の空気ばね3に取付けられた
高さ検出器5によって検出する。
However, actually, the target air spring height Ha of each portion is obtained from the target lean angle θa of the vehicle body obtained as described above, and the actual air spring height is calculated as the target air spring height Ha. The inclination angle is generated by following the height H. Note that the actual height H of the air spring is as shown in FIG.
As shown in FIG. 4, the height detectors 5 attached to the respective air springs 3 detect the height.

【0014】そして、曲線出入り口において空気ばねの
高さHを追従させる際の傾斜や復原の遅れを補償するた
めに、車体傾斜制御方法では、現在車両が走行している
地点から数秒先の予想走行地点における曲率半径Rやカ
ントC情報を基に、制御器6で目標傾斜角θaを演算
し、下記の数式2で求めた制御出力(偏差)を、下記の
数式3に従って、図2〜図4に示すように、例えば3個
の電磁弁を並列接続して構成した給気弁群、及び、排気
弁群における各給気弁1a〜1cや排気弁2a〜2cの
ON/OFF信号jp(a)〜jp(c)に変換し、空
気ばね3の高さHを追従させている。
Then, in order to compensate for the inclination and the delay of the restoration when the height H of the air spring is made to follow at the curved doorway, in the vehicle body inclination control method, the expected traveling a few seconds ahead of the point where the vehicle is currently traveling. Based on the radius of curvature R and the cant C information at the point, the controller 6 calculates the target inclination angle θa, and the control output (deviation) obtained by the following mathematical formula 2 is calculated according to the following mathematical formula 3. As shown in FIG. 5, for example, an ON / OFF signal jp (a of the air supply valves 1a to 1c and the exhaust valves 2a to 2c in the air supply valve group formed by connecting three electromagnetic valves in parallel and the exhaust valve group ) -Jp (c), and the height H of the air spring 3 is made to follow.

【0015】[0015]

【数2】y(i)=Ha(i)−H(i) 但し、Ha(i):i位の目標空気ばね高さ(i=1〜
4) H(i) :i位の実際の空気ばね高さ(i=1〜4) y(i) :偏差
[Mathematical formula-see original document] y (i) = Ha (i) -H (i) where Ha (i) is the i-th target air spring height (i = 1 to 1).
4) H (i): Actual height of the i-th air spring (i = 1 to 4) y (i): Deviation

【0016】[0016]

【数3】 jp(i)=benn×y(i)×gg 但し、benn:使用する弁の数を設定する変数 benn=2n −1でn連制御 gg :目標高さの最大値hhmax の値に従って調整するゲイン 排気時はgg=Gexh 給気時はgg=Gsup Jp (i) = benn × y (i) × gg, where benn: a variable that sets the number of valves to be used benn = 2 n −1 n-series control gg: of the maximum value hhmax of the target height Gain adjusted according to the value gg = Gexh during exhaust, gg = Gsup during air supply

【0017】上記したような車体傾斜制御方法によって
空気ばね3の給排気を行うに際し、空気源4の元圧と空
気ばね3の内圧の差と、空気ばね3の内圧と大気圧との
差が異なる場合、給気時と排気時で応答速度に差が生じ
ることになる。例えば空気ばね3の内圧と大気圧の差が
小さくて、空気源4の元圧と空気ばね3の内圧の差が大
きい場合に、空気ばね3の高さをHa(mm)だけ上昇
させる場合と、降下させる場合、電磁弁の開口面積が同
じであれば、排気(降下)の速度の方が遅くなってしま
う。
When the air spring 3 is supplied and exhausted by the above-described vehicle body tilt control method, the difference between the source pressure of the air source 4 and the internal pressure of the air spring 3 and the difference between the internal pressure of the air spring 3 and the atmospheric pressure are determined. If they are different, there will be a difference in response speed between air supply and exhaust. For example, when the difference between the internal pressure of the air spring 3 and the atmospheric pressure is small and the difference between the source pressure of the air source 4 and the internal pressure of the air spring 3 is large, the height of the air spring 3 is increased by Ha (mm). In the case of lowering, if the opening area of the solenoid valve is the same, the speed of exhausting (lowering) will be slower.

【0018】そこで、請求項1の給排気方法では、図1
に示すように、数式2で求めた制御出力(偏差)が零よ
り大きいか、小さいかを判断し、大きい場合には数式3
におけるゲインggとしてGsup を、反対に小さい場合
にはゲインggとしてGexhを調整し、上昇時の各給気
弁1a〜1cの開口面積より、降下時の各排気弁2a〜
2cの開口面積を大きくするように制御するのである。
以上の制御を曲線路の走行中継続する。
Therefore, according to the air supply / exhaust method of claim 1, FIG.
As shown in Equation 3, it is determined whether the control output (deviation) obtained by Equation 2 is larger or smaller than zero.
Gsup is adjusted as the gain gg in the above, and when it is small, Gexh is adjusted as the gain gg, and from the opening area of each air supply valve 1a-1c at the time of rising, each exhaust valve 2a-at the time of falling is adjusted.
The control is performed so that the opening area of 2c is increased.
The above control is continued while traveling on the curved road.

【0019】ちなみに、給気時と排気時を同一ゲインと
して目標空気ばね高さ(図6の一点鎖線)を与えた場合
の応答結果を図6に示すが、この場合、給気時(図6の
下側の実線)の応答に比べて排気時(図6の上側の実
線)の応答が極端に悪いことが判る。
Incidentally, FIG. 6 shows the response results when the target air spring height (dotted line in FIG. 6) is given with the same gain during air supply and during air exhaust. In this case, during air supply (FIG. 6). It can be seen that the response at the time of exhaust (the upper solid line in FIG. 6) is extremely worse than the response of the lower solid line).

【0020】これに対して、請求項1の給排気方法を採
用し、排気時のゲインを給気時のゲインより大きくした
場合には、図7に示すように、給気時の応答(図7の下
側の実線)は変化せずに、排気時の応答(図6の上側の
実線)は向上していることが判る。
On the other hand, when the air supply / exhaust method of claim 1 is adopted and the gain at the time of exhaust is made larger than the gain at the time of air supply, as shown in FIG. It can be seen that the response at the time of exhaust (the upper solid line in FIG. 6) is improved without changing the lower solid line (7).

【0021】また、上記した請求項1のように、排気時
の出力に、給気時の出力にかけるゲインよりも大きなゲ
インをかけることに代えて、図3に示すように、3個の
排気弁2a〜2cのうちの例えば排気弁2aの口径を他
の排気弁2b,2cや給気弁1a〜1cの口径より大き
くすれば、給気弁1a〜1cや排気弁2a〜2cに対す
る出力指令が同一演算式を使用した偏差に比例した出力
であっても、排気弁2aの開口面積が給気弁1a〜1c
の開口面積よりも大きくなるので、復原時における排気
の応答性が向上する。これが請求項2の給排気方法であ
る。
Further, as described in claim 1 described above, instead of applying a gain larger than the gain applied to the output during air supply to the output during exhaust, as shown in FIG. If, for example, the diameter of the exhaust valve 2a of the valves 2a to 2c is made larger than the diameters of the other exhaust valves 2b and 2c and the air supply valves 1a to 1c, output commands to the air supply valves 1a to 1c and the exhaust valves 2a to 2c. Is an output proportional to the deviation using the same arithmetic expression, the opening area of the exhaust valve 2a is equal to the supply valves 1a to 1c.
Since the opening area is larger than the opening area, the exhaust response at the time of restoration is improved. This is the air supply / exhaust method of claim 2.

【0022】また、鉄道車両は乗客の空満差でも空気ば
ね3の内圧が変化し、空気の給排気の応答性に影響が出
る。すなわち、ある基準の状態から乗客が増加し、空気
ばね3の内圧が増加したとすると、基準の状態から比較
すると排気効率は上昇し、給気効率は低下する。反対
に、基準の状態から乗客が減少した場合には、逆の現象
が発生する。
Further, in a railroad vehicle, the internal pressure of the air spring 3 changes even if the passengers have an empty space, which affects the responsiveness of air supply and exhaust. That is, if the number of passengers increases from a certain standard state and the internal pressure of the air spring 3 increases, the exhaust efficiency increases and the air supply efficiency decreases compared to the standard state. On the contrary, when the number of passengers decreases from the standard state, the opposite phenomenon occurs.

【0023】そこで、請求項3の給排気方法では、図4
に示すように、空気ばね3に圧力センサ7を取付けて、
空気ばね3の内圧Pを監視し、例えば下記の数式4によ
って給気のゲインG2supや排気のゲインG2exhを決定す
る。
Therefore, according to the air supply / exhaust method of claim 3, FIG.
Attach the pressure sensor 7 to the air spring 3 as shown in
The internal pressure P of the air spring 3 is monitored, and, for example, the gain G2sup of the supply air and the gain G2exh of the exhaust air are determined by the following formula 4.

【0024】[0024]

【数4】P0 −P<0の場合 G2exh=(P/P0 )×Gexh ×de G2sup=(P0 /P)×Gsup ×ds P0 −P≧0の場合 G2exh=(P/P0 )×Gexh ×de G2sup=(P0 /P)×Gsup ×ds 但し、de,ds:比例定数When P 0 −P <0, G2exh = (P / P 0 ) × Gexh × de G2sup = (P 0 / P) × Gsup × ds P 0 −P ≧ 0 G2exh = (P / P 0 ) × Gexh × de G2sup = (P 0 / P) × Gsup × ds, where de and ds are proportional constants

【0025】すなわち、実際の空気ばねの内圧Pが基準
となる空気ばねの内圧P0 よりも大きい場合(0 −P
<0の場合)には排気のゲインを下げて給気のゲインを
上げ、反対に、基準となる空気ばねの内圧P0 が実際の
空気ばねの内圧P以上である場合(P0 −P≧0の場
合)には排気のゲインを上げて給気のゲインを下げるの
である。
[0025] That is, than the internal pressure P 0 of the air spring internal pressure P of the actual air spring becomes the reference large if (P 0 -P
In the case of <0), the gain of the exhaust gas is decreased to increase the gain of the intake air, and conversely, when the reference internal pressure P 0 of the air spring is equal to or higher than the actual internal pressure P of the air spring (P 0 −P ≧ In the case of 0), the gain of exhaust gas is increased and the gain of supply air is decreased.

【0026】ちなみに、空車時にゲインを変えずに制御
した場合、及び、満車時にゲインを変えずに制御した場
合の目標空気ばね高さと、実際の空気ばねの高さの応答
結果を図8及び図9に示す。空車時では、図8に示すよ
うに、空気ばねの内圧が基準となる定員乗車状態よりも
低くなるので、排気時の応答(図8の上側の実線)が悪
くなり、逆に給気時の応答(図8の下側の実線)が良く
なる。反対に、満車時では、図9に示すように、空気ば
ねの内圧が基準となる定員乗車状態よりも高くなるの
で、排気時の応答(図9の上側の実線)が良くなり、逆
に給気時の応答(図9の下側の実線)が悪くなる。
Incidentally, FIG. 8 and FIG. 8 show the response results of the target air spring height and the actual air spring height when the gain is controlled without changing the gain when the vehicle is empty and when the gain is controlled without changing the gain when the vehicle is full. 9 shows. As shown in FIG. 8, when the vehicle is empty, the internal pressure of the air spring is lower than that in the standard passenger riding state, so the response during exhaust (the upper solid line in FIG. 8) deteriorates, and conversely when air is supplied. The response (solid line at the bottom of FIG. 8) improves. On the other hand, when the vehicle is full, as shown in FIG. 9, the internal pressure of the air spring becomes higher than in the standard passenger riding state, and therefore the response at the time of exhaust (solid line on the upper side of FIG. 9) improves, and conversely The response at the time of breath (the lower solid line in FIG. 9) becomes worse.

【0027】これに対して、請求項3の給排気方法を採
用し、上記した数式4によって空気ばねの内圧に応じて
給気時や排気時のゲインを変えて制御した場合には、図
10に示すように、実際の空気ばね高さが目標空気ばね
高さ(図10の一点鎖線)により速く近づき、給気時の
応答(図10の下側の実線)や排気時の応答(図10の
上側の実線)が向上していることは明らかである。
On the other hand, when the air supply / exhaust method of claim 3 is adopted and the gains at the time of air supply and at the time of air exhaust are controlled according to the internal pressure of the air spring by the above-mentioned formula 4, control is performed as shown in FIG. As shown in Fig. 10, the actual air spring height approaches the target air spring height (the one-dot chain line in Fig. 10) faster, and the response during air supply (the lower solid line in Fig. 10) and the response during exhaust (Fig. 10). It is clear that the upper solid line) is improved.

【0028】[0028]

【発明の効果】以上説明したように、本発明に係る鉄道
車両における空気ばねによる車体傾斜制御時の給排気方
法によれば、鉄道車両における車体傾斜制御を実施する
場合、給気時と排気時の応答性を可及的に等しくでき
て、排気時の復原遅れを抑制できる。また、給排気の応
答性を向上することもできる。
As described above, according to the air supply / exhaust method for the vehicle body inclination control by the air spring in the railway vehicle according to the present invention, when the vehicle body inclination control is performed in the railway vehicle, the air supply and the air emission are performed. The responsiveness can be made as equal as possible, and the delay in restoration during exhaust can be suppressed. Further, it is possible to improve the responsiveness of supply and exhaust.

【図面の簡単な説明】[Brief description of drawings]

【図1】請求項1の本発明に係る鉄道車両における空気
ばねによる車体傾斜制御時の給排気方法のアルゴリズム
を示すフロー図である。
FIG. 1 is a flow chart showing an algorithm of a supply / exhaust method at the time of leaning control of a vehicle body by an air spring in a railway vehicle according to the present invention of claim 1;

【図2】請求項1の本発明に係る鉄道車両における空気
ばねによる車体傾斜制御時の給排気方法を実施する装置
構成の一例を示す説明図である。
FIG. 2 is an explanatory diagram showing an example of a device configuration for carrying out the air supply / exhaust method at the time of vehicle body tilt control by the air spring in the railway vehicle according to the present invention of claim 1;

【図3】請求項2の本発明に係る鉄道車両における空気
ばねによる車体傾斜制御時の給排気方法を実施する装置
構成の一例を示す説明図である。
FIG. 3 is an explanatory diagram showing an example of a device configuration for carrying out a supply / exhaust method at the time of leaning control of a vehicle body by an air spring in a railway vehicle according to a second aspect of the present invention.

【図4】請求項3の本発明に係る鉄道車両における空気
ばねによる車体傾斜制御時の給排気方法を実施する装置
構成の一例を示す説明図である。
FIG. 4 is an explanatory diagram showing an example of a device configuration for carrying out a supply / exhaust method during vehicle body tilt control by an air spring in a railway vehicle according to a third aspect of the present invention.

【図5】本発明に係る鉄道車両における空気ばねの給排
気方法に適用する車体傾斜制御のブロック図である。
FIG. 5 is a block diagram of vehicle body tilt control applied to a method for supplying and exhausting an air spring in a railway vehicle according to the present invention.

【図6】給気時と排気時のゲインが同一である従来方法
を実施した場合の給排気の応答性を示す図である。
FIG. 6 is a diagram showing responsiveness of supply / exhaust when a conventional method in which the gains at the time of air supply and the gain at exhaust are the same.

【図7】排気時のゲインを給気時のゲインよりも大きく
した請求項1の本発明方法を実施した場合の給排気の応
答性を示す図である。
FIG. 7 is a diagram showing the response of supply / exhaust when the method of the present invention according to claim 1 in which the gain during exhaust is made larger than the gain during supply.

【図8】空車時における給排気の応答性を示す図であ
る。
FIG. 8 is a diagram showing responsiveness of supply and exhaust when the vehicle is empty.

【図9】満車時における給排気の応答性を示す図であ
る。
FIG. 9 is a diagram showing responsiveness of supply and exhaust when the vehicle is full.

【図10】請求項3の本発明方法を実施した場合の給排
気の応答性を示す図である。
FIG. 10 is a diagram showing the response of supply and exhaust when the method of the present invention according to claim 3 is carried out.

【符号の説明】[Explanation of symbols]

1a〜1c 給気弁 2a〜2c 排気弁 3 空気ばね 6 制御器 7 圧力センサ 1a-1c Air supply valve 2a-2c Exhaust valve 3 air spring 6 controller 7 Pressure sensor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松井 敏明 大阪府大阪市此花区島屋5丁目1番109 号 住金デザインアンドエンジニアリン グ株式会社内 (72)発明者 小坂田 潤 大阪府大阪市此花区島屋5丁目1番109 号 住金デザインアンドエンジニアリン グ株式会社内 (56)参考文献 特開 昭58−76360(JP,A) 特開 昭59−92252(JP,A) 特開 平5−238387(JP,A) 特開 平7−267083(JP,A) 実開 昭49−54208(JP,U) 特公 昭48−205(JP,B1) (58)調査した分野(Int.Cl.7,DB名) B61F 5/10 B61F 5/22 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshiaki Matsui 5-1109 Shimaya, Konohana-ku, Osaka City, Osaka Prefecture Sumikin Design and Engineering Co., Ltd. (72) Inventor Jun Kozada, Konohana-ku, Osaka City, Osaka Prefecture 5-1-1 Shimaya Sumikin Design and Engineering Co., Ltd. (56) Reference JP-A-58-76360 (JP, A) JP-A-59-92252 (JP, A) JP-A-5-238387 ( JP, A) JP 7-267083 (JP, A) Actual development Sho 49-54208 (JP, U) Japanese patent Sho 48-205 (JP, B1) (58) Fields investigated (Int.Cl. 7 , DB name) B61F 5/10 B61F 5/22

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 複数の給気弁と複数の排気弁を備えた
気ばねに空気を給排気することで車体を傾斜制御する際
の給排気方法であって、排気時における復原遅れを解消
するために、各給気弁及び各排気弁のON/OFF信号
jp(i)を下記式により求める際に、排気時のゲイ
ンGexh を給気時のゲインGsup よりも大きくすること
を特徴とする鉄道車両における空気ばねによる車体傾斜
制御時の給排気方法。 jp(i)=benn×y(i)×gg … 但し、benn:使用する弁の数を設定する変数 y(i):偏差(=Ha(i)−H(i)) ここで、Ha(i):i位の目標空気ばね高さ(i=1〜4) H(i) :i位の実際の空気ばね高さ(i=1〜4) gg :目標高さの最大値h hmax の値に従って調整するゲイン 排気時はgg=Gexh 給気時はgg=Gsup
1. A supply / exhaust method for tilt control of a vehicle body by supplying / exhausting air to / from an air spring having a plurality of air supply valves and a plurality of exhaust valves, the method comprising: ON / OFF signal of each air supply valve and each exhaust valve to eliminate restoration delay
When calculating jp (i) by the following formula,
Gexh is set to be larger than the gain Gsup at the time of air supply . jp (i) = benn × y (i) × gg, where benn: a variable that sets the number of valves to be used y (i): deviation (= Ha (i) −H (i)) where Ha ( i): i-th target air spring height (i = 1 to 4) H (i): i-th actual air spring height (i = 1 to 4) gg: maximum value of target height h hmax Adjust according to the value. Gg = Gexh for gain exhaust. Gg = Gsup for air supply.
【請求項2】 各給気弁及び各排気弁のON/OFF信
号jp(i)を式により求めることに代えて、排気用
電磁弁の口径を給気用電磁弁の口径より大きくすること
を特徴とする請求項1記載の鉄道車両における空気ばね
による車体傾斜制御時の給排気方法。
2. An ON / OFF signal for each air supply valve and each exhaust valve.
The vehicle body inclination control by an air spring in a railway vehicle according to claim 1, wherein the diameter of the exhaust solenoid valve is made larger than the diameter of the air supply solenoid valve, instead of obtaining the number jp (i) by an equation. How to supply and exhaust when.
【請求項3】 各給気弁及び各排気弁のON/OFF信
号jp(i)を式により求める際に、単純に、排気時
のゲインGexh を給気時のゲインGsup よりも大きくす
ことに代えて、空気ばね内圧を常に監視実際の
空気ばねの内圧Pが基準となる空気ばねの内圧P 0 より
も大きい場合(P 0 −P<0の場合)には式における
排気時のゲインGexh を下げて給気時のゲインGsup を
上げ、基準となる空気ばねの内圧P 0 が実際の空気ばね
の内圧P以上である場合(P 0 −P≧0の場合)には
式における排気時のゲインGexh を上げて給気時ゲイン
Gsup を下げることを特徴とする請求項1記載の鉄道車
両における空気ばねによる車体傾斜制御時の給排気方
法。
3. An ON / OFF signal for each air supply valve and each exhaust valve
When the number jp (i) is calculated by an equation, simply
Make the gain Gexh of the power supply larger than the gain Gsup at the time of air supply.
That in particular place, the air spring internal pressure P constantly monitors the actual
Than the internal pressure P 0 of the air spring internal pressure P of the air spring becomes the reference
Is also large (when P 0 −P <0), in the equation
Lower the gain Gexh at the time of exhaust and reduce the gain Gsup at the time of air supply
Raise the internal pressure P 0 of the reference air spring to the actual air spring
When the internal pressure is equal to or higher than P (when P 0 −P ≧ 0),
Increase the exhaust gain Gexh in the formula and increase the supply gain
2. The air supply / exhaust method for vehicle body tilt control by an air spring in a railway vehicle according to claim 1, wherein Gsup is lowered .
JP25818898A 1998-09-11 1998-09-11 Air supply / exhaust method for vehicle body tilt control by air spring in railway vehicle Expired - Fee Related JP3391274B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25818898A JP3391274B2 (en) 1998-09-11 1998-09-11 Air supply / exhaust method for vehicle body tilt control by air spring in railway vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25818898A JP3391274B2 (en) 1998-09-11 1998-09-11 Air supply / exhaust method for vehicle body tilt control by air spring in railway vehicle

Publications (2)

Publication Number Publication Date
JP2000085577A JP2000085577A (en) 2000-03-28
JP3391274B2 true JP3391274B2 (en) 2003-03-31

Family

ID=17316748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25818898A Expired - Fee Related JP3391274B2 (en) 1998-09-11 1998-09-11 Air supply / exhaust method for vehicle body tilt control by air spring in railway vehicle

Country Status (1)

Country Link
JP (1) JP3391274B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006192942A (en) * 2005-01-11 2006-07-27 Toshiba Corp Vehicle body inclination system using fluid pressure spring
JP4594743B2 (en) * 2005-01-14 2010-12-08 株式会社東芝 Solenoid valve control method in air spring type body tilt system
JP5215611B2 (en) * 2007-08-06 2013-06-19 川崎重工業株式会社 Tilt control system for railway vehicles
JP5215610B2 (en) * 2007-08-06 2013-06-19 川崎重工業株式会社 Tilt control system for railway vehicles
JP5168264B2 (en) * 2009-11-02 2013-03-21 新日鐵住金株式会社 Railway vehicle body tilt control method
JP5513175B2 (en) * 2010-03-05 2014-06-04 川崎重工業株式会社 Railway vehicle body tilting device
JP5267490B2 (en) * 2010-03-11 2013-08-21 新日鐵住金株式会社 Railway vehicle body tilt control method
JP5917343B2 (en) * 2012-09-03 2016-05-11 公益財団法人鉄道総合技術研究所 Railway vehicle body tilt control device and body tilt control method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48205B1 (en) * 1969-10-18 1973-01-06
JPS4954208U (en) * 1972-08-25 1974-05-14
JPS5876360A (en) * 1981-10-30 1983-05-09 株式会社日立製作所 Forced tilting method for railway rolling stock
JPS5992252A (en) * 1982-11-19 1984-05-28 財団法人鉄道総合技術研究所 Tilter for car body for railway rolling stock
JP2653317B2 (en) * 1992-02-27 1997-09-17 住友金属工業株式会社 Body inclination control method for railway vehicle with air spring
JPH07267083A (en) * 1994-03-30 1995-10-17 Sumitomo Metal Ind Ltd Body inclination control method of railway stock

Also Published As

Publication number Publication date
JP2000085577A (en) 2000-03-28

Similar Documents

Publication Publication Date Title
JP2653317B2 (en) Body inclination control method for railway vehicle with air spring
JPH10109513A (en) Suspension control device
JP3391274B2 (en) Air supply / exhaust method for vehicle body tilt control by air spring in railway vehicle
JPH01297316A (en) Suspension controlling device for vehicle
JPH09175137A (en) Vehicle suspension device
JP2007131204A (en) Damping device for railway vehicle
JP3328792B2 (en) Suspension control device
JPH0781558A (en) Slant control method of vehicle and slant controller
JPH09249016A (en) Vehicle suspension device
JP4292973B2 (en) Railway vehicle body tilt control method and apparatus
JP2003104024A (en) Suspension control device
JPH1024844A (en) Vibration control device for vehicle
JPH07267083A (en) Body inclination control method of railway stock
JP4186105B2 (en) Railway vehicle vibration control apparatus and control method
JP3529366B2 (en) Railcar body tilt control system
JPH08207765A (en) Vibration control device for rolling stock
JP2879722B2 (en) Method and apparatus for leaning vehicle body of railway vehicle
JP2939229B1 (en) Vehicle body tilt control method for railway vehicles
JPH1178467A (en) Suspension controller
JPH07156628A (en) Suspension control device
JP3826326B2 (en) Railway vehicle vibration control system
JP5168264B2 (en) Railway vehicle body tilt control method
JPH08332824A (en) Suspension control device
JPH0443025B2 (en)
JP2002293122A (en) Speed sensitive type vehicle height adjusting mechanism and controlling method therefor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100124

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110124

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120124

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130124

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130124

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130124

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140124

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees