JPH0313510A - Manufacture of fine powder by laser beam - Google Patents

Manufacture of fine powder by laser beam

Info

Publication number
JPH0313510A
JPH0313510A JP15001389A JP15001389A JPH0313510A JP H0313510 A JPH0313510 A JP H0313510A JP 15001389 A JP15001389 A JP 15001389A JP 15001389 A JP15001389 A JP 15001389A JP H0313510 A JPH0313510 A JP H0313510A
Authority
JP
Japan
Prior art keywords
metal
laser
fine powder
laser beam
plume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15001389A
Other languages
Japanese (ja)
Other versions
JPH07122085B2 (en
Inventor
Munehide Katsumura
宗英 勝村
Michifumi Yoneda
米田 理史
Akihiro Uchiumi
内海 明博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP1150013A priority Critical patent/JPH07122085B2/en
Publication of JPH0313510A publication Critical patent/JPH0313510A/en
Publication of JPH07122085B2 publication Critical patent/JPH07122085B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently manufacture metal kind fine powder having less than submicron order of particle size by irradiating the metal with laser beam having high energy density, melting and cooling the generated laser bloom with gas stream. CONSTITUTION:The raw material 2 for forming fine powder on the holding table 7 is irradiated with the laser beam 1 having high energy density obtd. by converging the laser beam from a laser generator with a condensing lens and melted to generate the laser plume 3 just above this. Then, as the raw material 2, at least one kind of metal or mixed material of at least one kind of metal and at least one kind of non-metal, is used. Successively, the laser bloom 3 is cooled by making the gas stream (inert gas or reactive gas) to flow from a nozzle 4 to direction of a recovering plate 6 so as to shield the laser plume 3, to accumulate the fine powder on the surface of the recovering plate 6. By this method, the fine powder having about 0.2-1.0mu average particle diameter is efficiently obtd. with simple operation.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はレーザ光線による微粉末の新規な製造方法に関
するものである。さらに詳しくいえば、本発明は、高エ
ネルギー密度ビームのレーザ光線の照射によって生じる
レーザプルームを利用して、溶射材料をはじめ、粉体粉
末関連分野における素材として有用な、ザブミクロンオ
ーダ以下の大きさの金属系微粉末を効率よく製造する方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION FIELD OF INDUSTRIAL APPLICATION The present invention relates to a novel method for producing fine powder using laser beams. More specifically, the present invention utilizes a laser plume generated by irradiation with a high-energy-density laser beam to create a material with a size of submicron order or less that is useful as a material in fields related to powder, including thermal spray materials. The present invention relates to a method for efficiently producing metal-based fine powder.

従来の技術 従来、粉体粉末冶金工業をはじめとする各種工業分野に
おいて用いられる金属系微粉末は、粒子径が数μmない
し数十μmの範囲のものが主流を占めていt;が、近年
、高機能化や高性能化などへのニーズにこたえるものと
してサブミクロンオーダ以下の大きさの金属系超微粉末
が注目されるようになってきた。
Conventional technology Traditionally, metal-based fine powders used in various industrial fields including the powder metallurgy industry have mainly had particle diameters in the range of several μm to several tens of μm; however, in recent years, Ultrafine metal powders with a size of submicron order or less have been attracting attention as a means of meeting the needs for higher functionality and performance.

一般に、粉末の粒径が小さくなるに伴い、粉末を構成し
ている全原子数に対する表面原子数の比が大きくなるた
め、超微粉末においては、元の素材にない新しい特性が
、例えば磁性、光物性、熱抵抗、融点、電気伝導、焼結
性などにおいて、発渾されることが知られている。この
ような特性の応用としては、例えば鉄−コバルト合金な
どの超微粒子は、1個の粒子が永久磁石となるため、金
属の塊よりも極めて高い磁性を示すことから、ビデオテ
ープなどの磁性材料として、従来から用いられており、
またファインセラミックス用焼結材料として、優れた焼
結性を示す炭化ケイ素や窒化ケイ素などの超微粉末が開
発されている。さらに最近では、次世代の大容量記録方
式として期待されている光ディスクに超微粒子を利用す
る研究、あるいは超微粒子を利用するガス・デポジショ
ン法による薄膜化の研究が盛んに行われている。
Generally, as the particle size of a powder decreases, the ratio of the number of surface atoms to the total number of atoms constituting the powder increases, so ultrafine powders can have new properties not found in the original material, such as magnetism, It is known to have significant effects on optical properties, thermal resistance, melting point, electrical conductivity, sinterability, etc. For example, ultrafine particles such as iron-cobalt alloys can be used in magnetic materials such as video tapes because each particle acts as a permanent magnet and exhibits extremely higher magnetism than a lump of metal. It has been traditionally used as
Furthermore, ultrafine powders such as silicon carbide and silicon nitride, which exhibit excellent sinterability, have been developed as sintering materials for fine ceramics. Furthermore, recently, research has been actively conducted on the use of ultrafine particles in optical disks, which are expected to be a next-generation high-capacity recording method, and on the use of gas deposition methods to make thin films using ultrafine particles.

このように、金属系超微粉末は新しい機能性材料として
注目され、その応用開発が積極的になされている。
As described above, ultrafine metal powders are attracting attention as new functional materials, and their applications are being actively developed.

従来、金属系の超微粉末を含めた微粉末の製造方法とし
ては、例えば高速度衝撃粉砕機、ボールミル、気流粉砕
機、媒体かくはんミルなどを用いる機械的粉砕分級法、
及び原子、イオンからの核発生や成長の過程で微粒子を
形成させる化学的方法などが知られている。しかしなが
ら、機械的粉砕分級法においては、エネルギー効率が悪
い、異物が混入しやすい、分級操作が必要で、プロセス
が煩雑であるなどの欠点を有し、−力比学的方法におい
て、微粒子の形成に長時間を要し、実用的でないという
欠点がある。
Conventionally, methods for producing fine powders, including metal-based ultrafine powders, include mechanical crushing and classification methods using, for example, high-speed impact crushers, ball mills, air flow crushers, media agitation mills, etc.
Also known are chemical methods in which fine particles are formed through the process of nuclear generation and growth from atoms and ions. However, the mechanical crushing and classification method has drawbacks such as poor energy efficiency, easy contamination of foreign substances, the need for classification operations, and a complicated process. The drawback is that it takes a long time and is not practical.

このような欠点を改良した金属系微粉末の製造方法とし
て、連続供給される金属ワイヤの先端をレーザ光線によ
り溶融するとともに、前記ワイヤ先端の溶融金属をガス
流でワイヤから分離し、放出して微粉末を形成させる方
法が提案されている(特開昭51−56762号公報、
特開昭61−264108号公報、特開昭63−613
64号公報)。
As a method for manufacturing fine metal powder that improves these drawbacks, the tip of a continuously supplied metal wire is melted by a laser beam, and the molten metal at the tip of the wire is separated from the wire by a gas flow and released. A method of forming fine powder has been proposed (Japanese Unexamined Patent Publication No. 51-56762,
JP-A-61-264108, JP-A-63-613
Publication No. 64).

しかしながら、前記方法においては、ガス流による溶融
金属の物理的am化手法であるので、サブミクロンオー
ダ以下の大きさの超微粒子の製造は困難であり、また、
溶融から凝固までの時間が短いために、反応を利用する
場合には適正条件領域が狭いなどの問題があり、必ずし
も十分に満足しうるものではない。
However, since the method is a physical atomization method of molten metal using a gas flow, it is difficult to produce ultrafine particles with a size of submicron order or less.
Since the time from melting to solidification is short, there are problems such as a narrow range of appropriate conditions when using a reaction, and it is not always fully satisfactory.

発明が解決しようとする課題 本発明は、このような従来の金属系微粉末の製造方法が
有する欠点を克服し、サブミクロンオーダ以下の大きさ
の金属系微粉末を簡単な操作で効率よく製造するための
方法を提供することを目的としてなされたものである。
Problems to be Solved by the Invention The present invention overcomes the drawbacks of such conventional methods for producing fine metal powder, and enables efficient production of fine metal powder with a size of submicron order or less using simple operations. This was done with the purpose of providing a method for doing so.

課題を解決するための手段 本発明者らは、前記目的を達成するI;めに鋭意研究を
重ねた結果、1種の金属又は金属同士や金属と非金属と
の混合物に高エネルギー密度ビームのレーザ光線を照射
して得られたレーザプルームをガス流により冷却するこ
とにより、サブミクロンオーダ以下の大きさの金属系微
粉末が容易に得られること、また、該レーザプルーム内
で反応を伴う場合には、このレーザプルームを高周波誘
導加熱することにより、該反応を容易に促進しうろこと
を見い出し、この知見に基づいて本発明を完成するに至
った。
Means for Solving the Problems As a result of intensive research aimed at achieving the above object, the present inventors have discovered that high energy density beams can be applied to one type of metal, a mixture of metals, or a mixture of metals and non-metals. By cooling the laser plume obtained by irradiating a laser beam with a gas flow, metal-based fine powder with a size of submicron order or less can be easily obtained, and if a reaction occurs within the laser plume. The inventors discovered that the reaction could be easily promoted by heating the laser plume by high-frequency induction, and based on this knowledge, the present invention was completed.

すなわち、本発明は、高エネルギー密度ビームのレーザ
光線を、少なくとも1種の金属又は少なくとも1種の金
属と少なくとも1種の非金属との混合物に照射し、これ
を溶融させてレーザプルームを発生させ、次いでこのレ
ーザプルームをそのままで、あるいは高周波誘導加熱し
たのち、ガス流により冷却することを特徴とするレーザ
光線による微粉末の製造方法を提供するものである。
That is, the present invention irradiates a high energy density laser beam onto at least one metal or a mixture of at least one metal and at least one non-metal to melt the metal and generate a laser plume. Then, the present invention provides a method for producing fine powder using a laser beam, which is characterized in that the laser plume is cooled as is or after high-frequency induction heating and then cooled by a gas flow.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明方法においては、素材の金属や非金属を溶融させ
てレーザプルームを発生させるために、高エネルギー密
度ビームのレーザ光線が用いられる。この高エネルギー
密度ビームのレーザ光線は、例えばレーザ光線を集光レ
ンズにより収れんさせることにより得ることができる。
In the method of the present invention, a high energy density laser beam is used to melt the metal or nonmetal material and generate a laser plume. This high-energy-density laser beam can be obtained, for example, by converging the laser beam with a condenser lens.

本発明方法においては、金属系微粉末の素材として、少
なくとも1種の金属又は少なくとも1種の金属と少なく
とも1種の非金属との混合物が用いられる。該金属の種
類については、高エネルギー密度ビームのレーザ光線に
より溶融して、レーザプルームを発生するものであれば
よく、特に制限されず、例えば金、銀、鉄、コバルト、
クロム、ニッケル、マンガン、銅、ビスマス、チタン、
ジルコニウム、ニオブ、イツトリウム、テルビウム、ガ
ドリニウム、スズ、鉛、亜鉛、アルミニウム、ケイ素、
バリウムなどが挙げられるが、もちろんこれらに限定さ
れるものではない。また、これらの金属は1種用いても
よいし、2種以上を組み合わせて用いてもよい。
In the method of the present invention, at least one metal or a mixture of at least one metal and at least one non-metal is used as the material for the metal-based fine powder. The type of metal is not particularly limited as long as it can be melted by a high energy density laser beam to generate a laser plume, and examples include gold, silver, iron, cobalt,
Chromium, nickel, manganese, copper, bismuth, titanium,
Zirconium, niobium, yttrium, terbium, gadolinium, tin, lead, zinc, aluminum, silicon,
Examples include barium, but are of course not limited to these. Further, these metals may be used alone or in combination of two or more.

一方、非金属については、前記の条件を満たし、かつ併
用する前記金属と反応しうるものであればよく特に制限
はない。このようなものとしては、例えば炭素、ホウ素
、リンなどが挙げられるが、もちろんこれらに限定され
るものではない。これらの非金属は前記金属と混合して
用いられるが、この場合それぞれ1種用いてもよいし、
2種以上を用いてもよい。
On the other hand, the non-metal is not particularly limited as long as it satisfies the above conditions and can react with the metal used in combination. Examples of such materials include carbon, boron, phosphorus, etc., but of course the material is not limited to these. These non-metals are used in combination with the above-mentioned metals, but in this case, one type of each may be used,
Two or more types may be used.

本発明方法においては、これらの素材に高エネルギー密
度ビームのレーザ光線を照射し、該素材を溶融させてレ
ーザプルームを発生させ、次いでこのレーザプルームを
ガス流で冷却することにより所望の微粉末が得られるが
、該レーザプルーム内において、金属蒸気間又は金属と
非金属との蒸気間、あるいは金属蒸気と雰囲気ガスとの
間で反応が伴う場合には、該レーザプルームを、所望に
より高周波誘導加熱してその反応を促進させたのち、ガ
ス流により該レーザプルームを冷却してもよい。
In the method of the present invention, these materials are irradiated with a high-energy-density laser beam to melt the materials and generate a laser plume, and then this laser plume is cooled with a gas flow to form the desired fine powder. However, if a reaction occurs within the laser plume between metal vapors, between metal and nonmetal vapors, or between metal vapors and atmospheric gas, the laser plume may be heated by high-frequency induction heating if desired. After the reaction is accelerated, the laser plume may be cooled by a gas flow.

また、このガス流としては、アルゴンやヘリウムなどの
不活性ガスを用いてもよいし、素材と雰囲気ガスとの反
応を所望する場合には、目的に応じて酸素、窒素、炭化
水素などの反応性ガスを適宜用いてもよい。例えば該ガ
ス流として酸素を用いる場合には金属酸化物の微粉末が
、窒素を用いる場合には金属窒化物の微粉末が、メタン
などの炭化水素を用いる場合には金属炭化物の微粉末が
得られる。
In addition, as this gas flow, an inert gas such as argon or helium may be used, or if a reaction between the material and the atmospheric gas is desired, a reaction gas such as oxygen, nitrogen, or hydrocarbon may be used depending on the purpose. A toxic gas may be used as appropriate. For example, when oxygen is used as the gas stream, fine powder of metal oxide is obtained, when nitrogen is used, fine powder of metal nitride is obtained, and when hydrocarbon such as methane is used, fine powder of metal carbide is obtained. It will be done.

このようにして、金属単体微粉末、金属合金微粉末、金
属と非金属との化合物の微粉末金属と雰囲気ガスとの化
合物の微粉末、あるいはこれらの混合物から成る複合微
粉末などが効率よく得られる。これらの微粉末の平均粒
子径は、通常0.2〜1.0μmの範囲である。
In this way, fine metal powders, fine metal alloy powders, fine powders of compounds of metals and non-metals, fine powders of compounds of metals and atmospheric gas, and composite fine powders made of mixtures thereof can be efficiently obtained. It will be done. The average particle diameter of these fine powders is usually in the range of 0.2 to 1.0 μm.

次に、添付図面に従って、本発明のレーザ光線による微
粉末の製造方法の好適な1例について説明する。
Next, a preferred example of the method for producing fine powder using a laser beam according to the present invention will be described with reference to the accompanying drawings.

第1図は本発明方法を実施するための装置の1例の説明
図であって、レーザ発生装置からのレーザ光線を集光レ
ンズで収れんさせて得られた高エネルギー密度ビームの
レーザ光線lを保持台7上の微粉未形成用素材2に照射
し、該素材2を溶融させて、その直上にレーザプルーム
3を発生させる。次に、レーザプルーム3をシールド(
保護)するように、ノズル4から不活性ガス5を、アル
ミニウムのような金属製の回収板6の方向に流すことに
より、該プルーム3はガスと共に流れ、かつ冷却されて
回収板6の表面に、所望の微粉末が集積される。
FIG. 1 is an explanatory diagram of one example of an apparatus for implementing the method of the present invention, in which a laser beam l of a high energy density beam obtained by converging a laser beam from a laser generator with a condensing lens is shown. The laser beam irradiates the material 2 on which no fine powder is formed on the holding table 7, melts the material 2, and generates a laser plume 3 directly above it. Next, shield the laser plume 3 (
By flowing an inert gas 5 from a nozzle 4 in the direction of a collection plate 6 made of metal such as aluminum so as to protect the plume 3, the plume 3 flows with the gas and is cooled to the surface of the collection plate 6. , the desired fine powder is accumulated.

また、第2図は同じように本発明方法を実施するための
装置の別の例を示す説明図であって、レーザ光線lは反
射鏡8で方向を変えられ、素材支持台7の上の微粉未形
成用素材2に照射される。
Similarly, FIG. 2 is an explanatory view showing another example of the apparatus for implementing the method of the present invention, in which the direction of the laser beam l is changed by a reflecting mirror 8, and the laser beam l is placed on the material support stand 7. The material 2 for non-fine powder formation is irradiated.

これにより素材2は溶融され、レーザプルーム3を発生
する。
As a result, the material 2 is melted and a laser plume 3 is generated.

次に、このレーザプルーム3は高周波コイル辱により高
周波誘導棒加熱され、ノズル4からの反応性ガス5′と
反応しながら回収板6の方向へ流れ、この上に捕集され
る。
Next, this laser plume 3 is heated by a high-frequency induction rod by a high-frequency coil, flows toward a collection plate 6 while reacting with the reactive gas 5' from the nozzle 4, and is collected thereon.

発明の効果 本発明によると、高エネルギー密度ビームのレーザ光線
を素材に照射して発生するレーザプルームを利用するこ
とにより、サブミクロンオーダ以下の大きさの金属系微
粉末を極めて効率よく製造することができる。また、レ
ーザプルーム内で反応を伴う場合には、該レーザプルー
ムを高周波誘導加熱することにより、その反応を促進す
ることが可能である。
Effects of the Invention According to the present invention, by using a laser plume generated by irradiating a material with a high-energy density laser beam, metal-based fine powder with a size of submicron order or less can be manufactured extremely efficiently. I can do it. Furthermore, if a reaction occurs within the laser plume, the reaction can be promoted by high-frequency induction heating of the laser plume.

本発明方法で得られた金属系微粉末は、サブミクロンオ
ーダ以下の大きさを有し、かつ異物の混入もなく、例え
ば溶射材料、ファインセラミックス用焼結材料、金属と
セラミックスとの接合用バインダー、ビデオテープ用磁
性材料、光デイスク用材料、耐熱、耐食性皮膜の構造と
して重要な傾斜組成膜用材料、ガス・デポジション法に
よる薄膜形成用材料、金属の射出成形用材料、粉末冶金
用材料などとして極めて有用である。
The metal-based fine powder obtained by the method of the present invention has a size of submicron order or less and is free of foreign matter, and can be used, for example, as a thermal spray material, a sintered material for fine ceramics, or a binder for joining metals and ceramics. , magnetic materials for video tapes, materials for optical disks, materials for gradient composition films important for the structure of heat-resistant and corrosion-resistant films, materials for forming thin films by gas deposition methods, materials for metal injection molding, materials for powder metallurgy, etc. It is extremely useful as a

実施例 次に、実施例により本発明をさらに詳細に説明するが、
本発明はこれらの例によってなんら限定されるものでは
ない。
Examples Next, the present invention will be explained in more detail with reference to examples.
The present invention is not limited in any way by these examples.

実施例1 第1図に示す装置を用い、以下の条件で炭化ケイ素の微
粉末を調製した。
Example 1 Using the apparatus shown in FIG. 1, fine powder of silicon carbide was prepared under the following conditions.

レーザ出カニ3kW 焦点はずし:+100mm 使 用 ガ ス:アルゴン 試     料:ケイ素とカーボンとの混合物 レンズ焦点距離: 250T11 第3図及び第4図にそれぞれ、得られた微粉末の走査電
子顕微鏡写真及びX線回折チャートを示す。
Laser output 3kW Defocus: +100mm Gas used: Argon Sample: Silicon and carbon mixture Lens focal length: 250T11 Figures 3 and 4 show scanning electron micrographs and X-rays of the obtained fine powder, respectively. A line diffraction chart is shown.

この第3図及び第4図から、該微粉末はケイ素とカーボ
ンとが反応して成る炭化ケイ素を含んでいることが分か
る。なお、得られた微粉末の平均粒径は0.5μmであ
った。
It can be seen from FIGS. 3 and 4 that the fine powder contains silicon carbide formed by reacting silicon and carbon. Note that the average particle size of the obtained fine powder was 0.5 μm.

実施例2 第2図に示す装置を用い、以下の条件下でアルミニウム
とチタニウムとの混合物の微粉末を調製しt二。
Example 2 Using the apparatus shown in FIG. 2, a fine powder of a mixture of aluminum and titanium was prepared under the following conditions.

レーザ出カニ2kW 焦点はずしニー5抛履 使 用 ガ ス:アルゴン 試     料ニアルミニウムとチタニウムとの混合物 第5図に得られた微粉末のX線回折チャートを示す。Laser output crab 2kW 5 out of focus knees Gas used: Argon Sample Mixture of Nialuminum and Titanium FIG. 5 shows an X-ray diffraction chart of the obtained fine powder.

この第5図から該微粉末は、通常の方法では生成し難い
アルミニウムとチタニウムとが反応して成る金属間化合
物を含んでいることが分かる。
It can be seen from FIG. 5 that the fine powder contains an intermetallic compound formed by the reaction of aluminum and titanium, which is difficult to produce by normal methods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は、本発明方法を実施するための装置
のそれぞれ異なった例の説明図であって、図中符号lは
レーザ光線、2は微粉未形成用素材、3はレーザブルー
ム、4はノズル、5.5’はガス流、6は回収板、7は
微粉未形成用素材保持台である。 第3図は、本発明方法で得られt;微粉末走査電子顕微
鏡写真図、第4図及び第5図はX線回折チャートである
。 第2fllj
1 and 2 are explanatory diagrams of different examples of the apparatus for carrying out the method of the present invention, in which reference numeral 1 indicates a laser beam, 2 indicates a material for non-fine powder formation, and 3 indicates a laser bloom. , 4 is a nozzle, 5.5' is a gas flow, 6 is a collection plate, and 7 is a material holder for unformed fine powder. FIG. 3 is a scanning electron micrograph of fine powder obtained by the method of the present invention, and FIGS. 4 and 5 are X-ray diffraction charts. 2nd flj

Claims (1)

【特許請求の範囲】 1 高エネルギー密度ビームのレーザ光線を、少なくと
も1種の金属又は少なくとも1種の金属と少なくとも1
種の非金属との混合物に照射し、これを溶融させてレー
ザプルームを発生させ、次いでこのレーザプルームをそ
のままで、あるいは高周波誘導加熱したのち、ガス流に
より冷却することを特徴とするレーザ光線による微粉末
の製造方法。 2 ガス流が不活性ガス流又は反応性ガス流である請求
項1記載の製造方法。
[Scope of Claims] 1. A laser beam of a high energy density beam is combined with at least one metal or at least one metal and at least one metal.
A method using a laser beam characterized by irradiating a mixture of seeds and a nonmetal to melt the mixture to generate a laser plume, and then cooling the laser plume as it is or after heating it by high-frequency induction and cooling it with a gas flow. Method for producing fine powder. 2. The method of claim 1, wherein the gas stream is an inert gas stream or a reactive gas stream.
JP1150013A 1989-06-12 1989-06-12 Method for producing fine powder by laser beam Expired - Lifetime JPH07122085B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1150013A JPH07122085B2 (en) 1989-06-12 1989-06-12 Method for producing fine powder by laser beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1150013A JPH07122085B2 (en) 1989-06-12 1989-06-12 Method for producing fine powder by laser beam

Publications (2)

Publication Number Publication Date
JPH0313510A true JPH0313510A (en) 1991-01-22
JPH07122085B2 JPH07122085B2 (en) 1995-12-25

Family

ID=15487571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1150013A Expired - Lifetime JPH07122085B2 (en) 1989-06-12 1989-06-12 Method for producing fine powder by laser beam

Country Status (1)

Country Link
JP (1) JPH07122085B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH101767A (en) * 1996-06-12 1998-01-06 Takao Araki Formation of titanium-aluminum intermetallic compound powder and formation of titanium-aluminum sprayed coating film
JP2005334782A (en) * 2004-05-27 2005-12-08 Hamamatsu Photonics Kk Device and method for preparing particulate

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101448594B1 (en) * 2007-12-20 2014-10-13 재단법인 포항산업과학연구원 Apparatus for manufacturing amorphous particle and method thereof
KR101400901B1 (en) * 2011-10-20 2014-05-29 한국기계연구원 Method for preparing 500 ㎚-10 ㎛ sized fine spherical powder using high temperature source

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6254005A (en) * 1985-09-02 1987-03-09 Hitachi Ltd Production of hyperfine particles
JPS6397226A (en) * 1986-10-13 1988-04-27 Nkk Corp Producing apparatus for hyperfine particle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6254005A (en) * 1985-09-02 1987-03-09 Hitachi Ltd Production of hyperfine particles
JPS6397226A (en) * 1986-10-13 1988-04-27 Nkk Corp Producing apparatus for hyperfine particle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH101767A (en) * 1996-06-12 1998-01-06 Takao Araki Formation of titanium-aluminum intermetallic compound powder and formation of titanium-aluminum sprayed coating film
JP2005334782A (en) * 2004-05-27 2005-12-08 Hamamatsu Photonics Kk Device and method for preparing particulate

Also Published As

Publication number Publication date
JPH07122085B2 (en) 1995-12-25

Similar Documents

Publication Publication Date Title
CN110049836A (en) Metal parts is manufactured by increasing material manufacturing and for its tungsten heavy metal alloy powder
KR102432787B1 (en) ODS alloy powder, production method thereof by plasma treatment, and use thereof
JP4836136B2 (en) Sputtering target for producing metal glass film and method for producing the same
KR100733331B1 (en) Method of making nano MPP powder using RF plasma combustion
CN111712337B (en) Cu-based alloy powder
Grosdidier et al. Synthesis of bulk FeAl nanostructured materials by HVOF spray forming and Spark Plasma Sintering
Xu et al. Microstructure evolution in laser solid forming of Ti–50 wt% Ni alloy
US5578108A (en) Ultrafine particles of amorphous metal and method for production thereof
JP2008133496A (en) Samarium-iron based permanent magnet material and method manufacturing the same
JPH0313510A (en) Manufacture of fine powder by laser beam
RU2707455C1 (en) Tungsten-based pseudoalloy powder and method of its production
JPH0711009B2 (en) Preparation method for bulky amorphous metal products
JPS6270550A (en) Material for target
US5549951A (en) Composite ultrafine particles of nitrides, method for production and sintered article thereof
Yasuda et al. Fabrication of metallic porous media by semisolid processing using laser irradiation
Gavrikov et al. Fabrication of Powders of Alloy 25Kh15KA for Synthesizing Permanent Magnets by Selective Laser Melting
Shen et al. Fabrication of Fe-based glassy cores with high saturation magnetization and good soft magnetic properties by spark plasma sintering
WO2023181329A1 (en) Copper alloy powder for additive layer manufacturing, production method and evaluation method therefor, method for producing additive layer-manufactured copper alloy article, and additive layer-manufactured copper alloy article
WO2022138233A1 (en) Copper alloy powder for additive manufacturing and method for evaluating said copper alloy powder, method for producing copper alloy additively-manufactured article, and copper alloy additively-manufactured article
JPS59129701A (en) Production of powder of metal or nonmetal or alloy thereof
WO2021132272A1 (en) Alloy
Zhou et al. In situ de-wetting of liquid–solid interface to fabricate spherical Ag@ Ni immiscible alloys
JP2022145312A (en) MANUFACTURING METHOD OF D03-TYPE Fe3Al PARTICLE POWDER
JPH0472884B2 (en)
JP2023148386A (en) FeCo-BASED ALLOY FOR SOFT MAGNETIC LAYER OF MAGNETIC RECORDING MEDIUM

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term